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Degenerative cervical myelopathy (DCM) is one of the leading causes of

progressive spinal cord dysfunction in the elderly. Early diagnosis and treatment

of DCM are essential to avoid permanent disability. The pathophysiology of DCM

includes chronic ischemia, destruction of the blood–spinal cord barrier,

demyelination, and neuronal apoptosis. Electrophysiological studies including

electromyography (EMG), nerve conduction study (NCS), motor evoked

potentials (MEPs) and somatosensory evoked potentials (SEPs) are useful in

detecting the presymptomatic pathological changes of the spinal cord, and thus

supplementing the early clinical and radiographic examinations in themanagement

of DCM. Preoperatively, they are helpful in detecting DCM and ruling out other

diseases, assessing the spinal cord compression level and severity, predicting short-

and long-term prognosis, and thus deciding the treatment methods. Intra- and

postoperatively, they are also useful in monitoring neurological function change

during surgeries and disease progression during follow-up rehabilitation. Here, we

reviewed articles from 1979 to 2021, and tried to provide a comprehensive,

evidence-based review of electrophysiological examinations in DCM. With this

review, we aim to equip spinal surgeons with the basic knowledge to diagnosis and

treat DCM using ancillary electrophysiological tests.
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Introduction

Degenerative cervical myelopathy (DCM) is related to spinal cord neural dysfunctions

caused by degeneration and acquired stenosis of the cervical functional spinal unit (FSU), which

was comprised of the intervertebral disc, adjacent vertebra, endplate, facet joints, and

paravertebral muscle together (Badhiwala et al., 2020). In normal conditions, the integrity

of FSUmaintains not only the spinal biomechanical steady and flexibility, but also protects and
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provides environment for neural tissue homeostasis inside the spinal

canal. In DCM however, the degeneration of FSU such as cervical

spondylosis, disc protrusion, or ossification of the posterior

longitudinal ligament (OPLL) cause the cervical spinal cord

compression and myelopathy (White and Panjabi, 1988; Baptiste

and Fehlings, 2006).

The DCM diagnosis primarily depends on the clinical signs or

symptoms suggesting involvement of spinal long tracts (spastic

paraparesis associated with a variable degree of lower limb ataxia)

and motor and sensory neurons in the gray matter (compromised

sensory and motor function) (Mayfield, 1979). Neuroimagings

including magnetic resonance imaging (MRI) of the spinal cord

can show canal stenosis and signal abnormalities at the cervical cord

lesion, but cannot directly indicate the neural dysfunction in DCM.

Electrophysiological testing is thus recommended as an extension of

the history, physical and radiographic examinations, for it can be used

to assess the conductive functions of central and peripheral neural

pathways. The value of electrophysiological examinations in theDCM

assessment is multifaceted: 1) they help diagnosis and enable

quantitative longitudinal assessment; 2) they help to rule out other

neuromuscular diseases including peripheral neuropathy and motor

neuron disease, which mimics DCM; 3) they can be used to predict

the outcomes after decompressive surgeries (Dvorak et al., 2003;

Capone et al., 2013; Nardone et al., 2016; Badhiwala et al., 2020).

We reviewed and summarized published electrophysiological

studies in DCM patients, in order to assess their indication and

usefulness in this disease. The MEDLINE and EMBASE electronic

databases were searched using the medical subject headings (MeSH):

‘compressive myelopathy’, ‘cervical spondylotic myelopathy’,

‘degenerative cervical myelopathy’, ‘neurophysiology’,

‘electrophysiology’, ‘transcranial magnetic stimulation’, ‘evoked

potentials’, ‘electromyography’ and ‘nerve conduction studies’, and

full-text articles in English language were retrieved. Both prospective

and retrospective studies were included. Two reviewers evaluated the

methodological quality of each study and risk of bias independently.

The search strategy described above yielded 88 results. Only articles

reporting data on studies using the above-mentioned

neurophysiological techniques in patients with DCM were

considered eligible for inclusion; therefore, 80 papers were

provisionally selected and contributed to this review, among of

which 28 papers were included in quantitative synthesis (meta-

analysis). The earliest paper was published in 1979 and the most

recent in 2021. A flow chart (Figure 1) illustrates the selection/

inclusion process.

Physiological basis and anatomical
origins of spinal-cord-related
electrophysiological tests

Evoked potentials (EPs) or evoked responses refer to the specific

electrical activity generated by the nervous system (including

peripheral or central) after receiving an internal or external

stimulation. The neuronal membrane electrical activity underlies

the generation and transduction of EPs. Action potentials in

neuronal cell membranes can be generated in response to effective

stimuli. In unmyelinated axon, the action potential is propagated

because more voltage-gated Na + channels are opened as the

depolarization spreads. As that depolarization spreads, new

voltage-gated Na + channels open and more ions rush into the

cell, spreading the depolarization farther along the length of the axon.

In myelinated axons, electrical currents jump from one Ranvier node

to the next, and the conduction velocity is significantly faster than

that of unmyelinated axons. The conduction of evoked potential is

also influenced by synaptic transmissions. By using these features and

properties, researchers or clinicians can thus exert standardized

artificial stimuli, such as electrical current, sound, light and

magnetic field in a strictly controlled manner in respect to the

quantity, intensity and frequency on the corresponding nervous

structures to produce stable and reproducible EPs. Along with the

standardization of recording and analysis methods, the

electrophysiological tests can be used for mutual communication

and clinical research applications.

Different electrophysiological tests have specific stimuli and

recording methods, and thus have different use and values in the

context of DCM management. Electromyography (EMG) is a test of

muscles and also an indirectly test for nerve damage of the supplying

motor nerve fibers. It is highly sensitive for detecting neuromuscular

damage due to anterior horn cells destruction from compression and

ischaemia in DCM, as well as differentiating DCM patients from

patients with musculogenic lesions (Dvorak et al., 2003). The nerve

conduction study (NCS) includes the compound muscle action

potential (CMAP) and sensory nerve action potential (SNAP),

which are used to assess the function of motor and sensory

nerves, respectively (Tavee, 2019). The F wave and H-reflex are

late CMAP examining the nerve roots conduction (Jerath and

Kimura, 2019). The cutaneous silent period (CSP) is a robust and

FIGURE 1
Flow chart illustrating the selection and inclusion process.
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reproducible nociceptive EMG suppression, mediated by small-

diameter A-δ afferents at the spinal level (Kofler et al., 2019). The

MEPs are recorded over target muscles and are stimulated over the

motor cortex and spinal roots with a transcranial magnetic (TMS) or

electrical (TES) method (Lefaucheur, 2019). Robust normative MEP

latency and conduction time variables can be established for healthy

controls. The delayed central motor conduction time (CMCT) in

DCM could be caused by several factors: slowed conduction in

demyelinated corticospinal fibers, conduction along other

oligosynaptic pathways, or reduction of size and synchrony of

corticospinal volleys reaching the anterior horn cells (Felix and

Wiesendanger, 1971). MEP amplitude may be unstable and no

normative data can be reliably used in clinical practice. However,

an obvious asymmetry in MEP morphology or size (>50%) is

relevant for diagnosis (Lefaucheur, 2019). Somatosensory evoked

potentials (SEPs) are time-locked electric potentials stimulated at the

sensory peripheral nerves and recorded along the large-fiber

somatosensory pathway. The SEPs mainly reflect the transduction

functions of the dorsal column (Muzyka and Estephan, 2019).

Contrary to SEPs, the laser evoked potentials (LEPs) and contact

heat evoked potentials (CHEPs) are ascending sensory signals

recorded from the scalp, but evoked by physical stimuli on

dermatomes on the skin. Both the LEPs and CHEPs can be used

to study spinothalamic tract conduction all along the spinal cord

(Cruccu et al., 2000; Chen et al., 2001; Iannetti et al., 2001). (Figure 2

Adapted from (Dietz and Curt, 2006)) However, it is difficult for

them to identify the precise level of the spinal cord lesion in DCM

and traumatic spinal cord injury patients because of the Lissauer

tract. Lissauer tract is a white matter tract in the spinal cord that

projects up or down across one or two spinal segments.

Somatosensory information arising from the skin must go

through the Lissauer before entering into the dorsal horn of the

spinal cord.

Electrophysiology tests for DCM
diagnosis

Diagnostic sensitivity

“Diagnostic sensitivity” is the percentage of persons who have a

given disorder (DCM) who are identified by the assay

(Electrophysiological tests) as positive for the disorder. Detection

of DCM is sometimes difficult, especially in those patients presenting

without typical myelopathic signs or clinical and radiological

mismatch. Objective measure of spinal cord dysfunction by MEPs

and/or SEPs could help solve this problem (Abbruzzese et al., 1988;

Maertens de Noordhout et al., 1991; Di Lazzaro et al., 1992;

Herdmann et al., 1992; De Mattei et al., 1993; Tavy et al., 1994;

Chistyakov et al., 1995; Kameyama et al., 1995; Chan et al., 2009).

Table 1 summarizes the use of classical neurophysiological (MEPs,

SEPs, EMG/NCS) tests for detecting preclinical, mild, and clinical

DCM patients from various studies. The preclinical DCM, also called

as presymptomatic or silent DCM, refers to patients with positive

MRI signs but without any DCM symptoms (Bednarik et al., 2008).

Mild DCM is defined as positive MRI signs with a modified Japanese

Orthopaedic Association (mJOA) score >15 points, or with non-

specific complaint of cervical pain, headache, dizziness, hand or leg

FIGURE 2
Neurophysiological techniques to study the function of specific spinal tracts and of the peripheral nervous system (adapted from (Dietz and
Curt, 2006)). The clinical neurological examination can be complemented by electrophysiological recordings to obtain quantifiable measures about
the affection of different spinal pathways. The location of the spinal pathways outlined in the table are numerically assigned in the schematic diagram.
MEP = motor evoked potentials; SSEP = somatosensory evoked potentials; SSR = sympathetic skin response; LEP = laser evoked potentials;
GVS = galvanic vestibular stimulation; NCS = nerve conduction study; EMG = electromyography; AMP = amplitude; LAT = latency; NCV = nerve
conduction velocity.
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paresthesia (Feng et al., 2020). Patients with clinical long-tract signs

and symptoms, irrespective of the presence ofMRI signs are classified

as the clinical DCM patients (Lo et al., 2004). For these patients with

unmatched clinical and radiographic presentations,

electrophysiological tests were especially useful in confirming the

diagnosis and predicting early progression (Bednarik et al., 2008).

In preclinical DCM, the incidence of abnormal MEPs varied

greatly from 8% (not significantly different from control subjects)

to 86% (Masur et al., 1989), SEPs from 4.3 to 80%, and EMG from

21.2 to 23.1% (Bednarik et al., 2008). Despite the divergence

between studies, it can be concluded that neurophysiological

studies could detect dysfunction of the spinal cord which may

predate cervical myelopathy symptoms (Travlos et al., 1992).

Preclinical DCM patients with abnormal MEPs and SEPs were

significantly more likely to develop clinical symptoms and signs

compared to patients with normal evoked potential tests

(Bednarík et al., 1998). It should be noted that seven of the

15 presented studies reported poor sensitivity (<20%) of classical

neurophysiological methods (particularly SEPs) to detect

incipient DCM, i.e. preclinical and mild DCM patients.

Recently, some other neurophysiological recording methods of

spinothalamic pathways including the LEPs and CHEPs are also

feasible and sensitive to the assessment of damage to central

sensory nerve fibres (Kramer et al., 2012; Haefeli et al., 2013).

TABLE 1 Diagnostic sensitivity of neurophysiological tests for preclinical or mild DCM.

References NO. Patients MEPs SEPs EMG/NCS

30 preclinical Abnormal MEPs(36.7%) Abnormal SEPs (40%)

23 preclinical Abnormal MEPs (65%)

Tavy et al. (1999) 25 preclinical Abnormal MEPs (8%), not
significantly different from controls

Abnormal SEPs (4.3%), not
significantly different from controls

Bednarik et al.
(2004)

66 preclinical Abnormal MEPs (19.7%) Abnormal SEPs (15.2%) abnormal upper limb EMG (21.2%)

Bednarik et al.
(2008)

199 preclinical Abnormal MEPs (18.6%) Abnormal SEPs (18.6%) abnormal upper limb EMG (23.1%)

Masur et al.
(1989)

15 preclinical, 4 DCM Preclinical: Abnormal MEPs
(86.7%); DCM: Abnormal
MEPs (100%)

Preclinical: Abnormal SEPs (80%);
DCM: Abnormal SEPs (100%)

Kameyama et al.
(1995)

24 preclinical, 67 DCM Preclinical: no significantly different
CMCT or silent period compared
with normal control; DCM:
significantly prolonged CMCT

Preclinical: no significantly different
silent period compared with normal
control; DCM: significantly
shortened silent period

Simo et al. (2004) 29 preclinical, 22 DCM Preclinical: abnormal MEPs (10%),
DCM: abnormal MEPs (81.8%)

Preclinical: abnormal SEPs (7%),
DCM: abnormal SEPs (45.5%)

Kerkovsky et al.
(2012)

27 preclinical, 18 DCM Preclinical: abnormal MEPs (25.9%),
DCM: abnormal MEPs (50%)

Preclinical: abnormal SEPs (29.6%),
DCM: abnormal SEPs (55%)

Nakai et al.
(2008)

48 clinical DCM, 6 without MRI
abnormality, 42 with positive
MRI findings

Abnormal SEPs (90%) in all clinical
DCM; DCM without MRI sign:
abnormal SEPs (66.7%), DCM with
MRI sign: abnormal SEPs (92.9%)

Lo et al. (2004) 141 clinical DCM. 28 without
MRI cord compression, 113 with
mild to severe MRI cord
impingement

DCM without MRI compression:
abnormal MEPs (0%); DCM with
MRI compression: abnormal
MEPs (91.2%)

NCS and EMG showed changes
supportive of radiculopathy (72%)

Lo et al. (2006) 223 clinical DCM. 50 without
MRI cord compression, 176 with
MRI cord impingement

DCM without MRI compression:
abnormal MEPs (0%); DCM with
MRI compression: abnormal
MEPs (98%)

DCM without MRI compression:
abnormal EMG (18%); DCM with
MRI compression: abnormal
EMG (88.1%)

Feng et al. (2020) 200 mild DCM abnormal SEPs (66%)

Nakamae et al.
(2010)

482 milder (non-operative)
DCM, 349 operative DCM

Non-operative group: abnormal
MEPs (75%). Operative group:
abnormal MEPs (100%)

Stetkarova and
Kofler, (2009)

21 mild DCM Abnormal MEP (90.5%) Abnormal SEPs (47.6%) Abnormal CSP (81%), abnormal
EMG (33.3%)s

Preclinical DCM: MRI, signs (cervical canal stenosis, cord impingement or cord compression) without clinical symptoms.

Mild DCM: MRI, signs with mJOA, score >15 or with main complaint of non-specific cervical pain, headache, dizziness, hand or leg paresthesia.

Clinical DCM: myelopathic signs and symptoms (including weakness or numbness in the upper and lower limbs, hyper-reflexia, clonus, positive Hoffman sign) with or without MRI, signs.

DCM: myelopathic signs and symptoms with MRI, signs.
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CHEPs are reported to be more sensitive to damage than SEPs

and enable primary assessment of individual cervical segments by

testing along defined dermatomes in traumatic spinal cord injury

cases (Jutzeler et al., 2016; Jutzeler et al., 2017). These novel

neurophysiological methods are promising in improving the

detection sensitivity of conduction fascicular damage in

incipient DCM.

In clinically diagnosed DCM patients, both the MEPs (Lo

et al., 2006) and SEPs (Berthier et al., 1996; Nakai et al., 2008)

have been reported to be equally or even more sensitive over MRI

or myelography. In clinical DCM patients, the occurrence of

abnormal evoked potentials were significantly higher in MRI

compressed group compared with non-compressed group (Lo

et al., 2004; Lo et al., 2006; Nakai et al., 2008). The CMCT was the

most important parameter in MEPs, followed by the cortical

MEP latency and CMAP/MEP ratio (Kalupahana et al., 2008;

Takahashi et al., 2008). For SEPs, the mostly used parameters are

the latency and amplitude of N13 and N20, followed by the N9-

N13 and N13-N20 intervals of the median and ulnar nerve

(Nakai et al., 2008). The Right-Left differences of the same

patients’ MEP or SEP parameters are also crucial in detecting

abnormalities. DCM patients’ CMCT prolonged significantly at

cervical extension or flexion positions compared with that at

neutral, and thus the dynamic MEPs could also be used to

increase the diagnostic sensitivity (Park et al., 2020). We also

developed dynamic SEPs to achieve higher diagnostic sensitivity

and specificity for DCM than ordinary SEPs or MEPs (Qi et al.,

2020; Yu et al., 2020).

NCS including CSPs can also be used in the assessment of

mild DCM (Stetkarova and Kofler, 2009). The CSP is a protective

reflex that is mediated by spinal inhibitory circuits and is

reinforced in part by parallel modulation of the motor cortex,

and abnormal CSPs are highly related to cervical intramedullary

lesions and spinothalamic dysfunction (Kofler et al., 2003). Lo

et al. (2007) reported abnormal CSPs in 96% of patients with the

clinical diagnosis of DCM. Another study reported CSP

abnormalities were more sensitive than SEP, almost equally

sensitive as upper limb MEPs in detecting the DCM patients,

but were highly associated with spinothalamic dysfunction

(Stetkarova and Kofler, 2009).

Diagnostic specificity (differential
diagnosis)

“Diagnostic specificity” is the percentage of persons who

don’t have DCM and are identified by the assay

(Electrophysiological tests) as negative. There are many

neurological conditions such as those caused by autoimmune,

infectious, inflammatory, and metabolic abnormalities can

present similarly to DCM, especially in cases where

spondylosis may be coexistent. Excluding the coexistence of

DCM is necessary for deciding the management methods. In

this review we mainly discuss the differential diagnosis of DCM

frommultiple sclerosis (MS), amyotrophic lateral sclerosis (ALS),

Hirayama disease (HD), cervical spondylotic amyotrophy (CSA)

and peripheral nerve entrapment by using neurophysiological

examinations (Table 2).

MS patients usually affect a specific population (females age

20–40s) and most often have a history of visual symptoms and

MRI periventricular white matter lesions, which can distinguish

from DCM pathology (Kim et al., 2013). MEP, SEP or EMG

parameters alone are not helpful in distinguish MS from DCM,

but additional visual and auditory evoked potentials are useful as

the MS also frequently affects the optic and auditory nerves

(Hardmeier and Fuhr, 2021).

The ALS can be harder to differentiate from DCM as it

presents weakness, muscle atrophy, fasciculations, gait

difficulty, and no specific MRI features in the cervical spine.

In ALS, the pattern of MEP abnormalities is different from that

in DCM: the CMCT is usually reported as normal or marginally

prolonged, with a reduced MEP amplitude and abnormal

morphology in ALS patients (Eisen et al., 1993; Khalili-

Ardali et al., 2021). This implies that in an ALS patient with

radiological evidence of cervical spondylosis and/or

myelopathy, a normal CMCT and normal or reduced

threshold would suggest that the spondylosis and/or

myelopathy is of no clinical relevance, and thus these

patients should not be selected for surgical treatment. ALS

patients’ SEPs were absent or significantly altered, which is not

significant in differentiating them from DCM (Khalili-Ardali

et al., 2021). NCS and EMG are of great significance in

deciphering ALS from DCM. Kalita et al. (2017) introduced

the split hand index (SHI) calculated by the CMAP of APB and

ADM muscles, and found that a lower SHI was sensitive for

screening ALS. Furthermore, EMG will demonstrate findings in

all four limbs as well as the sternocleidomastoid, whereas

patients with DCM will not exhibit abnormalities in the

sternocleidomastoid (Kang and Fan, 1995; Ishpekova and

Milanov, 2000).

HD and CSA are two kinds of disease characterized with

weakness and wasting of upper limb muscles. In HD, dynamic

neurophysiological tests show a reversible significant prolonged

CMCT inMEP and decreased SEPN13 amplitude and prolonged

N13–N20 interval only upon neck flexion (Restuccia et al., 2003;

Zheng et al., 2017; Park et al., 2019), whereas DCM patients show

MEP and SEP deterioration at both extension and flexion (Park

et al., 2020; Qi et al., 2020; Yu et al., 2020). Furthermore,

Preethish-Kumar et al. (2016) used EMG to reveal grossly

reduced CMAP amplitudes of affected muscles in HD

patients. CSA usually presents prolonged CMCT (Zheng et al.,

2019), which is not helpful in the differential diagnosis of DCM.

Dynamic SEPs are effective for differentiating DCM from CSA,

for SEP amplitudes changed more significantly in DCM than

CSA (Qi et al., 2020). Jin et al. introduced the use of CMAP and

SNAP to differentiate CSA from ALS and HD (Jin et al., 2014).
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The ulnar/median CMAP ratio (UM ratio) was found to be

significantly lower in HD, significantly higher in ALS and no

different in CSA compared with the normal range from previous

studies (0.89–1.60) and with the healthy controls (1.15 ± 0.23),

indicating its value in the differential diagnosis of these diseases.

Preoperative evaluations for DCM
severity and characteristic

Severity assessments

Some investigators also tried to correlate neurophysiological

findings with clinical and radiographic signs quantitatively.

CMCT is significantly related to disability measured by JOA

score and clinical signs of hyperreflexia and the presence of a

Babinski sign (Tavy et al., 1994; Kameyama et al., 1995). It is also

correlated with MRI findings including the number of

compression levels (Chistyakov et al., 1995), spinal cord

compression degrees and intramedullary hyperintensity (Tavy

et al., 1994; Misra and Kalita, 1998; Lo et al., 2004; Lo et al., 2006).

SEPs prolonged latencies and decreased amplitudes also strongly

correlate with clinical signs such as gait disturbance (Lee et al.,

2011), the severity of myelopathy indicated by preoperative JOA

scores, and MRI signs of spinal cord impingement and canal

stenosis level (Restuccia et al., 1994; Lyu et al., 2004; Hu et al.,

2008; Kerkovsky et al., 2012). Dynamic SEPs N13 amplitude ratio

is associated with pre- and post-operative mJOA scores and

several MRI measurements, demonstrating its role in evaluating

disease severity and predicting postoperative prognosis (Yu et al.,

2020). Chistyakov et al. (1995) used the combined test of MEPs,

SEPs and F-wave responses and found that the central sensory

and motor conduction time in DCM group was significantly

prolonged, especially in patients with multiple stenotic segments

compared to those with single disc herniation. Contrary to the

SEPs results, the MEPs combined with F-wave results of patients

with radiculopathy showed significant damage to peripheral

conduction. Therefore, the combination of MEP and F-wave

examination is more suitable for the evaluation of patients with

radiculopathy, while the severity of conduction damage in

myelopathic patients should be evaluated by the combination

of MEPs and SEPs tests (Chistyakov et al., 1995).

Quantitative EMG examination reveals subclinical disorders

of motor neurons even in patients with normal muscle power on

manual testing, rather than long tract lesions in the spinal cord. It

provides important perspectives on the status of muscle and

motor neurons in DCM patients. Upper limb EMG motor unit

potentials (MUPs) were related to radiologic level of cord

compression and compression degree in DCM (Hattori et al.,

2010). In DCM cases, increased mean duration of MUPs could

result from axonal degeneration, denervation of the muscle fibers

after partial loss of their motor neurons or axons, and

reinnervation of the denervated muscle fibers by sprouting

from adjacent terminal nerve branches (Hattori et al., 2010).

Lower limb EMG is used to record muscle activity in order to

analyze gait and functional balance in DCM patients, which

enables care practitioners to objectively quantify disease severity

and objectively documenting the effectiveness of their

intervention, and may also lead to the development of new

rehabilitation strategies (Haddas et al., 2018; Haddas et al.,

2019). NCS including CSPs can be used in the assessment of

mild DCM (Stetkarova and Kofler, 2009). The CSP onset latency

was correlated with upper limbMEP CMCT, JOA score, and SEP

N13 amplitude in DCM patients (Stetkarova and Kofler, 2009).

TABLE 2 Differential diagnosis.

MEP SEP EMG/NCS/Others

DCM Prolonged CMCT; significantly prolonged
CMCT at flexion and extension neck positions

Decreased amplitude, prolonged latency;
significantly decreased N13 amplitude at dynamic
neck positions

NCS can be normal or can see signs of
radiculopathy: prolonged F-wave, delayed CSP;
EMG: can have long duration, high amplitude,
polyphasic motor units with reduced recruitment

MS Prolonged CMCT Scalp-recorded SEPs are present in only 50–86%
and short-latency N13 from the neck or P14 from
the scalp in 69–94%

Abnormal visual-evoked potentials; May have
abnormal brain auditory-evoked potentials

ALS Normal or marginally prolonged CMCT,
reduced MEP amplitude and abnormal
morphology, reduced cortical threshold

Absent or significantly altered NCS: CMAP reduced amplitudes of APB, ADM
and FDI, especially APB. Higher UM ratio and
lower SHI. Delayed CSP. EMG: Fibrillation and
fasciculations

HD Prolonged CMCT, especially upon flexion decreased N13 amplitude and prolonged
N13–N20 interval upon flexion

NCS: significantly lower ulnar CMAP amplitudes;
lower U/M CMAP ratio

CSA Prolonged CMCT not change at dynamic neck positions NCS: Slightly decreased ulnar and median CMAP
amplitudes; normal U/M CMAP ratio

Peripheral nerve
entrapment

Normal CMCT, prolonged PMCT Abnormal Erb potential Abnormal nerve conduction Velocity
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Above all, electrophysiological studies provide objective

evidence for functional deficit in DCM patients, which are

correlated with clinical manifestations, as well as spinal cord

compression degree and locations in MRI imaging.

Outcomes prediction

Although the effect of surgery in DCM seems to be beneficial,

the prognosis varies among individuals (Braakman, 1994).

Preoperative neurophysiological evaluation provides an

effective tool for predicting postoperative prognosis, and thus

could influence the decision on surgeries. Table 3 summarizes the

prognosis prediction by neurophysiological tests. Multiple

studies reported preoperative MEPs or SEPs are significantly

correlated with both the preoperative and postoperative JOA

score (Hu et al., 2008; Takahashi et al., 2008; Nakanishi et al.,

2014; Feng et al., 2020). Prolonged MEP CMCT in DCM patients

might suggest slowed conduction in demyelinated corticospinal

fibers, conduction along other oligosynaptic pathways, or

TABLE 3 Prognosis prediction by electrophysiological test.

References NO. Patients Follow-up Electrophysiological test

30 preclinical
Conservative

2-years 1/3 patients with entry MEP or SEP abnormality (5 in 15) in comparison with no patients with
normal EP tests (0 in 15) developed clinical myelopathic signs

Feng et al. (2020) 200 Conservative 1-year SEP classifications predict decline in mJOA

Hu et al. (2008) 76 Surgery 1, 3, 6, 12, and
24 months

SEP classifications predict JOA recovery ratio

Yu et al. (2020) 39 Surgery 2-years Dynamic SEP N13 amplitude ratios correlate with baseline mJOA score and 2-years post-
operative recovery ratio

de Noordhout et al.
(1998)

43 surgery;
12 conservative

1-year MEPs: 10 in 43 normalized after surgery; 4 in 12 worsened without surgery

SEPs: 5 normalized after surgery; 4 in 12 worsened without surgery

Misra and Kalita,
(1998)

20 Conservative 1.5 and 3 months MEPs: 15 in 20 improved at 1.5m, 4 in the above 15 further improved at 3 m

SEPs: 11 in 20 improved at 1.5m, no change at 3 m

30 conservative 6,12,24 months The association between initial MEP or SEP abnormality and clinical manifestation of SCM
during the 2-year period was statistically significant (Fisher’s exact test, p = 0.02)

30 Surgery 6,12,24 months MEP latency, amplitude and spinal cord motor conduction velocity (SCMCV) improvement
after surgical treatment might occur in clinically milder patients but not in severe patients after
6 months. A lower SCMCV measurement in clinically severe patients may accompany an
insufficient outcome of decompression surgery. Limited electrophysiological and neurologic
improvement appears to occur at 1 or 2 years after surgery

Bednarik et al. (2004) 66 Conservative ≥2 years 13 patients with abnormal initial MEPs (19.7%): 5 developed myelopathy (38.5%) and 8 didn’t
(15%); no significant difference

10 patients (15.2%) with abnormal initial SEPs: 5 developed myelopathy (38.5%) and 5 didn’t
(9.4%); the difference was significant (p = 0.016)

14 patients with abnormal initial EMG (21.2%): 8 developed myelopathy (61.5%) and 6 didn’t
(11.3%); difference was highly significant (p < 0.001)

Bednarik et al. (2008) 199 conservative ≥2 years 37 patients (18.6%) with abnormal initial MEPs: 18 developed myelopathy (40%) and 19 didn’t
(12.4%); the difference was significant (p < 0.001); significantly related to early clinically
myelopathy symptom (<12 months). 37 patients (18.6%) with abnormal initial SEPs:
17 developed myelopathy (37.8%) and 20 didn’t (13%); the difference was significant (p <
0.001); significantly related to early clinically myelopathy symptom (<12 months). 46 patients
(23.1%) with abnormal initial EMG: 19 developed myelopathy (42.2%) and 27 didn’t (17.5%);
the difference was significant (p < 0.001); significantly related to early clinically myelopathy
symptom (<12 months)

Takahashi et al. (2008) 56 Surgery 1-year CMCT for patients with poor outcome was significantly longer; CMCT of 15 milliseconds or
more in the upper extremities or that of 22 milliseconds or more in the lower extremities
indicated poor prognosis

Nakanishi et al. (2014) 42 Surgery 1-year MEP latencies and CMCT were significantly shorter 1-year after surgery; The CMCT
parameters before or 1 year after surgery correlated significantly with the JOA score both before
and 1 year after surgery; CMCT recovery ratio from the longer CMCT in the ADM correlated
significantly with the JOA recovery ratio

Tadokoro et al. (2019) 16 Surgery 3, 6, 12 months Preoperative CSP abnormalities (84%). Preoperative and 1-year post-operative JOA scores did
not vary significantly among CSP classification groups, probably because of the small sample
size

Frontiers in Cell and Developmental Biology frontiersin.org07

Yu et al. 10.3389/fcell.2022.834668

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.834668


reduction of size and synchrony of corticospinal volleys reaching

the anterior horn cells, usually associating with worse prognosis

(Felix and Wiesendanger, 1971). In a comparison between

CMCT data and surgical outcome, Yonenobu et al. (1986)

reported poor prognosis in patients with prolonged

preoperative CMCT and with enhancement of intensity in

spinal compressed region in T2 contrast MRI image, because

of the irreversible changes in spinal cord. For SEPs, N9-20 was

most correlated with surgical outcomes among median SEP

variables (Lyu et al., 2004). The trial-to-trial variability in SEP

was reported to possess higher prognostic accuracy and

sensitivity than the conventional averaged SEP (Cui et al.,

2015). The N13 amplitude ratios in dynamic SEPs also

significantly correlate with the baseline mJOA score and 2-

years post-operative recovery ratio (Yu et al., 2020). A large-

scale prospective study concluded that the presence of

symptomatic cervical radiculopathy and electrophysiological

abnormalities of cervical cord dysfunction detected by MEPs

or SEPs were associated with time-to-DCM development and

early development (<12 months) of DCM, while MRI

hyperintensity predicted later (<12 months) progression to

symptomatic DCM in pre-symptomatic (preclinical) patients

(Bednarik et al., 2008). Thus, neurophysiological abnormalities

might be an indicator for early surgical decompression in

preclinical DCM patients. Combined use of SSEPs and MEPs

can be helpful in evaluating patients with asymptomatic

(preclinical) degenerative cervical spinal cord compression, as

they can detect subclinical involvement of the spinal cord or

nerve roots more sensitively than using either of them alone,

thereby identifying patients who should be monitored vigilantly

for development of myelopathy (Bednarík et al., 1998; Tavy et al.,

1999; Bednarik et al., 2008; Wilson et al., 2013).

Abnormal upper limb EMGs are also unfavorable predictors

for DCM prognosis (Bednarik et al., 2004; Bednarik et al., 2008).

Abnormal NCS and EMG can indicate anterior horn cell lesion in

cervical cord and are associated with poor prognosis (Bednarik

et al., 2008). The hindered upper or lower extremity EMG

combined with T2WI intramedullary hyperintensity correlated

with a worse post-operative recovery (Liu et al., 2013).

Intra-operative monitoring

Neuronavigation systems including the intraoperative CT,

MRI and ultrasound techniques (Ganau et al., 2018a) as well as

intraoperative neurophysiological monitoring (IONM) system

including MEPs, SEPs and EMG are two kinds of technological

aids routinely used high-risk spinal cord surgeries (Hilibrand

et al., 2004; Devlin et al., 2006; Clark et al., 2013; Hadley et al.,

2017; Takeda et al., 2018). The former is mainly for guiding the

surgical team step by step and the latter is mainly for detecting

changes in spinal cord function related to patient pre- and intra-

operative positioning, hemodynamic effects during anterior

cervical discectomy and fusion, and C5 injury during

posterior laminectomy (Bose et al., 2007; Wang et al., 2016;

Wang et al., 2020). The utilization of multimodal IONM can

assist the surgeon in taking corrective measures to reduce or

prevent permanent neurological deficits, and thus minimize the

occurrence of position-related brachial plexus injury, post-

operative C5 palsy, paraparesis and other complications in

both anterior and posterior approach surgeries (Fan et al.,

2002; Bose et al., 2007; Jahangiri et al., 2011; Clark et al.,

2013). Intraoperative MEP is generally reckoned as the most

important monitoring method, and is most related to post-

operative prognosis (Hilibrand et al., 2004; Clark et al., 2013;

Wang et al., 2020). Wang et al. reported some patients could have

intraoperative MEP improvement after the procedure of cervical

cord decompression, and these patients showed a better

immediate and long-term neurologic recovery compared with

those without intraoperative MEP improvement (Wang et al.,

2016). Another study reported that positive changes in MEP

during IONM may affect functional improvement 1 month after

operation and early discharge without significant complications

in DCM patients (Park et al., 2018). Several mechanisms can

explain the relationship between intraoperative MEP and

postoperative functional improvement. One is that in DCM,

nervous tissue of the spinal cord does not undergo necrosis but

limits the capability of neurological function; thus, it is reversible

through surgical decompression (Wang et al., 2016). Thus,

improvements in MEP after neural decompression are

probably due to improvements in the excitability of neurons

or the corticospinal tract (Macdonald, 2006). Secondly, an

increase arterial supply can also alleviate spinal cord ischemia

and thus result in MEP improvements during surgery (Wang

et al., 2016).

Intraoperative SEP alerts also had a high sensitivity and

specificity for predicting new neurologic deficits in the early

postoperative period (Garcia et al., 2010), and the use of SEPs to

monitor upper extremity nerves before and during surgery also a

valid and useful technique to minimize the brachial plexus

injuries during positioning and surgical procedures (Jahangiri

et al., 2011; Plata Bello et al., 2015). The dorsal column function

indicated by SEPs might be more vulnerable to the compression,

and thus, the lack of significant changes in SEP after cervical

decompression might be related to the anatomical vulnerability

of this region. Previous studies also revealed that MEP changes

are more sensitive than SEP changes during surgery (Hadley

et al., 2017).

Post-operative evaluation for DCM
patients

Functional improvement as indicated by symptomatic relieve

and increased clinical assessment scores such as JOA and mJOA

after decompression surgery are well recognized. However, these
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assessments are usually subjective and cannot directly reflex the

neural conductive function. Postoperative electrophysiological

studies may provide valuable information in quantifying the

degree of functional involvement of the spinal cord after

surgery. Pre- and 1-year post-operative MEP tests indicate

that cervical laminoplasty improves corticospinal tract

function as presented by shortened CMCT (Nakanishi et al.,

2014). Further, the CMCT parameters before or 1 year after

surgery correlated significantly with the JOA score both before

and 1 year after surgery, and the CMCT recovery ratio from the

longer CMCT in the ADM significantly correlated with the

clinical recovery ratio (Nakanishi et al., 2014). de Noordhout

et al. (1998) tracked the MEP and SEP changes in DCM patients

who received either surgeries or conservative treatments in a 1-

year period. They reported that in surgically treated DCM

patients, MEP abnormality changed from 95.3 to 72.1%, while

from 66.7 to 91.7% in conservatively treated patients in 1 year.

The tibial SEP and MEP abnormalities persisted in spite of

clinical improvement in most surgically treated patients,

which probably reflects permanent vascular or necrotic lesions

induced in the cord by spondylotic changes. Some authors also

reported discrepancy between functional recovery and

electrophysiological findings in DCM patients after surgery.

Tadokoro et al. (2019) reported CSP abnormalities persisted

after surgery in most cases in a 1-year period, indicating

irreversible damage of the intramedullary reflex circuit, despite

the JOA score recovery. The high sensitivity of

neurophysiological studies including MEPs, SEPs and NCS

might make them useful to monitor disease progression in

post- or unoperated patients. The phenomenon of JOA score

recovery without neurophysiological recovery also provides

insight into postoperative neural recovery in DCM.

Conclusion and future prospects

In conclusion, the clinical and radiographic presentations of

DCM are highly variable, making the diagnosis difficult in some

cases. Electrophysiological studies exhibit an excellent

sensitivity in identifying spinal neural compromise, but are

of less value in the differential diagnosis, which can be

improved by using the dynamic SEPs and MEPs.

Neurophysiological tests are useful for assessing cervical cord

dysfunction and predicting the prognosis of DCM, and thus are

valuable in deciding the treatment methods. They are also

useful in monitoring neurological function during surgeries

and disease progression in post- or unoperated patients during

follow-up rehabilitation.

For future perspectives, machine-learning and artificial

intelligence are warranted to decipher more information from

those multi-dimensional neurophysiological results. Hu et al.

(Zhang et al., 2009; Cui et al., 2015; Wang et al., 2017; Cui et al.,

2019) used the random forests-based time-frequency analysis

technique to sort out meaningful information contained in

various SEP components, in order to identify lesion locations,

quantify the severity and predict prognosis in both spinal cord

compression rat models and DCM patients. However, these

studies contained only a relatively small sample, and more

clinical studies are required to assess the validity of this

technique in humans. Moreover, machine learning-based

neurophysiological studies could be used to detect

neurological deficits and predicting response to various

treatment of DCM more precisely in the future. Along with

the relevance of electrophysiological measures at various

timepoints in the management of DCM patients, other recent

trends in basic and clinical research point toward the relevance of

fast-paced advances in imaging, clinical diagnostic tools,

molecular genetics, surgical techniques, and reparative/

regenerative strategies (Ganau et al., 2018b). Altogether those

research efforts are allowing spine surgeons to reshape the

management strategies available for an aging population that

suffers increasingly from this degenerative condition.
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