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Although anything that changes spatiotemporally could be a signal, cells, particularly
neurons, precisely manipulate calcium ion (Ca2+) to transmit information. Ca2+

homeostasis is indispensable for neuronal functions and survival. The cytosolic Ca2+

concentration ([Ca2+]CYT) is regulated by channels, pumps, and exchangers on cellular
membrane systems. Under physiological conditions, both endoplasmic reticulum (ER) and
mitochondria function as intracellular Ca2+ buffers. Furthermore, efficient and effective
Ca2+ flux is observed at the ER-mitochondria membrane contact site (ERMCS), an
intracellular membrane juxtaposition, where Ca2+ is released from the ER followed by
mitochondrial Ca2+ uptake in sequence. Hence, the ER intraluminal Ca2+ concentration
([Ca2+]ER), the mitochondrial matrix Ca2+ concentration ([Ca2+]MT), and the [Ca2+]CYT are
related to each other. Ca2+ signaling dysregulation and Ca2+ dyshomeostasis are
associated with Alzheimer’s disease (AD), an irreversible neurodegenerative disease.
The present review summarizes the cellular and molecular mechanism underlying Ca2+

signaling regulation and Ca2+ homeostasis maintenance at ER and mitochondria levels,
focusing on AD. Integrating the amyloid hypothesis and the calcium hypothesis of AD may
further our understanding of pathogenesis in neurodegeneration, provide therapeutic
targets for chronic neurodegenerative disease in the central nervous system.
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INTRODUCTION

The intraneuronal calcium ion (Ca2+) homeostasis is indispensable for neuronal functions and
survival, even death (Miller, 1991; Berridge, 1998). Mainly, Ca2+ functions as a second
messenger: the spatiotemporal change of the cytosolic Ca2+ concentration ([Ca2+]CYT), also
known as the Ca2+ signal, is one of the ways that cells convey various information either
intracellularly or intercellularly (Berridge et al., 1998). Additionally, Ca2+ acts as a carrier of
positive electrical current, which enters into the cytosol and depolarizes the transmembrane
potential (Byrne et al., 2014).

At the molecular level, the [Ca2+]CYT is regulated by channels, ATPase pumps, and ion
exchangers on cellular membrane systems (the plasma membrane and intracellular membranes),
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as well as Ca2+-binding proteins in the cytosol (Byrne et al.,
2014). At the subcellular level, at least two organelles,
endoplasmic reticulum (ER) and mitochondria, have
participated in the regulation of [Ca2+]CYT either
respectively or interactively (Martonosi, 1984; Miller, 1991;
Spät et al., 2008). Structurally, the ER extends into every inner
domain in neurons, and mitochondria tend to localize in
intraneuronal compartments that consume massive ATPs,
such as synapses (Sheng and Cai, 2012; Wu et al., 2017).
Functionally, both the ER and mitochondria act as internal
Ca2+ sources and sinks; namely, both organelles possess the
role of buffering the [Ca2+]CYT (Miller, 1991; Berridge, 1998;
Spät et al., 2008). Collectively, both the endoplasmic reticulum
intraluminal Ca2+ concentration ([Ca2+]ER) and the
mitochondrial matrix Ca2+ concentration ([Ca2+]MT)
fluctuate simultaneously with [Ca2+]CYT (Figure 1).
Moreover, efficient and effective Ca2+ flux is observed at the
ER-mitochondria contact site (ERMCS), where the two
organelles are intimately apposed (Wu et al., 2018). Briefly,
Ca2+ is released from the ER lumen followed by mitochondrial
Ca2+ uptake into the mitochondrial matrix through the outer
and inner mitochondrial membranes in sequence (Rizzuto
et al., 2012).

Maintaining the physiological level of [Ca2+]CYT, [Ca
2+]ER,

and [Ca2+]MT is essential for intraneuronal Ca2+ homeostasis.
When the neuronal Ca2+ signaling is dysregulated, neurons
will undergo excitotoxicity or apoptosis (Lipton and
Rosenberg, 1994; Berridge et al., 1999). The intraneuronal
Ca2+ dyshomeostasis contributes to neurodegenerative
diseases such as Alzheimer’s disease (AD), an irreversible
chronic neurodegenerative disease without effective
treatment (Pchitskaya et al., 2018). The underlying cellular
and molecular mechanisms which regulate Ca2+ signaling and
maintain intracellular Ca2+ homeostasis, particularly by the
ER and mitochondria, are summarized in the present review,
focusing on AD.

ENDOPLASMIC RETICULAM IS THE
CALCIUM SOURCE INSIDE THE NEURON
Subcellular Structures Formed by ER in the
Neuron
The ER extends into every portion of the neuron to form an
elaborate network, also considered as “a neuron within a neuron”
(Berridge, 1998; Wu et al., 2017). The ER membrane, which
connects with the nuclear envelope, also connects with the plasma
membrane to form various types of specialized regions named the
subsurface cisternae (located in the soma and initial dendrites,
similar to the triadic junction in myocytes), the cisternae
organelle (multilayered subsurface cisternae situated in the
initial segment of the axon), the hypolemmal cisternae
(located in the axon), and the spine apparatus (located in the
dendritic spine) (Berridge, 1998).

Two Primary ER Ca2+ Channels: InsP3R
and RyR
Types and Distribution of ER Ca2+ Channels
As in other cell types, neuronal ER also contains the inositol 1,4,5-
triphosphate receptor (InsP3R) and the ryanodine receptor (RyR),
sharing similar characteristics (Galione et al., 1993; Striggow and
Ehrlich, 1996). Structurally, InsP3Rs are homo- or hetero-tetrameric
assemblies that own three isoforms, namely type 1 (InsP3R1), type 2
(InsP3R2), type 3 (InsP3R3) (Taylor, 1998; Spät et al., 2008).
Similarly, RyRs are tetrameric proteins that possess three
subtypes: RyR1, the skeletal muscle type; RyR2, the cardiac
muscle type; RyR3, the brain type (Querfurth et al., 1997; Spät
et al., 2008). Functionally, InsP3Rs and RyRs are chemically-gated
Ca2+ channels that evoke the regenerative Ca2+ wave from the ER
lumen to the cytosol, also known as the Ca2+-induced Ca2+ release
(CICR) (Martonosi, 1984; Berridge, 1998; Spät et al., 2008).
Seemingly, InsP3Rs and RyRs have evolved from the same
ancestor owing to the similarities (Berridge, 1997).

FIGURE 1 |Maintaining the intraneuronal calcium homeostasis: the endoplasmic reticulum intraluminal Ca2+ concentration ([Ca2+]ER) and the mitochondrial matrix
Ca2+ concentration ([Ca2+]MT) fluctuate with the cytosolic Ca2+ concentration ([Ca2+]CYT) (Created with BioRender.com).
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Spatially, InsP3Rs and RyRs share similar but not identical
distributions in neurons (Berridge, 1998). From the subcellular
perspective, InsP3Rs spread widely within the neuron, while RyRs
localize predominantly in the soma (Walton et al., 1991;
Kuwajima et al., 1992; Takei et al., 1992). Concerning mouse
hippocampal neurons, both RyRs and InsP3Rs coexist densely
within the soma; but are distributed heterogeneously within
dendrites: RyRs are restricted to the proximal region of
dendrites, InsP3Rs are found in the whole region of dendrites
(Seymour-Laurent and Barish, 1995). Intriguingly, inspecting
dendrites of chicken cerebellum Purkinje cells, there are only
InsP3Rs and no RyRs within the dendritic spine, but there are
both InsP3Rs and RyRs within the dendritic shaft (Walton et al.,
1991). From the anatomical perspective, the cardiac muscle type
RyR2, which conducts the Ca2+-elicitated Ca2+ release, is detected
throughout the brain; nevertheless, the skeletal muscle type RyR1,
which performs the depolarization-evoked Ca2+ release, is seen
exclusively in the cerebellum; the brain type RyR3 is distributed
within the hippocampus, cortex, and corpus striatum (Kuwajima
et al., 1992; Querfurth et al., 1997).

Elementary and Global Ca2+ Signals from ER
Neuronal Ca2+ signal initiates with increasing of [Ca2+]CYT,
which is followed by decreasing of [Ca2+]CYT to the resting
level (Miller, 1991). Although various types of Ca2+ signals are
named in different ways, it is less important to focus on the
terminology but essential for identifying their characteristics
(Berridge et al., 1999).

The elementary Ca2+ signals originating from ERCa2+ channel
own hierarchical characteristics (Bootman et al., 1997; Berridge
et al., 1999). At the fundamental level, the “blip” from InsP3R and
the “quark” from RyR are analogous, both of which are evoked
from a single channel (Bootman et al., 1997). At the intermediate
level, the “puff” from InsP3Rs and the “spark” from RyRs are
similar, both of which are liberated from clusters of channels
(Bootman et al., 1997). These elementary Ca2+ signals are
characterized by a quick rise period followed by a slow
recovery period (Berridge, 1997). The underlying mechanism
is that the opening of the channel leads to a plume of Ca2+

releasing from ER lumen; after the channel’s closing, the released
Ca2+ plume dissipates slowly by diffusion (Berridge, 1997).

These elementary Ca2+ signals construct the global Ca2+

signals, such as waves (at the subcellular level) and oscillations
or spikes (at the whole-cell level) (Bootman et al., 1997; Berridge
et al., 1999). Ca2+ waves propagate by regional Ca2+ diffusions
and neighbor Ca2+ regenerations, based on the CICR, a positive
feedback mechanism (Bootman et al., 1997). Furthermore, CICR
is regulated by the positive and negative feedback influence of
Ca2+ on the InsP3R or RyRs, which are discussed later (Berridge,
1997). Under high, intermediate, low positive feedback CICR, the
Ca2+ waves, respectively, are continuous, saltatory, and abortive
(Bootman et al., 1997).

Regulation of InsP3R Ca2+ Channel
The Ca2+-release activity from the opened InsP3R, at least, is
regulated by the InsP3, [Ca

2+]CYT, and [Ca2+]ER. Under a modest
concentration of InsP3, the opening of InsP3R is biphasically

regulated by cytosolic Ca2+: the low [Ca2+]CYT (<1 μM) can
activate InsP3R; in contrast, the high [Ca2+]CYT (>1–10 μM)
can inhibit the channel (Bootman and Lipp, 1999). Under the
circumstance mentioned above, the original graph describing the
probability of the InsP3R opening against the [Ca2+]CYT level
reveals a bell-shaped curve (Bootman and Lipp, 1999). The
ascending portion of the bell-shaped curve yields the positive
feedback effect of the [Ca2+]CYT on the InsP3R opening, which
allows the localized elementary Ca2+ signal to spread
regeneratively as Ca2+ waves (Berridge, 1997; Sun et al., 1998).
The descending portion of the bell-shaped curve represents the
negative feedback dependence of the InsP3R opening on the
[Ca2+]CYT, which terminates the elementary Ca2+ signal
(Berridge, 1997; Sun et al., 1998).

Constructively, Adkins and Taylor suggest that InsP3 acts as a
molecular switch that converts the InsP3R from a condition under
which only an inhibitory Ca2+-binding site is feasible to one
under which only a stimulatory Ca2+-binding site is viable
(Adkins and Taylor, 1999). Sequentially, two steps are
required for opening the InsP3R: initially, it becomes a
liganded InsP3R by binding with InsP3; subsequently, it
becomes an active InsP3R by binding with Ca2+ at the
stimulatory Ca2+-binding site (Adkins and Taylor, 1999).

Nevertheless, the bell-shaped dependence of the InsP3R
opening on the [Ca2+]CYT is not always expected. If the high
[Ca2+]CYT (100 μM) is applied secondary to the maximal
concentration of InsP3 (10 μM), the cytosolic Ca2+ fails to
inhibit the Ca2+ release from the liganded InsP3R; in turn, if
the high [Ca2+]CYT (100 μM) is given before the InsP3 (10 μM),
the cytosolic Ca2+ can entirely inhibit the Ca2+ release from the
unliganded InsP3R (Adkins and Taylor, 1999). Moreover, the
liganded InsP3R owns a limited time window beyond which it
undergoes intrinsic inactivation, and then the cytosolic Ca2+

cannot activate the InsP3R (Bootman and Lipp, 1999).
Notably, although the opening of InsP3R requires binding with
both InsP3 and Ca2+, it might not necessarily need the cytosolic
Ca2+ (Bootman and Lipp, 1999). When [Ca2+]ER is low, the
opening of InsP3R requires both InsP3 and cytosolic Ca2+;
however, when [Ca2+]ER is high, there is no requirement for
cytosolic Ca2+, it is enough for InsP3 itself to open the InsP3R
(Missiaen et al., 1994).

Collectively, at the high InsP3 level and the low [Ca2+]ER level,
the high [Ca2+]CYT cannot inhibit InsP3R because most InsP3Rs
are liganded (Adkins and Taylor, 1999). At the low InsP3 level
and the high [Ca2+]ER level, the low [Ca2+]CYT cannot activate
InsP3R due to InsP3 alone can open the InsP3R (Missiaen et al.,
1994).

Regulation of RyR Ca2+ Channel
The RyR is opened and releases Ca2+ into the cytosol by Ca2+

binding with the high-affinity stimulatory site; the Ca2+ is
released until the local [Ca2+]CYT rises to the point where the
low-affinity inhibitory site is bound, resulting in the RyR closing,
which is the mechanism of CICR mediated by RyR (Payne et al.,
2013). RyR1 and RyR2 are studied extensively in skeletal myocyte
and cardiac myocyte, respectively. Dihydropyridine receptor
(DHPR)-coupled RyR1 is opened upon depolarization of the
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plasma membrane and then is closed upon repolarization;
subsequently, the surrounding uncoupled RyR1 is
regeneratively opened under the CICR mechanism (Berridge,
1997). RyR2 is opened by the brief cytosolic Ca2+ pulse from
DHPR, which is activated upon depolarization of the plasma
membrane; approximately four RyR2s together evoke the Ca2+

quark, then these quarks turn to sparks, finally to waves (Berridge,
1997). Additionally, the activation of RyR is also regulated by the
[Ca2+]ER level (Györke and Györke, 1998). Similar to InsP3R,
when [Ca2+]ER is overloaded, the Ca2+-release activity of RyR is
also significantly potentiated (Cheng et al., 1996).

MITOCHONDRIA ARE CALCIUM BUFFERS
INSIDE THE NEURON
Mitochondria-Linked Cytosolic Ca2+

Buffering
In addition to synthesizing adenosine triphosphate (ATP), another
primary function of mitochondria is buffering intracellular Ca2+

(Miller, 1991). Neuronal mitochondria segregate Ca2+ under both
physiological and pathological conditions (Miller, 1991). The Ca2+

buffering ability of mitochondria may lead to the accumulation of
abundant Ca2+ in a particular domain in neurons (Rizzuto et al.,
2012). Mitochondria may function as the last line against the
exaggerated [Ca2+]CYT, which may be fatal for cells when other
intracellular Ca2+-regulating mechanisms are exhausted
(Martonosi, 1984). It is considered that the majority of
mitochondria are generated in the soma, and the dysfunctional
mitochondria return to the soma for degradation (Sheng and Cai,
2012).

Mitochondria usually cluster in neuronal domains with high
demand for ATP, such as presynaptic and postsynaptic terminals
(Tang and Zucker, 1997). In neurons, mitochondria located in
proximal to Ca2+ channels, such as NMDAR on the postsynaptic
density, can accumulate the cytosolic Ca2+ and prevent the
propagation of Ca2+ waves, a global Ca2+ signal (Rizzuto et al.,
2012). In the post-tetanic potentiation, mitochondria in the
presynaptic terminal regulate the [Ca2+]CYT by buffering extra
intraneuronal Ca2+: during tetanic stimulation, mitochondria
take up Ca2+; after tetanic stimulation, mitochondria release
Ca2+ into the cytosol, maintaining the [Ca2+]CYT at a relatively
high level (Tang and Zucker, 1997).

Mitochondria-Located Ca2+ Machinery
Logically, the entrance of Ca2+ into the mitochondrial matrix
requires passing through two intracellular membranes: the outer
mitochondrial membrane (OMM) and the inner mitochondrial
membrane (IMM). The OMM is permeable to ions attributed to
the massive expression of voltage-dependent anion channels
(VDAC) (Rizzuto et al., 2012). The notion that the expression
level of VDACs seems to be the bottleneck of mitochondrial Ca2+

uptake is supported by the demonstration that over-expression of
VDACs potentiates [Ca2+]MT; in contrast, down-regulation of
VDACs attenuates [Ca2+]MT (Madesh and Hajnóczky, 2001;
Rapizzi et al., 2002). Among three isoforms of VDACs
(VDAC1, VDAC2, VDAC3), the VDAC1 isoform selectively

interacted with InsP3R3 to transmit Ca2+ signal into the
mitochondrial matrix that associates with apoptosis (De
Stefani et al., 2012). Consistently, in the Chinese hamster
ovary cell models that express all three isoforms of InsP3Rs,
the InsP3R3 preferentially conducts Ca2+ signal into the
mitochondria to induce apoptosis (Mendes et al., 2005).

The mitochondrial calcium uniporter (MCU) on the IMM can
rapidly accumulate Ca2+ into the mitochondria matrix across the
electrochemical gradient (Gunter and Gunter, 1994). MCU
selectively binds Ca2+ with extremely high affinity (KD ≤
2 nM) (Kirichok et al., 2004). MCU contains two
transmembrane domains and significantly potentiates
mitochondrial Ca2+ uptake after over-expression (De Stefani
et al., 2011). Acidic residues, a binding site for ruthenium red
and its analogs (the most potent inhibitors of MCU), reside in the
highly conserved motif between the two transmembrane domains
and are essential for the entire activity of MCU (Baughman et al.,
2011). The mitochondrial calcium uptake 1 (MICU1) protein
interacts directly with MCU to regulate the rapid Ca2+ uptake of
mitochondria (Perocchi et al., 2010).

CALCIUM CROSS-TALK THROUGH
ENDOPLASMIC
RETICULAM-MITOCHONDRIA CONTACT
SITE

The ERhas distributed the entire intracellular space from the nucleus
to the plasma membrane intertwining all organelles, including
mitochondria (Giorgi et al., 2009; Lebiedzinska et al., 2009; Wu
et al., 2018). The ER network in which mitochondria are embedded
exists in all compartments of neurons (Wu et al., 2017; Wu et al.,
2018). The endoplasmic reticulum-mitochondria contact site
(ERMCS) is abundant in every neuronal domain from the soma
to dendrites and the axon (Wu et al., 2017). The distance between the
twomembranes in ERMCS is less than 200 nm (Rizzuto et al., 1998).
Since the early 1960s, several different contact sites between the
opposing membranes have been identified, such as the plasma
membrane-ER contact site and the plasma membrane-
mitochondria contact site (Lebiedzinska et al., 2009).

Mitochondrial Ca2+ uptake can occur at the ERMCS, where a
high concentration of Ca2+ transports from the ER lumen into the
mitochondrial matrix (Rizzuto et al., 2012). Briefly, Ca2+ releases
from ER membrane via the InsP3R, followed by mitochondrial
Ca2+ uptake by the VDAC onOMM, subsequently by theMCU on
the IMM (Figure 2) (Rizzuto et al., 2012). Mitochondrial Ca2+

uptake can regulate the activity of InsP3R by decreasing the
[Ca2+]CYT nearby ER membrane (Rizzuto et al., 2012). During
Ca2+ absorbing by mitochondria, the [Ca2+]CYT near the InsP3R
mouth is not high enough to block the channel; hence the InsP3R
sustain opening, and the Ca2+ release fromER is prolonged (Boitier
et al., 1999; Hajnóczky et al., 1999; Rizzuto et al., 2012). The
increased ERMCS may induce the mitochondrial Ca2+ overload
following Ca2+ release from the ER; conversely, the decreased
ERMCS may impair Ca2+-dependent mitochondrial metabolism
(Csordás et al., 2006; Lebiedzinska et al., 2009). As mentioned
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before, InsP3R3-VDAC1 interaction seems to play a major role in
Ca2+ fluxion in ERMCS (Mendes et al., 2005; De Stefani et al.,
2012). Collectively, [Ca2+]ER, [Ca2+]CYT, and [Ca2+]MT are
simultaneously regulated by ERMCS.

ALZHEIMER’S DISEASE: IRREVERSIBLE
NEURODEGENERATION WITHOUT
EFFECTIVE THERAPIES
Characteristics of Alzheimer’s Disease
Alzheimer’s disease (AD), first described in 1907 (Alzheimer
et al., 1995), is a type of chronic neurodegenerative disease
growing in number, which has brought physical sufferings,
psychological stresses, and economic burden to individuals,
families, and society (Alzheimer’sAssociation, 2020).
Regrettably, there are no available medications for slowing,
ceasing, or reversing the neuronal pathological progression
that causes neurodegenerative symptoms and makes AD fatal
(Alzheimer’sAssociation, 2020). Merely five drugs improving
symptoms of AD have been approved by the Food and Drug
Administration (FDA): three cholinesterase inhibitors
(galantamine, rivastigmine, donepezil); one NMDAR blocker
(memantine); one concomitant agent (memantine and
donepezil) (Kumar et al., 2015; Atri, 2019;
Alzheimer’sAssociation, 2020). Additionally, tacrine, a
cholinesterase inhibitor approved once by FDA, is
discontinued in the United States due to severe side effects,
such as liver damage (Kumar et al., 2015;
Alzheimer’sAssociation, 2016). Until 2021, 126 agents are in
clinical trials for AD in the United States, and most
investigational new drugs target modification of AD
(Cummings et al., 2021). Recently, the repurposing and
repositioning of conventional drugs is considered an
alternative strategy for cancer therapy (Heckman-Stoddard
et al., 2017; Huang et al., 2021). The same strategy could
facilitate the identification of novel therapy for AD (Ballard
et al., 2020).

Pathologically, the senile plaques (also known as β-amyloid
plaques or neuritic plaques) and the neurofibrillary tangles (NFT)
(also known as tau tangles or dystrophic neurites), observed
inside and outside neurons, respectively, are two of several
neuropathological features related to AD (Selkoe and Hardy,
2016; Alzheimer’sAssociation, 2020).

Based on the age of morbidity, Alzheimer’s disease is divided
into two subtypes: the early-onset AD (EOAD), ranging from
30 years to 60 or 65 years; the late-onset AD (LOAD), defined
with an onset age later than 60 or 65 years (Bekris et al., 2010). At
the inheritance level, EOAD is characterized by the hereditary
form, also known as the familial AD (FAD); by contrast, LOAD is
typically termed as the sporadic AD (SAD) (Selkoe and Hardy,
2016; Kozlov et al., 2017).

Genetics of Alzheimer’s Disease
Mutations in the amyloid precursor protein (APP), presenilin-1
(PSEN1), and presenilin-2 (PSEN2) genes are genetically
associated with FAD (Bekris et al., 2010). The APP gene
resides on chromosome 21 (Selkoe, 1994). Indeed, individuals
with Down syndrome (DS) have an increased risk of developing
AD owing to trisomy 21 (Alzheimer’sAssociation, 2020). The
PSEN1 gene, residing in chromosome 14, encodes the presenilin-
1 protein of 467 amino acids which contains nine transmembrane
domains; the PSEN2 gene, residing in chromosome 1, encodes the
presenilin-2 protein of 448 amino acids topologically 67%
identical to the presenilin-1 protein (Levy-Lahad et al., 1995;
Sherrington et al., 1995; Cook et al., 1996; Leissring et al., 1999a;
Laudon et al., 2005; Bekris et al., 2010). Mutations in the APP
gene account for less than 5% of all FAD cases, mutations in the
PSEN1 gene are responsible for approximately 70% of early-onset
FAD (Van Broeckhoven, 1995). Consequently, mutations in the
PSEN1 gene are the most common cause of presenile FAD; by
contrast, mutations in the PSEN2 gene are a rare cause (Bekris
et al., 2010). Mutations in the apolipoprotein E (APOE) gene,
residing in chromosome 19, fulfill a significant role in SAD
(Bertram and Tanzi, 2004; Bekris et al., 2010). Less than one
hundred families with mutations in the APP gene, as well as

FIGURE 2 |Ca2+ transmits through the endoplasmic reticulam-mitochondria contact site (ERMCS): Ca2+ releases from the endoplasmic reticulam (ER) membrane
via the inositol 1,4,5-triphosphate receptor (InsP3R), followed by mitochondrial Ca2+ uptake by the voltage-dependent anion channel (VDAC) on the outer mitochondrial
membrane (OMM), subsequently by the mitochondrial calcium uniporter (MCU) on the inner mitochondrial membrane (IMM) (Created with BioRender.com).
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several hundred families with mutations in the PSEN1 gene and
the PSEN2 gene have been reported worldwide, hence the FAD
cases would occur in less than 1% of all AD cases (Bekris et al.,
2010; Castellani and Smith, 2011). More than 90% of individuals
with AD would suffer the sporadic type of this disease (Bekris
et al., 2010).

INTEGRATING AMYLOID HYPOTHESIS
AND CALCIUM HYPOTHESIS OF
ALZHEIMER'S DISEASE
Following the “amyloid hypothesis” of AD, initiated by the study
of Glenner andWong in 1984, the accumulation of the amyloid-β
(Aβ) peptide is the predominant force of AD-related
pathogenesis, including plaques, tangles, synapse loss, and
neuronal death (Glenner and Wong, 1984; Tanzi and Bertram,
2005). Although there are still several controversies (Castellani
and Smith, 2011; Kozlov et al., 2017), the amyloid hypothesis,
supported by many preclinical and clinical studies, has become
the primary model of AD pathogenesis and has provided
potential therapeutic targets for AD treatments (Selkoe and
Hardy, 2016).

The “calcium hypothesis” of AD, which regards the persistent
intraneuronal Ca2+ dyshomeostasis as one of the early causes of
AD, is first proposed by Khachaturian based on limited direct
evidence in the 1980s (Khachaturian, 1994; LaFerla, 2002).
Growing lines of evidence have emerged to support the
calcium hypothesis (Mattson et al., 2000). Ca2+ regulates a
series of neuronal functions, such as neurotransmitter release
and synaptic plasticity; in turn, neurons own precise mechanisms
to sustain the Ca2+ homeostasis (LaFerla, 2002). For the
intraneuronal Ca2+ dyshomeostasis to trigger the AD
pathology, the Ca2+ signal perturbation must be an initial
phenotype of AD, and the Ca2+ signaling dysregulation can
affect the Aβ accumulation and the tau protein
hyperphosphorylation (LaFerla, 2002). Although the former is
still controversial (LaFerla, 2002), the latter is well accepted by
viable evidence (Mattson, 1990; Mattson et al., 1993).

The relationship between the amyloid hypothesis and other
potential hypotheses of AD may not conflict with one theory
against another (Selkoe and Hardy, 2016). Moreover, integrating
the amyloid hypothesis (Hardy and Selkoe, 2002; Bekris et al.,
2010) and the calcium hypothesis (LaFerla, 2002) may further the
understanding of Alzheimer’s disease pathogenesis. The calcium
hypothesis remains compelling, and targeting selective calcium
pathways would be a competitive therapeutic approach for AD
(LaFerla, 2002).

AMYLOID-B PEPTIDE IS ASSOCIATED
WITH CALCIUM DYSHOMEOSTASIS IN
ALZHEIMER'S DISEASE
Aβ Forms Ca2+-Permeable Channel
Aβ peptides form Ca2+-permeable channels (also known as Aβ
channels) on the plasma membrane and disrupt Ca2+

homeostasis by rapidly elevating intracellular Ca2+

concentration, leading to neuronal death in AD (Figure 3)
(Arispe et al., 1993; Arispe et al., 1994b). The physical and
chemical characteristics of Aβ peptides enable the formation
of the β-sheet and subsequent aggregation into dimers and,
even, large oligomers, which form β-barrel structures for the
cation-selective permeability, particularly for Ca2+ (Figure 3)
(Kagan et al., 2002). The nanomole (nM)-level concentrations
of Aβ42 can form Ca2+-permeable channels, which elevate
[Ca2+]CYT levels and rapidly elicit the degeneration of cultured
endothelial cells (Bhatia et al., 2000). When incorporating Aβ40
into the artificial bilayer membrane, Ca2+ permeates through the
opened Aβ channels (Arispe et al., 1993). The Ca2+ influxes
through these channels would prevail due to the most significant
electrochemical gradient between extracellular Ca2+

concentration and [Ca2+]CYT (Arispe et al., 1993; Arispe et al.,
1994a). For a neuron with a single Aβ channel in opening state,
the corresponding Ca2+ influx would increase the [Ca2+]CYT level
at a rate of 5 μmol per second (5 μM/s), exhausting the neuronal
Ca2+ buffering capacity rapidly, subsequently leading to the
neurotoxicity (Arispe et al., 1993; Arispe et al., 1994a).

Aβ Activates NMDAR
The N-methyl-D-aspartate receptor (NMDAR) is named by its
specific agonist, N-methyl-D-aspartate (NMDA), which does not
occur naturally. NMDARs belong to one ionotropic family of
glutamate receptors located on the plasma membrane. NMDARs
can integrate two extracellular chemical stimuli (glycine and
glutamate) and one membrane electrical stimulus (the
depolarization of the plasma membrane) into the Ca2+ signal
(Lipton and Rosenberg, 1994; Furukawa et al., 2005). Structurally,
NMDARs constitute three families of subunits: glycine-binding
NR1, which owns eight isoforms; glutamate-binding NR2,
including NR2A, NR2B, NR2C, and NR2D; glycine-binding
NR3, including NR3A and NR3B (Cull-Candy and
Leszkiewicz, 2004; Furukawa et al., 2005). Functional
NMDARs are tetrameric assemblies composed of two copies
of NR1/NR2 heterodimers, sometimes NR1/NR3 heterodimers
(Chen and Wyllie, 2006). Moreover, identical or diverse NR2
subunits form di-heteromeric assemblies (such as NR1-NR1-
NR2A-NR2A, NR1-NR1-NR2B-NR2B) or tri-heteromeric
assemblies (such as NR1-NR1-NR2A-NR2B, NR1-NR1-NR2B-
NR2D) (Cull-Candy and Leszkiewicz, 2004; Köhr, 2006).
Additionally, massive excitatory and inhibitory neurons
encode at least two types of NR2 subunits to give rise to di-
heteromeric or tri-heteromeric NMDARs in the same neuron
(Köhr, 2006). Speculatively, at least 80 kinds of NMDAR subtypes
may exist in the central nervous system (Cull-Candy and
Leszkiewicz, 2004).

The overstimulation of NMDARs generates massive Ca2+

influxes that overexcite neurons, finally leading to neuronal
death (a pathological condition also known as excitotoxicity)
(Lipton and Rosenberg, 1994; Lynch and Guttmann, 2002). The
Aβ accumulation promotes the persistent Ca2+ influx through
NMDARs, leading to neuronal excitotoxicity at the early stage
AD (Figure 3) (Parameshwaran et al., 2008). Furthermore, the
monomeric and oligomeric Aβ42 elevate the [Ca2+]CYT level by
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activating the NR2B subunit of NMDARs in cultured cortical
neurons (Ferreira et al., 2012). In turn, prolonged activation of
extrasynaptic NMDARs, not synaptic NMDARs, promotes the
production of Aβ in cultured cortical neurons (Lesné et al., 2005;
Bordji et al., 2010). It reveals a positive feedback interaction
between Aβ and NMDAR.

NMDAR-Related Mitochondrial Ca2+

Uptake
Notably, compared with non-NMDARs or voltage-gated Ca2+

channels, NMDAR-related mitochondrial Ca2+ uptake is faster
and tighter (Peng and Greenamyre, 1998). When neuronal
[Ca2+]CYT is elevated by NMDARs, the cytosol Ca2+ is
segregated by the mitochondrial Ca2+ uptake; meanwhile, the
mitochondrial Ca2+ transient persistently depolarizes the
mitochondrial membrane potential (ΔΨ), causing the opening
of the permeability transition pore (PTP) and further
depolarising the ΔΨ, which parallels with the level of neuronal
death (Schinder et al., 1996). Furthermore, under the
circumstance in which the [Ca2+]CYT elevated vastly,
mitochondria divert their function from ATP synthesis to
Ca2+ accumulation (Lipton and Rosenberg, 1994).
Additionally, the lack of ATP synthesis affects Na+-K+-ATPase
activity and results in plasm membrane depolarization, which
alleviates the Mg2+ block of NMDARs and further activates
NMDARs (Greene and Greenamyre, 1996). Mitochondrial
Ca2+ uptake regulates NMDAR activity under a positive
feedback mechanism.

Considering the fundamental role of NMDARs in normal
synaptic functions, a complete antagonism of NMDARs
generates the majority of side effects, such as severe memory

impairment (Hardingham and Bading, 2010; Mota et al., 2014).
Coincidentally, extrasynaptic NMDARs have been largely
associated with neuronal excitotoxicity (Hardingham and
Bading, 2010), and extrasynaptic NMDARs mainly contain
NR2B subunits (Petralia, 2012). Thus, the selective blockage of
extrasynaptic NR2B subunits may be a potential strategy to
prevent synaptic dysfunction in AD (Mota et al., 2014).

PRESENILINS ARE RELATED TO CALCIUM
DYSHOMEOSTASIS IN ALZHEIMER'S
DISEASE
PSENs regulate Ca2+ signaling, and FAD-causing mutant PSENs
perturb Ca2+ homeostasis (Leissring et al., 2000; LaFerla, 2002).
Spatially, both PSEN1 and PSEN2 are mainly found on the ER
membrane (Kovacs et al., 1996) and are widely expressed
throughout the central nervous system (Cribbs et al., 1996). A
series of FAD-causing mutant PSENs disrupt Ca2+ signaling
(LaFerla, 2002). PSEN1-deficient neurons also reveal an
increased [Ca2+]CYT level after exposure to H2O2 (Nakajima
et al., 2001). Indeed, PSENs do not contain any Ca2+-binding
motif, so presenilins may interact with several Ca2+-binding
proteins to regulate Ca2+ signaling (LaFerla, 2002).

Cleaved Presenilins on the Plasma
Membrane Possess γ-secretase Activity
The well-known function of PSENs is to provide the catalytic
component of the γ-secretase complex, a membrane-embedded
protease for several integral membrane proteins (De Strooper
et al., 1998; Wolfe et al., 1999). PSEN has nine transmembrane

FIGURE 3 | The regulation of calcium signaling by cellular membrane systems: ①③ amyloid-β (Aβ) peptide monomers aggregate into the oligomer which forms
Ca2+-permeable channel;②④ the Aβ accumulation promotes the persistent Ca2+ signal through the N-methyl-D-aspartate receptor (NMDAR);⑤ the presenilin (PSEN)
holoprotein functions as the endoplasmic reticulum (ER) passive Ca2+ leak channel;⑥⑧ the enhanced Ca2+ signal by the familial Alzheimer's disease- causing mutant
presenilin (FAD-PSEN) is the inositol 1,4,5-triphosphate receptor (InsP3R) dependent; ⑦⑨ the interaction between the PSEN and the ryanodine receptor (RyR)
regulates the Ca2+ signal (Created with BioRender.com).
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domains (TMD) (Laudon et al., 2005). During maturation, PSEN
is cleaved into a 30 KDa amino-terminal fragment (NTF) and a
20 KDa carboxy-terminal fragment (CTF) within a cytosol
sizeable hydrophilic loop between TMD-6 and TMD-7 by
endoproteolysis (Wolfe et al., 1999). Immature (or un-cleaved)
presenilin holoproteins are localized on the ER membrane
(Annaert et al., 1999). The endoproteolytic cleavage of PSEN
holoproteins occurs on the ER membrane (Tandon and Fraser,
2002; Honarnejad and Herms, 2012). The cleaved PSEN (a
heterodimer of NTF and CTF), together with anterior
pharynx-defective 1 (APH-1), presenilin enhancer 2 (PEN-2),
and nicastrin (all are ER transmembrane proteins), form the γ-
secretase complex (De Strooper, 2003; Cheung et al., 2010;
Honarnejad and Herms, 2012). The γ-secretase complex forms
on the ER membrane and subsequently traffics to the Golgi
apparatus, finally housed on the plasma membrane to generate
Aβ peptide from APP (De Strooper et al., 2012; Honarnejad and
Herms, 2012).

Presenilin Holoproteins on the ER
Membrane Function as Ca2+-Leaking
Channels
Under the two suppositions that the sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA) acts with 100% efficiency and
the [Ca2+]CYT level is 0.1 μM, the calculated upper limit value of
the [Ca2+]ER is 2,400 μM (Tu et al., 2006). In contrast, by directing
measurement, the estimated [Ca2+]ER level range is from 100 to
500 μM (Hofer, 1999). The leakiness of Ca2+ from the ER lumen
to cytosol may explain the [Ca2+]ER level difference mentioned
above (Tu et al., 2006).

Tu and colleagues initially proposed the “presenilin calcium
leak channel hypothesis”, in which the un-cleaved PSEN
holoprotein functions as an ER passive Ca2+ leak channel
independently from its γ-secretase activity, based on their
sophisticated experiments with PSEN1/PSEN2 double
knockout mouse embryonic fibroblasts (DKO-MEFs)
(Figure 3) (Tu et al., 2006). The perturbed intracellular Ca2+

signaling in DKO-MEFs manifests as the potentiated amplitude
of bradykinin-induced Ca2+ response, the exaggerated content of
ionomycin-sensitive Ca2+ pool, and the reduced rate of
thapsigargin-induced Ca2+ leak, compared with the wild-type
control (Tu et al., 2006). Subsequently, in their rescue
experiments, the expression of PSEN1WT and PSEN2WT

successfully rescue Ca2+ signaling abnormalities, but
PSEN1M146V and PSEN2N141I do not (Tu et al., 2006).
Similarly, in planar lipid bilayers (BLM), the PSEN1WT and
PSEN2WT can form a low-conductance divalent-cation-
permeable channel, but PSEN1M146V and PSEN2N141I can not
(Tu et al., 2006).

Quantitatively, the directly-measured [Ca2+]ER level in DKO-
MEFs (190 μM) is approximately 2-fold higher than it is in wild-
type control (87 μM); moreover, it is calculated that PSENs
account for 80% of the ER endogenous Ca2+-leaking ability
(Tu et al., 2006). Additionally, PSEN1D257A, a mutation of
catalytic aspartate indispensable for γ-secretase activity, forms
a channel in BLM and alleviates all Ca2+ signaling perturbation in

DKO-MEFs; specifically, PSEN1ΔE9 is a gain-of-function
mutation that leads to Ca2+ over-leak from ER (Tu et al.,
2006), likely contributing to elevated [Ca2+]CYT and depleted
[Ca2+]ER (Bezprozvanny and Mattson, 2008). The presenilin
calcium leak channel hypothesis is supported by Bandara and
colleagues who investigated the role of PSEN2 in regulating
[Ca2+]ER using a fluorescence resonance energy transfer
(FRET) probe (Bandara et al., 2013). The knockdown of
PSEN2 significantly increases the [Ca2+]ER level, and the
overexpression of PSEN2 decreases the [Ca2+]ER level
(Bandara et al., 2013).

Adversely, Kasri and colleagues showed opposite conclusions:
the increased Ca2+ leak from ER and the decreased [Ca2+]ER level
in the same DKO-MEFs model (Kasri et al., 2006). The presenilin
calcium leak channel hypothesis is under suspicion by directly
measuring ER Ca2+ dynamics (Shilling et al., 2012).

FAD-Causing Mutant Presenilins Increase
the Probability of InsP3R Opening
In 1994, Ito and colleagues first demonstrated that the InsP3-
mediated Ca2+ liberation was potentiated in the skin fibroblast
from AD patients (later known to harbor the PSEN1A246Q
mutation, a FAD-causing mutation) (Ito et al., 1994; LaFerla,
2002). In 1999, Leissring and colleagues found that the InsP3-
mediated Ca2+ liberation was enhanced in the Xenopus oocytes
model, expressing PSEN1M146V, PSEN2N141I, and PSEN2M239V,

all of which are FAD-causing mutations (Leissring et al., 1999a;
Leissring et al., 1999b). The underlying mechanism is that FAD-
causing mutant PSENs (PSEN1M146L, PSEN1L166P, PSEN1A246E,
PSEN1G384A, PSEN2N141I) significantly elevate the probability of
InsP3R opening compared with wild-type control (Cheung et al.,
2008; Cheung et al., 2010). Interestingly, γ-secretase-eliminated
mutant PSENs (PSEN1D257A, PSEN1D385A) also considerably
enhance the InsP3R opening, which indicates that the γ-
secretase activity of PSEN is not required for its influence on
InsP3R opening (Cheung et al., 2010). Suppression of InsP3R1
expression genetically by 50% can normalize the enhanced
InsP3R-mediated Ca2+ signaling associated with FAD-causing
mutant PSENs (PSEN1M146V) and profoundly decreases both Aβ
accumulation and tau protein hyperphosphorylation in cortical
and hippocampal neurons of transgenic mice (Shilling et al.,
2014). These lines of evidence support that the enhanced
intraneuronal Ca2+ signaling by FAD-causing mutant PSENs is
InsP3R dependent, and targeting the InsP3 signaling pathway
could be a potential therapeutic strategy for FAD (Figure 3)
(Shilling et al., 2014).

Cytosolic Amino-Terminal Fragment of
Presenilins Regulates RyR-Mediated Ca2+

Release
Payne and colleagues identified a novel mechanism under which
the interaction between the cytosolic amino-terminal fragment of
presenilin (PSEN-NTFCYT) and RyR regulates the Ca2+ signal
from ER (Figure 3) (Payne et al., 2013). Physiological normal
Ca2+ concentration (10 nM < [Ca2+]CYT < 1 μM) and
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pathological high Ca2+ concentration ([Ca2+]CYT > 10 μM) are
required for the cytosolic amino-terminal fragment residues 1–82
of presenilin-1 (PSEN1-NTFCYT1-82) and the cytosolic amino-
terminal fragment residues 1–87 of presenilin-2 (PSEN2-
NTFCYT1-87) to bind RyR, respectively (Hayrapetyan et al.,
2008; Rybalchenko et al., 2008; Payne et al., 2013). After
PSEN1-NTFCYT1-82 binding RyR at normal [Ca2+]CYT, the
single RyR opening probability and mean currents are
potentiated, causing an increased rate of Ca2+ release
(Figure 3) (Rybalchenko et al., 2008; Payne et al., 2013).
Hence, the whole-neuron net Ca2+ release from ER is reduced
due to the inhibitory Ca2+ concentration being reached in a
shorter time (Rybalchenko et al., 2008; Payne et al., 2013). After
PSEN2-NTFCYT1-87 binding RyR at high [Ca2+]CYT, the low-
affinity inhibitory Ca2+-binding site is blocked, resulting in
more elevated [Ca2+]CYT is required to close the RyR, which
represent a potential feedforward mechanism of Ca2+

dysregulation (Hayrapetyan et al., 2008; Payne et al., 2013).

DISCUSSION

For receiving information about the changing environment, cells
evolved the ability to signal (Clapham, 2007). Even though the
precise definition of the signal is still controversial, it is recently
stated that anything that changes could be a signal (Chakravorty,
2018). Ca2+ is elegantly manipulated by cells, particularly
neurons, as a second messenger (Clapham, 2007). The unequal
distribution of ions inside and outside neurons, such as K+, Na+,
and Cl−, keeps the cellular function by generating the resting
membrane potential and holds the neuronal volume by
maintaining the osmotic balance (Byrne et al., 2014). It is
widely known that the large gradient between extracellular and
intracellular Ca2+ concentration levels is the most significant
among particles with electrical charges. Cells possess
numerous molecular machinery to regulate the Ca2+

distribution spatially and temporally; simultaneously, numbers
of biochemical reactions are controlled by intracellular Ca2+.
Therefore, the Ca2+ signal can transmit various information
throughout the cells, and neurons are no exception (Berridge
et al., 2000).

The generation and termination of the Ca2+ signal are featured
as increasing [Ca2+]CYT and decreasing [Ca2+]CYT, respectively
(Miller, 1991). Multiple Ca2+ channels exist in the various
compartment of neurons to perform separate functions
(Berridge et al., 2000). The [Ca2+]CYT is changed by
extracellular stimuli through directly activating the gated Ca2+

channels on the plasma membrane or indirectly triggering the
Ca2+-release channels on intracellular Ca2+ stores (Takei et al.,
1992). In turn, Ca2+, released from ER, can alter transmembrane
potential and regulate the excitability of neurons (Berridge, 1998).
Spatiotemporally different Ca2+ signals modulate a series of
neuronal functions, such as neurotransmitter release, post-
tetanic potentiation, long-term potentiation (LTP), and long-
term depression (LTD) (Purves et al., 2018). For example, large
and fast Ca2+ signals evoke LTP, and small and slow Ca2+ signals
trigger LTD (Purves et al., 2018). For neurons under physiological

conditions, [Ca2+]CYT, [Ca
2+]ER, and [Ca2+]MT are at a subtle

equilibrium level. Both ER and mitochondria can shape the
[Ca2+]CYT. In addition, the Ca2+ in the ER lumen can transmit
into the mitochondrial matrix through ERMCS (Wu et al., 2018).
Collectively, maintaining the Ca2+ homeostasis is vital for
neurons.

Dysregulation in Ca2+ signaling has been reported in
neurodegenerative diseases, such as AD, Parkinson’s disease
(PD), and Huntington’s disease (HD) (Bezprozvanny and
Mattson, 2008; Sheng and Cai, 2012; Pchitskaya et al., 2018).
The [Ca2+]ER is overfilled in AD, whereas depleted in PD and HD
(Pchitskaya et al., 2018). In Caenorhabditis elegans, mutations in
the SEL-12 (the PSEN ortholog) can elevate the [Ca2+]MT level,
and reducing the Ca2+ signal from ER to mitochondria
normalizes the [Ca2+]MT level and the mitochondrial function
(Sarasija et al., 2018). In neurons, mitochondria dysfunction is
recognized as a final pathway in neurodegeneration (Friedman
et al., 2010; Rizzuto et al., 2012). Area-Gomez and colleagues
observed that PSENs are abundant in ERMCS (Area-Gomez
et al., 2009), later the same research team demonstrated that
mutations in PSEN1, PSEN2, and APP can upregulate the
function of ERMCS (Area-Gomez et al., 2012). Moreover,
variations in ERMCS likely influence the cellular Ca2+

homeostasis (Area-Gomez et al., 2012).
The present review summarizes the intracellular Ca2+

signaling regulated by molecular machinery on cellular
membrane systems and the Ca2+ dyshomeostasis linked to Aβ
and presenilins. Connecting the amyloid hypothesis with the
calcium hypothesis may further the understanding of Alzheimer’s
disease pathogenesis. At ER and mitochondria levels,
understanding the regulation of cellular Ca2+ signaling and the
mechanism underlying neuronal Ca2+ dyshomeostasis in AD
may provide therapeutic targets for chronic neuronal
degeneration disease in the central nervous system.
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