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Proper partitioning of replicated sister chromatids at each mitosis is crucial for maintaining
cell homeostasis. Errors in this process lead to aneuploidy, a condition in which daughter
cells harbor genome imbalances. Importantly, aneuploid cells often experience DNA
damage, which in turn could drive genome instability. This might be the product of
DNA damage accumulation in micronuclei and/or a consequence of aneuploidy-induced
replication stress in S-phase. Although high levels of genome instability are associated with
cell cycle arrest, they can also confer a proliferative advantage in some circumstances and
fuel tumor growth. Here, we review the main consequences of chromosome segregation
errors on genome stability, with a special focus on the bidirectional relationship between
aneuploidy and DNA damage. Also, we discuss recent findings showing how increased
genome instability can provide a proliferation improvement under specific conditions,
including chemotherapeutic treatments.
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INTRODUCTION

Cell division is the most hazardous stage of the cell cycle, in which a mother cell must accomplish the
delicate task to generate two identical daughter cells. This is achieved during mitosis, when
chromosomes are segregated between the daughter cells after being duplicated in S phase. The
mechanism underlying chromosome segregation is based on the attachment of sister chromatids to
the mitotic spindle. Central to this is the proper assembly of a specialized pool of proteins, collectively
known as the kinetochore, on centromeric regions of each sister chromatid and subsequent binding
to microtubules. Kinetochores built on sister chromatids should bind to microtubules emanating
from opposite poles to generate amphitelic attachments and to be faithfully segregated into the two
daughter cells (Santaguida and Musacchio, 2009). The fidelity of chromosome segregation is ensured
by the spindle assembly checkpoint (SAC), which serves to delay the metaphase-anaphase transition
until all chromosomes are properly attached to the spindle. When all faulty attachments have been
converted into amphitelic and the unattached kinetochores have been properly bound to the spindle,
the SAC s silenced and cells can progress into the cell cycle (London and Biggins, 2014). Importantly,
erroneous kinetochore-microtubule attachments lead to chromosome segregation errors and thus to
the generation of aneuploid cells, i.e., cells with an abnormal number of chromosomes. Aneuploidy
represents a major cause of spontaneous abortions and mental retardation, and is strongly associated
with cancer (Santaguida and Amon, 2015; Ben-David and Amon, 2020).

There are several origins of unfaithful chromosome segregation, which can be classified in “pre-
mitotic” and “mitotic” (Burrell et al, 2013). The former includes abnormal DNA structures
generated by faulty DNA repair and replication that had occurred before mitosis. The latter
comprises a variety of mitotic defects, including incorrect kinetochore-microtubule attachments
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(mentioned above) (Levine and Holland, 2018), aberrant SAC
function (Levine and Holland, 2018), altered microtubule
dynamics (Bakhoum et al., 2009) (e.g, increased stability of
the attachments), mitotic spindle aberrations (e.g., multipolar
spindle) (Basto et al., 2008; Maiato and Logarinho, 2014) and
cohesion defects (Barber et al., 2008). Although the mechanisms
leading to chromosome mis-segregation can vary, its outcome is
the generation of a progeny with an unbalanced karyotype, which,
in a classical view, harbors segmental aneuploidies in case of pre-
mitotic defects and whole-chromosome aneuploidies in case of
mitotic defects. However, what has become evident over the last
decade is that segregation errors originating from defects of the
mitotic machinery not only can lead to gain or loss of entire
chromosomes but also to structural chromosomal aberrations
(Janssen et al., 2011; Levine and Holland, 2018). This can be
explained by the fact that such events often lead to DNA damage
(Levine and Holland, 2018).

In this review, we will first discuss how chromosome
segregation errors can trigger genomic instability, then will
focus on the aneuploid status and its association with
replication stress and the subsequent genomic instability.
Lastly, we will elaborate on the consequences of genomic
instability on aneuploid cell proliferation, including the
implications for aneuploid cancer cell physiology.

CHROMOSOME SEGREGATION ERRORS
LEAD TO GENOMIC INSTABILITY

Two common by-products of cell division errors are lagging
chromosomes in anaphase and generation of micronuclei in the
following G1, which both can be associated with DNA damage. In
fact, when chromosomes lag behind the main DNA masses for a
long time and fail to clear the spindle midzone prior to
completion of cytokinesis, they become trapped in the
cleavage furrow and could be broken by physical forces
(Janssen et al., 2011). Since the trapped genetic material stains
positive for yH2AX and MDC1 and cells treated with cytokinesis
inhibitors such as blebbistatin display less yH2AX and 53BP1
foci, it can be concluded that DNA damage occurs during
cytokinesis. Daughter cells that had inherited broken
chromosomes activate a DNA damage response that is typical
of cells dealing with double-stranded DNA breaks (DSBs), as
shown by the activation of ATM/Chk2 and p53 ''. Since
inhibition of non-homologous end joining (NHE]) prevents
the resolution of 53BP1 foci, it can be argued that DNA
damage induced by chromosome segregation errors is at least
partially repaired by NHE]. This explains why some of the
daughter cells harbor unbalanced chromosomal translocations
(Janssen et al., 2011).

Alternatively, work from the de Lange and Pellman groups has
shown that lagging chromosomes (including the dicentric ones,
derived from telomere fusion events and suspected to trigger
genomic instability in cancer cells (Artandi and DePinho, 2010))
might not get broken during mitosis, but, instead, form long
chromatin bridges between the daughter cells (Martin and
Santaguida, 2020). During the first interphase, they can
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become accessible to cytoplasmatic endonucleases such as
TREX1 and get cleaved, exposing ssDNA and facilitating their
fragmentation (Maciejowski et al., 2015). Alternatively, they can
get stretched by the actomyosin-dependent mechanical force,
which also promotes local chromosome fragmentation (Umbreit
et al.,, 2020). In both cases, due to defective replication of the
broken ends, the outcome will be the accumulation of additional
DNA damage. This results in complex chromosome
rearrangements that are compatible with chromothripsis
(Maciejowski et al., 2015; Umbreit et al., 2020), a phenomenon
in which one or a few chromosomes in a cancer cell harbor several
clustered rearrangements (Forment et al., 2012).

Beside lagging chromosomes, micronuclei are also associated
with DNA damage. Micronuclei originate from genetic material
that had been erroneously segregated and become separated from
the daughter cell chromatin masses forming a separate
compartment. They can contain whole chromosomes or
chromosomal fragments, depending on the nature of the
missegregation (Thompson and Compton, 2011).
Increasing  evidence indicates that micronuclei are
dysfunctional structures, as processes such as DNA replication,
transcription, DNA damage repair and nuclear-protein
localization exhibit functional defects (Hoffelder et al., 2004;
Terradas et al, 2009; Xu et al, 2011; Crasta et al, 2012;
Terradas et al, 2012). After mitosis, the genetic material
contained in the MN can be re-incorporated into the primary
nucleus of the daughter cells at a significant high frequency
(Crasta et al,, 2012; Soto et al,, 2018). This might precipitate
cells in a state in which mutations arisen from faulty
micronuclear DNA metabolism can be potentially transferred
from the MN to the genome.

It is noteworthy that micronuclei are not simple by-products
of missegregation events, but could play an active role in
triggering and fueling genomic instability (Terradas et al,
2016). Indeed, they often accumulate high levels of DNA
damage, which is due to several reasons. First, abnormal
replication in micronuclei can directly lead to DNA breaks, as
shown by the accumulation of yH2AX foci in the G2 phase
(Crasta et al,, 2012). Second, if a cell harboring a MN enters
mitosis with micronuclear DNA still undergoing DNA
replication, chromosomes will compact prematurely and
chromosome pulverization will occur (Crasta et al, 2012).
Third, the ruptured membrane that is commonly present in
micronuclei (Géraud et al., 1989) leads to increased torsional
stress and favors chromosome fragmentation (Liu et al., 2018;
Vietri et al., 2020). The combined effect of the factors listed above
is that DNA in micronuclei can generate a wide spectrum of
chromosome rearrangements. By using an elegant approach
based on live-cell imaging and single-cell genome sequencing,
the Pellman group has shown that some of the events occurring in
micronuclei recapitulate chromothripsis (Hatch and Hetzer,
2015; Zhang et al., 2015). This has been recently further
characterized by Ly and co-authors, who have been able to
dissect the exact categories of genomic rearrangements derived
from a single chromosome missegregation event (Ly et al., 2019).
Importantly, the fact that the micronuclear membrane is often
ruptured leads to spillage of micronuclear DNA into the cytosol

event
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(MacKenzie et al.,, 2017). Thus, the DNA becomes accessible to
the cytosolic nucleic acid sensor cGAS, which gets activated and
generates the cyclic dinucleotide cyclic GMP-AMP (cGAMP). In
turn, cGAMP triggers a type I interferon response via STING
(stimulator of interferon genes), activating an immune
surveillance mechanism. This establishes a direct link between
the micronuclei -and therefore genomic instability- and innate
immune responses (Harding et al., 2017; MacKenzie et al., 2017).
It was already known that STING activation can lead to NF-kB
pathway activation (Abe and Barber, 2014), but recently it has
been observed that the activation of STING and non-canonical
NF-kB pathway can mediate metastasis in a tumor cell-
autonomous fashion (Bakhoum et al., 2018). In conclusion,
micronuclei can not only exacerbate genomic instability of the
cell from which they were generated from, but also favor tumor
evolution, and should therefore be considered as highly
dangerous structures.

ANEUPLOIDY IS ASSOCIATED WITH
INCREASING GENOME INSTABILITY

As previously mentioned, chromosome segregation errors are
associated with genome instability and lead to the generation of
aneuploid cells. Increasing evidence both in yeast and in higher
eukaryotes indicates that the aneuploid status is characterized by
additional genome instability. Work from the Amon lab has
revealed that missegregation of a single chromosome is sufficient
to induce genome instability in yeast (Torres et al., 2007; Sheltzer
et al,, 2011). In fact, the analysis of 13 aneuploid budding yeast
strains has shown that gain of single chromosomes leads to
chromosome loss, defective mitotic recombination and DNA
damage repair (Sheltzer et al,, 2011). As a result, aneuploid
strains often enter mitosis in the presence of unrepaired DNA,
which can trigger chromosomal translocations (Blank et al,
2015). Similar observations were also made by Zhu and co-
authors, who observed that aneuploid yeast strains generated
by sporulation of triploid or pentaploid yeast also exhibit
chromosomal instability (Zhu et al., 2012).

In line with the data obtained in yeast, work in Chinese
hamster embryo and human cells indicates that aneuploidy is
associated with genome instability also in higher eukaryotes (Li
et al., 1997; Nawata et al., 2011; Nicholson et al., 2015). Indeed,
HE35 cells with an extra copy of chromosome 8 display an
increase in structural chromosomal aberrations (Nawata et al.,
2011). Also, a systematic comparison between trisomic and
diploid human cells (both untransformed amniotic fibroblasts
and colorectal cancer cells DLD1) has uncovered that aneuploidy
is associated with increased frequency of anaphase lagging
chromosomes and cytokinesis failure (Nicholson et al., 2015).

Altogether, this shows that chromosome missegregation
events promote additional genome instability. This is likely to
be due to the major impact of karyotype abnormalities on cellular
transcriptome and proteome (Gao et al., 2007; Stingele et al.,
2012; Donnelly et al., 2014; Diirrbaum et al., 2014; Santaguida
et al,, 2015). More specifically, imbalances in the levels of factors
critical for fundamental processes such as DNA replication, DNA
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repair and mitosis are at the basis of the genome instability
associated with aneuploidy (Holland and Cleveland, 2012;
Chunduri and Storchovd, 2019). For example, regarding DNA
replication, it has been demonstrated by the Storchova lab that
cells harboring extra chromosomes exhibit reduced levels of
MCM2-7 proteins, which are essential for the process of DNA
synthesis (Passerini et al., 2016). In line with this, analysis of DNA
replication dynamics in aneuploid cells has revealed that they
experience replication stress in S phase. In fact, aneuploid cells
display reduced DNA replication fork rate, increased fork stalling
and prolonged S phase duration (Santaguida et al., 2017). All this
is indicative of replication stress, which is further confirmed by a
high sensitivity of aneuploid cells to replication stress inducing
agents such as aphidicolin (Passerini et al., 2016). Importantly,
exacerbation of this replication stress can represent a successful
strategy to specifically hit cancer cells, which are very often
aneuploid. For example, induction of replication fork
asymmetry via exposure to a PARG inhibitor can selectively
kill a subset of ovarian cancer cells (Pillay et al., 2019).

It is well established that faulty DNA replication can trigger
genome instability not only by generating DNA damage in S
phase but also by challenging the fidelity of chromosome
segregation in mitosis. Interestingly, the mechanisms by which
this occurs also include stabilization of mitotic spindle
microtubules, which favors premature centriole disengagement
and generates transient multipolar spindle (Bohly et al., 2019;
Wilhelm et al., 2019). In line with the impact of replication stress
on genome stability, Burrell, McClelland and co-authors have
found that replication stress is what triggers structural and
numerical chromosomal instability (CIN) in most colorectal
cancers, thus challenging the classical view that only mitotic
defects can lead to numerical aneuploidy (Burrell et al., 2013).
In conclusion, aberrant DNA replication appears to be the main
factor contributing to a further increase in aneuploid cell genome
instability. It is likely that both genomic imbalances caused by the
aneuploid status and previously-mentioned replication problems
in micronuclei contribute to the replication defects displayed by
aneuploid cells. Collectively, they lead to the accumulation of
additional DNA damage (Santaguida et al., 2017), thus triggering
further genome instability in aneuploid cells.

CONSEQUENCES OF GENOMIC
INSTABILITY ON ANEUPLOID CELL
FITNESS

As previously mentioned, karyotype imbalances have important
consequences on cellular transcriptome and proteome. More in
details, there is a direct dosage effect on the expression of genes
present on aneuploid chromosomes, i.e., RNA expression from
the gained chromosomes is proportional to chromosome copy
number both in yeast and in higher eukaryotes (Torres et al,
2007; Williams et al., 2008; Pavelka et al., 2010) -with some
exceptions (Rancati et al., 2008; Letourneau et al, 2014).
Similarly, changes in protein abundance tend to roughly scale
with changes in DNA copy number in yeast (Pavelka et al., 2010;
Sheltzer et al., 2011; MacKenzie et al., 2017). However, this is not
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FIGURE 1 | Aneuploid cells are characterized by increasing genome
instability. Chromosome segregation errors lead to the generation of
aneuploid cells with DNA damage. When attempting to duplicate their
genome in S phase, aneuploid cells experience DNA replication stress.
(Continued)

FIGURE 1 | Altogether, this triggers further missegregation events in the
subsequent cell cycles and thus the accumulation of cells with complex
karyotypes, known for displaying reduced cellular fitness, entering
senescence and displaying a senescence associated secretory phenotype
(SASP). However, in the context of cancer, the increasing genome instability
associated with aneuploidy can confer a proliferative advantage. This would
allow them to survive and provide a strong advantage in the presence of
selective pressures, such as during chemotherapy.

always the case: when translation rate was assessed in 12 disomic
yeast strains, it was found that around 20% of proteins was
synthesized at a lower rate than predicted based on copy number
changes. These proteins were mostly components of multi-
subunit complexes (Dephoure et al, 2014). Similarly, in
human aneuploid cells, the abundance of this type of proteins
and protein kinases was found to be reduced toward diploid levels
(Stingele et al., 2012). Collectively, this could indicate that either
some genes on aneuploid chromosomes are not translated
efficiently or their products are not stable. The Amon lab has
proposed that this “dosage compensation” occurs via the
activation of proteolytic pathways, so that cells can
compensate for abnormal protein stoichiometry (Torres et al.,
2008; Sheltzer et al., 2011; Pfau and Amon, 2012). And this was
also confirmed for multimolecular complexes (McShane et al.,
2016).

Given the deep impact of karyotype abnormalities on cell
physiology, it is not surprising that aneuploidy is detrimental for
cellular fitness (Santaguida and Amon, 2015; Zhu et al.,, 2018).
This is evident not only in budding and fission yeast, where
aneuploid strains proliferate at a slower rate than controls (Torres
et al.,, 2007; Holland and Cleveland, 2012), but also in mouse,
where trisomy of chromosome 1, 13, 16 or 19 is associated with
proliferation defects in MEFs (Williams et al., 2008). In humans,
all monosomies are lethal and only three autosomal trisomies are
viable: chromosome 13, 18 and 21, which are the poorest gene-
containing chromosomes (Holland and Cleveland, 2012). Only
individuals with trisomy 21 survive until adulthood and their cells
are well known to proliferate at a slower rate than age-matched
diploid cells (McCoy et al., 1983). Instead, aneuploidies of sex
chromosomes are better tolerated than aneuploidies of
autosomes, probably because the Y chromosome encodes for a
few genes only and only one X chromosome is active in adult cells
regardless of how many copies are present. It is important to
highlight that, beside gain of single chromosomes, sometimes
cells can acquire more complex karyotype abnormalities. When
aneuploidy becomes severe, cells do not simply slowdown in the
cell cycle, but activate p53 and undergo consequent cell cycle
arrest (Santaguida et al., 2017).

Intriguingly, although aneuploidy is usually deleterious for cell
physiology, some human tissues such as brain and liver naturally
contain aneuploid cells (Pack et al., 2005; Duncan et al., 2012;
Santaguida and Amon, 2015). Although the biological
significance of aneuploidy in these contexts has not been
elucidated yet, it can be speculated that aneuploidy could
allow liver cells, for example, to adapt to nutritional and
noxious stresses (Holland and Cleveland, 2012). This seems to
be particularly relevant to cancer cells, which are found to be very
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often aneuploid (Vasudevan et al., 2021). In fact, recent work has
shown that abnormal chromosome number in the context of
cancer can promote resistance to chemotherapy (Salgueiro et al.,
20205 Ippolito et al., 2021; Lukow et al., 2021), in line with the
observation that highly aneuploid tumors correlate with poorer
patient outcomes (Davoli et al., 2017; Vasudevan et al., 2020). In
details, chromosome missegregation events cause increased
karyotypic heterogeneity that can be utilized by cancer cells to
find the correct karyotypic landscape and thus survive under
selective pressures such as chemotherapy. In conclusion, under
stress-free conditions, aneuploidy causes decreased proliferation,
while under suboptimal conditions aneuploid cells might grow
better. This provides an explanation for the apparent paradox of
cancer cells, which are very often aneuploid and at the same time
are characterized by increased proliferation.

One final aspect that deserves to be discussed is the role that
aneuploidy-induced CIN plays in tumorigenesis (Funk et al., 2016;
van Jaarsveld and Kops, 2016). In the previous section, we mentioned
that aneuploidy is frequently associated with increased genome
instability. An increased DNA mutation rate can favor the onset
of genetic alterations that drive cellular growth and transformation
(Holland and Cleveland, 2012). Recent studies in mouse have
demonstrated that CIN can favor the expansion of cells with
clonal chromosomal abnormalities, which act as tumor-initiating
cells (Levine et al., 2017; Shoshani et al., 2021; Trakala et al., 2021).
This is the case of chromosome 15, on which the oncogene Myc is
located, and was found to be gained with high prevalence in a mouse
model of T-cell lymphoma (Shoshani et al.,, 2021; Trakala et al,, 2021).
Interestingly, expression of human MYC from chromosome 6 leads
to karyotype changes, namely gain of chromosome 6. Under this
condition, chromosome 15 is still frequently gained, unless the Rad21
gene is deleted from it (Trakala et al,, 2021). This shows that clonal
selection is guided by chromosomal location and identity of
specific genes.

CONCLUDING REMARKS

In this review, we have discussed how chromosome segregation
errors induce DNA damage and how this exacerbates genome
instability in the resulting aneuploid cells, a condition that has
recently been shown to confer proliferative advantages under
specific conditions (Ippolito et al., 2021; Lukow et al, 2021;
Salgueiro et al., 2020) (Figure 1). It has to be noted that the
vast majority of studies conducted so far have employed an
heterogenous population of aneuploid cells, comprising both
chromosome gains and losses as well as cycling and arrested
cells. In the future, it will be important to explore more in details
the contributions of specific trisomies vs. monosomies, an effort
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