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Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a
critical role in development of multiple organ systems, where they coordinate tissue growth
and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from
studies in Drosophila, where they initiate a signaling pathway that regulate growth by
influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In
this review, we discuss recent advances in our understanding of the mechanisms by which
Ds-Fat signaling pathway regulates these critical developmental processes. Further, we
discuss the progress in our understanding about how they function in mammals.
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1 INTRODUCTION

Fat and Ds were originally discovered in Drosophila, based on lethality in the mutants and were
subsequently shown to cause the dramatic overgrowth of the imaginal discs, the larval precursor for
adult organs (Bryant et al., 1988; Clark et al., 1995). Later, they were shown to regulate orientation of
wing hairs and ommatidia, the photoreceptor units of compound eye in Drosophila, by modulating
PCP (Rawls et al., 2002; Strutt and Strutt, 2002; Yang et al., 2002). Subsequently, they were found to
be conserved in mammals. These cell adhesion molecules are now known to play a critical role in
coordinating growth and morphogenesis in developing organs from Drosophila to humans.

Molecularly, Fat and Ds are large single-pass transmembrane proteins with a large number of
cadherin repeats in the extracellular domain (ECD) and a relatively small intracellular domain (ICD)
(Mahoney et al., 1991; Tanoue and Takeichi, 2005). Unlike classical cadherins, their ICDs lack β-
catenin binding sites. Mammals contain 4 Fat homologs (FAT1-4), out which FAT4 is closest to
Drosophila Fat. Similarly, mammals have 2 Ds homologs (DCHS1 and DCHS2). These cell adhesion
molecules interact in a heterophilic manner to initiate bidirectional signaling (hereafter Fat
signaling), mediated by their cytoplasmic domains to regulate a number of critical
developmental processes including growth, tissue patterning, convergent extension and directed
cell migration. Mutations in FAT4 and DCHS1 are associated with many cancers and multi system
developmental defects such as Van Maldergem syndrome and Hennekam syndrome, characterized
by craniofacial anomalies, intellectual dysfunction, digital contractures, hypoplastic kidneys, sternal
and auditory defects (Cappello et al., 2013; Alders et al., 2014; Hou et al., 2016; Ma et al., 2016;
Pilehchian Langroudi et al., 2017).

Fat signaling regulates tissue growth by activating the Hippo signaling pathway, which consists of
a core kinase module, consisting of Hippo (Hpo), Warts (Wts) and their cofactors Salvador (Sav) and
MOB as tumor suppressor (Mats) (Kaishima et al., 2016) respectively, that function to regulate the
transcriptional coactivator, Yorkie (Yki) (Misra and Irvine, 2018) (Figure 1A). Hpo phosphorylates
and activates Wts, which in turn phosphorylates Yki. Phosphorylated Yki is sequestered in the
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cytoplasm, while unpophosphorylated Yki translocates into the
nucleus and associates with the transcription factor Scalloped
(Sd) to regulate the expression of genes that promote cell
proliferation and inhibit apoptosis. This results in tissue
overgrowth. This pathway is conserved in mammals and
plays a central role in organ size control. In mammals, the
Hpo homologs MST1/2 heterodimerize with the Sav ortholog
SAV1 and phosphorylate Wts ortholog LATS1/2 and its adapter
MOB1 (Mats ortholog) (Figure 1E). Phosphorylated LATS1/2
in turn, phosphorylate and sequester paralogous Yki orthologs,
Yes Associated Protein (YAP) and Transcriptional activator
with PDZ-binding motif (TAZ) in the cytoplasm.
Unphosphorylated YAP/TAZ translocate into the nucleus,
where they regulate gene expression by associating with
Transcriptional Enhancer Associated Domain1-4 (TEAD1-4)
transcription factors. The Hippo pathway integrates a diverse
array of upstream biochemical, mechanical and architectural
signals such as, cell-cell adhesion, cell polarity, cell geometry,
hormones, nutrient status and cellular stress. In Drosophila Ds-
Fat mediated cell-cell adhesion is a key upstream regulator of
Hippo signaling. However, in mammals Dchs1/Fat4 influences
this pathway only in specific tissues. Further, the mechanism by

which they influence Hippo signaling seems to have
evolutionarily diverged (Bossuyt et al., 2014).

Fat signaling also regulates tissue morphogenesis by
influencing PCP, which refers to tissue wide coordinate
polarization of cellular features in an organ, in the plane of
the tissue (Strutt and Strutt, 2021). For example, the hairs in
the Drosophila adult wings and abdomen, and the hair follicles in
mammalian skin uniformly point to one direction. Similarly, the
stereocilia in the cochlear hair cells in the mammalian inner ear
are also uniformly organized, and disorganization of this leads to
deafness. PCP is primarily regulated by a conserved signaling
network mediated by the core pathway of PCP proteins, which
consists of the transmembrane proteins Starry night (Stan) (also
known as Flamingo), Frizzled and Vangogh (Vang) (also known
as Strabismus), and the cytosolic proteins Prickle (Pk),
Disheveled (Dsh) and Diego (Dgo) (Goodrich and Strutt,
2011). These proteins localize in asymmetric complexes in a
planar polarized manner to regulate PCP (Figure 2A). Fat
signaling can regulate tissue patterning by influencing the
polarization of these core proteins.

Here wewill first describe recent advances in our understanding of
Fat signaling in Drosophila, where the pathway is most extensively

FIGURE 1 | Regulation of Hippo signaling and tissue growth by Fat signaling. (A) Schematic of the minimal Ds-Fat signaling and the Hippo pathway showing
asymmetric localization of Fat (proximally), Ds, Dachs and Vam (distally) in the apical cortex. (B) Schematic depicting loss of Dachs and Vam polarity in fatmutants, and
displacement of Dachs and Vam from the membrane to the cytoplasm by Fat overexpression or in appmutants. (C) Schematic showing the H (aa 4,733–4,900) and D
(aa 4,975–4,993) regions of the Fat intracellular domain, locations of point mutations within the H region, and deletions within the H region that impair Hippo activity,
including HM (4,834–4,899), PH (4,733–4,774), Hpo-N (4,775–4,836), Hpo-C (4,839–4,920), and H2 (4,719–4,900) (Matakatsu and Blair, 2012; Pan et al., 2013; Zhao
et al., 2013; Bossuyt et al., 2014). (D) Schematic depicting the Drosophila larval wing disc with Wg and Dpp expression domains along the dorsoventral and anterior-
posterior boundary respectively and progressive enlargement of the wing pouch by recruitment of non-wing cells at the periphery by a feed-forward mechanism
mediated by Fat signaling (see description in main text). Arrows and block arrows indicate positive and negative regulation respectively. (E) Schematic showing the
simplified mammalian Hippo signaling pathway and regulation of RET and Yap/Taz (through Amotl1) by Fat4. Hpo: Hippo; Sav: Salvador; Wts: Warts; Mats: MOB as
tumor suppressor; Yki:Yorkie; Sd: Scalloped; Ds: Dachsous; Fj: Four jointed; Dco: Discs overgrown; Lft:Low fat; Vam: Vamana/Dlish; Ex: Expanded; App:
Approximated; Elgi: Early girl; Riq: Riquiqui; and Mnb: Minibrain.
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studied. Then we will summarize our understandings of how these
protocadherins function in mammals.

2 FAT SIGNALING IN DROSOPHILA

2.1 Pathway Components
2.1.1 Fat and Ds
Drosophila Fat is a very large (560 KD) transmembrane protein
with 34 cadherin repeats, 4 EGF like repeats and 2 lamin-G
domains in the ECD. This is followed by a transmembrane
domain and relatively small ICD, which does not have any
identifiable domains. However, specific regions in the ICD
have been identified that play important role in growth or
PCP regulation (Figure 1C). The mature protein exists in a
form cleaved N-terminal to the transmembrane domain (Feng
and Irvine, 2009; Sopko et al., 2009). Ds is also a very large
(379 KDa) transmembrane domain with 27 cadherin repeats in
the ECD, followed by a transmembrane region and a small ICD.
Cellular aggregation experiments using S2 cells expressing these
proteins revealed that they mediate cell-cell adhesion by
interacting in a heterophilic manner (Matakatsu and Blair,
2004). Subsequent rescue experiments in fat and ds mutants,
which exhibit overgrowth of the imaginal discs and lethality,
revealed that, these phenotypes in fat mutants can be rescued by
expressing just the Fat-ICD. Similarly, expression of just the Ds-
ECD can rescue overgrowth phenotypes in ds mutants. These
experiments showed that Fat functions as the receptor and Ds
functions as the ligand (Matakatsu and Blair, 2004; Matakatsu
and Blair, 2006; Rogulja et al., 2008; Willecke et al., 2008).
However, Ds is also thought to function as a receptor in
specific circumstances (Zecca and Struhl, 2010).

Much of our understanding of the molecular mechanism by
which this pathway regulates growth and morphogenesis comes
from studies in the Drosophila wing imaginal disc, the
primordium that gives rise to the adult wing. In the
Drosophila wing disc epithelial cells, Fat and Ds localize to the

subapical plasma membrane in a planar polarized manner, where
Fat preferentially localizes to the proximal side and Ds localizes to
the distal side (Ambegaonkar et al., 2012; Brittle et al., 2012). This
facilitates heterophilic interaction between Ds and Fat across cell-
cell junctions. Ds-Fat interaction is also modulated by
phosphorylation of their ECDs by the Golgi-resident kinase
Four jointed (Fj), where Fat phosphorylation promotes its
interaction with Ds, while Ds phosphorylation is known to
inhibit its interaction with Fat (Ishikawa et al., 2008; Brittle
et al., 2010; Simon et al., 2010; Hale et al., 2015).

One of the unique feature of this Fat signaling pathway is that
the signaling activity is dependent on protein expression
gradients. Under the influence of the Vestigial (Vg)
transcription factor, Ds is expressed in a steep decreasing
gradient from the periphery to the center of the wing pouch.
On the other hand, Vg promotes Fj expression in an opposite
decreasing gradient from the center to the periphery of the
presumptive wing primordium (Cho and Irvine, 2004).
Computational modeling revealed that the graded expression
of Ds and Fj results in planar polarization of Fat and Ds along
the proximodistal axis (Hale et al., 2015). While Ds is expressed
in a gradient, Fat is expressed almost uniformly. This results in a
gradient of Fat activity, and the differential Fat signaling
between adjacent cells is known to regulate cell proliferation
by activating Yki. Consistently, creating sharp differences in Fat
signaling by expressing Ds in clones, activates Yki in the clone
boundary (Rogulja et al., 2008; Willecke et al., 2008).
Conversely, flattening the gradient by uniformly expressing
Fat, Ds or Fj inhibits growth (Matakatsu and Blair, 2006).
While the gradient of Fat activity is responsible for
sustaining the growth and proliferation of the wing cells in
the pouch region, it has also been proposed that at the periphery
of the wing pouch, Fat and Ds also contribute to wing growth by
propagating a feedforward mechanism to recruit non-wing cells
into the wing pouch (Figure 1D) (Zecca and Struhl, 2010). This
mechanism relies on steep borders of Ds and Fj expression at the
edge of the developing wing.

FIGURE 2 |Regulation of PCP by Fat signaling inDrosophila. (A) (B) Schematic showing planar polarized localization of the core PCP components, Fat, Ds and hair
orientation in wild type and fat mutant wings. In fat mutants, loss of Ds and Dachs polarity leads to loss of Sple asymmetry, causing loss of hair polarity.
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2.1.2 Dachs
Dachs is one the key downstream effector of the Fat, and was
isolated based genetic epistasis experiments where dachs mutants
suppressed the lethality and overgrowth phenotypes of fatmutants
(Cho et al., 2006; Mao et al., 2006). Molecularly, it encodes an
atypical myosin with no ATPase activity that can bind to F-actin
(Cao et al., 2014). Cell biological studies revealed that in the
developing wing disc epithelial cells, it localizes to the subapical
plasma membrane in a planar polarized manner, with enrichment
on the distal side (Figure 1A). (Mao et al., 2006). In fat mutants
however, Dachs levels increase and it localizes to the entire
perimeter of the cells (Figure 1B). Further, forced localization of
Dachs to the entire perimeter by fusing it to Zyxin can induce
similar overgrowth as fat mutants (Pan et al., 2013). Conversely,
overexpression of Fat or Fat-ICD displaces membrane-bound
Dachs into the cytoplasm (Figure 1B). Thus, membrane
localization is critical to Dachs function and its polarity plays a
crucial role in regulation of growth via theHippo signaling pathway.
Fat regulates growth by regulating Dachs levels, membrane
localization and polarity. Dachs levels and polarity is also
regulated by two E3 ubiquitin ligases, Early girl (elgi) and
FBXL7 respectively (Bosch et al., 2014; Rodrigues-Campos and
Thompson, 2014;Misra and Irvine, 2019). FBXL7mutants exhibit a
milder increase in Dachs levels that lose the polarity, which induces
overgrowth. On the other hand, elgi mutants display dramatic
increase in Dachs levels that shows normal polarity and mild
overgrowth.

2.1.3 Approximated
A hallmark feature of mutations in Fat signaling pathway is that
they display reduced spacing between two vertical thickenings in
the wing, referred to as crossveins. Approximated (App) was
isolated based on the reduced crossvein spacing phenotypes in the
adult wings of the mutant animals (Matakatsu and Blair, 2008).
App encodes a DHHC palmitoyl transferase and at the cellular
level, app mutants exhibit reduced membrane localization of
Dachs, indicating that it is required for proper localization of
Dachs (Figure 1B). However, App does not palmitoylate Dachs
directly. App has been also reported to palmitoylate Vamana
(Zhang et al., 2016) and juxta membrane region of Fat and
regulate their membrane localization (Matakatsu et al., 2017).

2.1.4 Vamana/Dachs Ligand With SH3 Domains
Vamana (Vam) [also known as Dachs ligand with SH3 domains
(Dlish)] was isolated by two groups independently (Misra and Irvine,
2016; Zhang et al., 2016). Misra and Irvine (2016) discovered Vam,
based on a reduced crossvein spacing of the adults wings from a
stock containing a transposable element inserted into the Vam locus.
Zhang et al. (2016) isolated Dlish as an interactor of the Dachs
C-terminal region in a yeast two hybrid screen. Vammutants exhibit
undergrowth and can suppress the overgrowth phenotype of Fat
mutants. Vam encodes an adapter protein with 3 SH3 domains and
physically interacts withDachs, engaging the second SH3 domain. In
absence of Vam, Dachs fails to localize to the plasma membrane.
Conversely, Vam also fails to localize to the membrane in absence of
Dachs, suggesting that they reciprocally regulate each other.
Consistent with this, Vam localizes to the distal side of apical

plasma membrane, where it colocalizes with both Dachs and Ds
(Figure 1A). Interestingly, Fat regulates Vam level and polarity in
the samemanner as it regulates Dachs. In absence of Fat, Vam levels
also increases and it localizes to the entire perimeter of the cells
(Figure 1B). Conversely, overexpression of Fat or Fat-ICD displaces
Dachs from the membrane to the cytoplasm (Figure 1B). Although
it was previously shown that Fat negatively regulates Dachs, there
was no evidence of direct physical interaction between Fat and
Dachs. Vam provided the physical link between Dachs and, both Fat
and Ds. The first and third SH3 domains of Dachs interact with the
cytoplasmic domains of Fat and Ds. More importantly, these SH3
domains interact with the Hippo regulatory (H) region of the Fat-
ICD (Figure 1C). Vam was also subsequently shown to regulate
expanded stability by recruiting the E3 ligase Slimb (Wang et al.,
2019). Thus, in absence of Vam, expanded levels are significantly
increased. However, overexpression of Vam has no apparent effect
on Expanded (Ex) levels. Thus, it remains unclear how a modest
increase in Vam levels in fatmutants can significantly destabilize Ex
levels.

2.1.5 Expanded
Expanded (Ex) is a FERM domain protein that functions as a
crucial negative feedback regulator in the Hippo signaling
pathway. Ex is transcriptionally induced by activated Yki and
it localizes to the apical plasma membrane by interacting with the
cytoplasmic domain of the cell adhesion protein Crumbs (Chen
et al., 2010; Ling et al., 2010; Robinson et al., 2010). It directly
binds to Yki and sequesters it in the membrane (Badouel et al.,
2009; Oh et al., 2009). Recent studies revealed that as a negative
feedback loop,Wts gets activated at the plasmamembrane and Ex
functions as a scaffold that interacts with Hippo, Wts and Yki.
Thus, it plays a critical role in promoting the Hpo-Wts kinase
cascade to restrict Yki activity (Sun et al., 2015). Therefore, in
absence of Ex, Yki is presumably activated in an uncontrolled
manner. Ex protein stability is also regulated by Crumbs (Chen
et al., 2010; Ribeiro et al., 2014; Fulford et al., 2019). In absence of
Crumbs, Ex fails to localize to the plasma membrane. Conversely,
higher levels of crumbs induces Ex ubiquitination and subsequent
degradation by recruiting the E3 ligase Slimb, through the
cytoplasmic domain. Fat mutants display reduced apical Ex
protein levels, despite increased ex transcription by activated
Yki and this is thought to be the key mechanism by which
loss of Fat induces overgrowth (Bennett and Harvey, 2006;
Silva et al., 2006; Willecke et al., 2006; Feng and Irvine, 2007).
However, another school of thought is that Fat and Ex function in
parallel to regulate growth through Hippo signaling (Feng and
Irvine, 2007). Concomitant loss of Dachs and Fat restores Ex
levels in fat mutants, presumably due to absence of Vam, which
also promotes Ex ubiquitination and degradation through Slimb.
It remains unclear how exactly Fat regulates Ex protein stability.

2.1.6 Discs Overgrown
Discs overgrown (Dco), as the name suggests, was isolated based
on the overgrowth of the wing discs in animals carrying a
neomorphic gain-of-function mutant allele, Dco3. Dco3
mutants also display higher levels of Dachs. Dco encodes
Casein Kinase-1ε and phosphorylates Fat-ICD in the D region
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(Figure 1C), which then recruits FBXL7 that promotes Dachs
degradation and restricts it to the distal side (Bosch et al., 2014).
Thus, in Dco3 mutants, loss of FBXL7 function interferes with
Dachs polarity and leads to overgrowth.

2.1.7 Low Fat
Low fat (Lft) was reported as an interactor of Fat and Ds ICDs in a
yeast two-hybrid screen. Subsequent genetic analysis revealed
that the lftmutants exhibit reduced crossvein spacing (Mao et al.,
2009). At the cellular level, loss of Lft led to a decrease in Fat and
Ds levels. Conversely, overexpression of Lft promoted Fat and Ds
membrane recruitment. Lft is evolutionarily conserved and the
human homologs LIX1 and LIX1L can suppress the Drosophila
Lft mutant phenotypes. However, how exactly, Lft regulates Fat or
Ds remains unknown.

2.1.8 Atrophin
Atrophin (Atro) (also known as Grunge) is a downstream effector of
Fat in PCP regulation in the eye (Fanto et al., 2003). Atro is a
transcriptional repressor and physically associates with the Fat-ICD.
In absence of Fat, it translocates into the nucleus and regulates gene
expression. However, the transcriptional target of Atro that
contributes to PCP regulation remains to be identified.

2.2 Fat and Hippo Signaling
Fat signaling primarily restricts tissue growth by activating Hippo
signaling. Genetic epistasis experiments revealed that Fat regulates
Hippo pathway at the level of Wts (Cho et al., 2006). However, the
exact mechanism by which it regulates Wts remains unclear. One
school of thought is that Fat regulatesWts stability. It was shown that
in fatmutants as well as cells expressing Dachs fused to Zyxin,Wts is
destabilized (Cho et al., 2006; Rauskolb et al., 2011). However, how
exactly Fat regulates Wts stability remains unknown. Another model
proposes that Fat regulates Wts activity (Vrabioiu and Struhl, 2015).
Using Fluorescence Resonance Energy Transfer (FRET) based Wts
constructs, the authors showed that Wts remains in a closed inactive
conformation and open active conformation. Mats induces active
open conformation and Dachs reverses or inhibits this switch. Thus,
in absence of Fat, where there is increased amount of Dachs that
localizes to the entire circumference of the cells, it would be expected
to promote close inactive conformation of Wts. However, in elgi
mutants, where Dachs levels are very high but still polarized,Wts can
still remain in active conformation, to restrict growth (Misra and
Irvine, 2019). However, active open conformation of Wts does not
show any apparent planar polarization. While it is possible that
interaction between Dachs andWts could be transient, it remains an
open possibility that Dachs could regulate Wts through a different
mechanism. Fat is also known to regulate Hippo signaling by
affecting expanded stability. However, the exact mechanism by
which it regulates Ex remains unknown. It is important to note
that while Fat can regulateWts throughDachs in wing discs, Dachs is
not expressed in all tissues. For example, Fat regulates Hippo
signaling in the eye in a Dachs independent manner. Thus, Fat
regulates Hippo pathway activity in different tissues through distinct
mechanisms.

To gain insight into the mechanism by which Fat-ICD regulates
Hippo signaling and PCP, several groups have made deletions in

conserved blocks of amino acids and examined their function
(Matakatsu and Blair, 2012; Pan et al., 2013; Zhao et al., 2013).
These studies revealed that there are distinct regions in Fat-ICD that
regulate growth and PCP (Figure 1C). For example, these studies
identified two regions that contribute toward growth regulation. One
region encompassing amino acids 4,975 to 4,993, referred to as the D
region makes a moderate contribution to growth, as mutants lacking
this region are viable and the wings are only 30% overgrown. The D
region is necessary for recruitment of FBXL7, which regulates Dachs
levels and polarity. Another region referred to as H/HM/H2 region
plays a more critical role, as flies lacking this region fail to survive.
Further, fatsum and fat61mutants that harbor mutations in this region
exhibit same phenotype as fat null mutants (Bosch et al., 2014).
Interestingly, this region binds to Vam/Dlish to regulate Dachs.

2.3 Fat and Mitochondria
Fat also regulates metabolism, which influences growth, Hippo
signaling and PCP. Fat cytoplasmic domain contains multiple
mitochondrial targeting signal and is cleaved to produce a
fragment that translocates into the mitochondria and stabilizes
complex I (Sing et al., 2014). fatmutants display reduced amount
of Complex I and switch to glycolytic metabolism. Interestingly,
disrupting components of complex I also causes PCP defects in
the eye suggesting that mitochondrial signals may influence PCP.

2.4 Ds and Hippo Signaling
ds mutants also display overgrowth phenotype by activating Yki,
although the phenotype is not as severe as in fat mutants. This is
presumably because residual amount of Fat is still present in ds
mutants that retains significant amount of ligand independent
activity. Expression of Ds-ICD can also activate Yki and this
could be partly due to recruiting more Dachs through Vam,
which then inhibits Wts activity. In addition, Ds-ICD promotes
growth through a second mechanism by recruiting Riquiqui and
Minibrain DYRK kinase to themembrane which phosphorylates and
inhibits Wts activity (Figure 1A) (Degoutin et al., 2013).

2.5 Fat Signaling in Planar Cell Polarity
Fat and Ds regulate tissue patterning by influencing the core PCP
signaling. Both Ds, Fat and the core PCP proteins localize in an
asymmetric manner creating cellular anisotropies that regulates
PCP (Figure 2A). Ds and Fat asymmetry is established by the
opposing gradients of Ds and Fj. The differential expression of Ds
and Fj in neighboring cells affects their binding properties and
polarizes Ds-bound Fat and Fat-bound Ds to opposite sides.
Development of robust Ds-Fat polarization from slight initial
differences possibly requires one or more type of amplifications.
However, the amplification mechanisms are currently remain
unknown. Once established, the Ds-Fat polarity must be
transduced to polarized cellular structures. Here also Dachs
plays an important role. The gene prickle (pk) provides a
connecting link between core PCP and Fat signaling. pk
encodes Prickle and Spiny-legs (Sple) proteins and the relative
ratio of the two isoforms regulate core PCP polarization relative
to Ds-Fat (Ayukawa et al., 2014; Olofsson et al., 2014). Tissues
with high level of Pk bias the plus end of microtubules towards
low Ds side. In contrast, tissues with high Sple exhibit plus end of
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microtubules biased to high Ds side. This affects core PCP
polarization through transcytosis of Dsh along the
microtubules (Matis et al., 2014; Olofsson et al., 2014). Ds and
Dachs physically interact with Sple and couple the core PCP with
Fat-Ds. Changing the levels of Pk/Sple ratio regulates coupling
and uncoupling between Ft/Ds and core modules (Figure 2B)
(Ayukawa et al., 2014; Ambegaonkar and Irvine, 2015). However,
it remains disputed whether Fat/Ds system instructs the core PCP
pathway in Drosophila abdomen.

Fat and Ds also regulate PCP in a Dachs independent manner.
The transcriptional corepressor Atrophin binds to the
cytoplasmic domain of Fat and regulates PCP in the equatorial
region of the eye (Fanto et al., 2003). However, the exact
transcriptional target of Atrophin that influences PCP remains
unknown. Fat signaling also regulates other forms of cell polarity
such as oriented cell division, oriented cell tensions, and
orientation of larval denticle belts independent of the core
PCP system (Mao et al., 2011b; Donoughe and DiNardo, 2011;
Lawlor et al., 2013).

2.6 Fat Signaling in Junctional Tension
Fat, Ds and Dachs also play an important role in polarization of
adherens junction tension (Mao et al., 2011b). Laser ablation
experiments revealed that fat mutant clones exhibit higher
tension at the clone border abutting the wild type tissue but
show less tension within the clones (Bosveld et al., 2016). Dachs is
necessary for these effect on junctional tension, by directly
accumulating at the clone border and indirectly by decreasing
internal tension due to increase cell proliferation by inhibiting the
Hippo pathway (Bosveld et al., 2012).

3 FAT SIGNALING IN MAMMALS

In contrast to Fat signaling in Drosophila, Fat signaling in
vertebrates has diverged through evolution. The key
downstream components such as Dachs, Vam/Dlish and Ex
are not conserved in mammals (Bossuyt et al., 2014).
Although Fat4 ICD contains conserved blocks of amino acids,
it fails to regulate Hippo and PCP in flies (Pan et al., 2013).
Mutations in Fat4 and DCHS1 are associated with Van
Maldergem and Hennekam syndrome and many cancers
(Mansour et al., 2012; Cappello et al., 2013; Alders et al., 2014;
van der Ven et al., 2017). Mouse knock outs of Fat4 and Dchs1
exhibit developmental defects in kidney, brain, lymphatic and
skeletal systems (Saburi et al., 2008; Mao et al., 2011a; Saburi et al.,
2012; Zakaria et al., 2014; Durst et al., 2015; Kuta et al., 2016;
Crespo-Enriquez et al., 2019). In most cases, loss of Fat-4 leads to
underproliferation and affects the number of neuronal,

nephrogenic and chondrocyte progenitors, their polarity, and
neural migrations. However, the underlying mechanisms are less
well understood. In kidney, Fat4 binds to and modulates RET
receptor tyrosine kinase signaling, so that Fat4 mutants exhibit
excessive RET signaling, leading to abnormal ureteric budding
(Figure 1E) (Zhang et al., 2019). In mouse brain and human
cerebral organoids loss of Fat4 or DCHS1 impacts neuronal
proliferation, differentiation and migration in a YAP/TAZ
independent manner (Cappello et al., 2013; Klaus et al., 2019).
In specific cases, Fat4 and DCHS1 induce cell proliferation in a
YAP/TAZ dependent manner. For example, Fat4 regulates
growth of cardiac tissue by sequestering YAP/TAZ by
interacting with Angiomotin like-1 (Amotl1) (Figure 1E)
(Ragni et al., 2017). Fat4 mutations are also associated with
abnormal cortical development due to increased YAP activity
and neuronal differentiation.

4 CONCLUDING REMARKS

Precise coordination of growth and morphogenesis during
development is critical to formation of optimally functioning
organs, and Fat signaling plays a central role in coordinating these
processes. Although there has been significant progress in our
understanding of this pathway both in Drosophila and mammals
in the last few years, our knowledge of this pathway still remains
rudimentary. It is not completely understood how Fat regulates
Hippo pathway. Further, loss of Fat/Ds in Drosophila and Fat4/
Dchs1 in mice results in altered aspect ratio of the organs. It
remains a challenge to identify the mechanisms by which these
protocadherins regulate organ shape. Further, it will be important
to understand the molecular basis underlying the differences in
signaling output in different tissues. Future studies in Drosophila
and mammals will provide a unified mechanism by which Ds and
Fat coordinate growth and morphogenesis in multiple organs.
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