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NB6-methyladenosine (M6A) RNA methylation is an emerging epigenetic modification in
recent years and epigenetic regulation of the immune response has been demonstrated,
but the potential role of m6A modification in GBM tumor microenvironment (TME) cell
infiltration and stemness remain unknown. The mB6A modification patterns of 310 GBM
samples were comprehensively evaluated based on 21 m6A regulators, and we
systematically correlated these modification patterns with TME cell infiltration
characteristics and stemness characteristics. Construction of m6Ascore to quantify the
m6A modification patterns of individual GBM samples using a principal component
analysis algorithm. We identified two distinct patterns of m6A modification. The
infiltration characteristics of TME cells in these two patterns were highly consistent with
the immunophenotype of the GBM, including the immune activation differentiation pattern
and the immune desert dedifferentiation pattern. We also identified two modes of
regulation of immunity and stemness by m6A methylation. Stromal activation and lack
of effective immune infiltration were observed in the high m6Ascore subtype. Pan-cancer
analysis results illustrate a significant correlation between m6AScore and tumor clinical
outcome, immune infiltration, and stemness. Our work reveals that m6A modifications play
an important role in the development of TME and stemness diversity and complexity.
Patients with a low mBAScore showed significant therapeutic advantages and clinical
benefits. Assessing the m6A maodification pattern of individual tumors will help enhance our
knowledge of TME infiltration and stemness characteristics, contribute to the development
of immunotherapeutic strategies.

Keywords: m6A, methylation, TME, GBM, novel immunotherapy, pan-cancer

1 INTRODUCTION

In recent years, researchers have identified many novel RNA modifications, including 5-
methylcytosine, N1-methyladenosine and N6-methyladenosine (m6A) (Roundtree et al., 2017)
The most prominent example is m6A, which is considered to be the most frequent, common and
conserved internal modification in eukaryotic cells (Zhang et al., 2020). m6A is involved in regulating
gene expression by affecting transcriptional stability (Geula et al., 2015), processing (Ma et al., 2017),
splicing (Dominissini et al., 2012), cap-independent translation and translation efficiency (Boccaletto
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et al, 2018), in addition to promoting cRNA translation
(Roignant and Soller, 2017). The m6A modification is a
dynamic and reversible process whose function is regulated by
binding proteins, demethylases and methyltransferases, namely
the readers, erasers and writers of m6A (Yang et al., 2018). They
play different functions, the reader mainly affects the recognition
process, the eraser affects the consumption, and the writer affects
the accumulation. Some m6A regulators (Ms) have been shown to
affect multiple biological functions in vivo (Qin et al., 2020). In
addition, abnormal expression of some Ms was also suggested to
be associated with tumorigenesis, progression, abnormal immune
regulation and impaired self-renewal ability (Tang et al., 2020).
Glioblastoma multiforme (GBM) is the most common and
most aggressive malignant tumor of the central nervous system in
adults (Pan et al., 2021b). Nowadays, in the treatment of GBM,
the technique of resection, radiation therapy, and
chemotherapeutic drugs have made progress, but survival has
not been significantly prolonged (Yu et al., 2020). People who
have GBM exhibit complex immune dysfunction states, involving
multiple mechanisms of local, regional, and systemic
immunosuppression and tolerance, immunotherapy has
become a new therapeutic approach for GBM. As a current
highly promising RNA modification, m6A methylation has
been experimentally confirmed to play a key role in the
development of various cancers (Vu et al, 2017), while the
study of m6A methylation provides a new perspective for
GBM treatment. m6A modifications have been shown to
potentially affect the formation of a variety of peripheral
tumor microenvironments (TME), be involved in cancer stem
cells (CSCs) generation and maintenance, the control of cancer
progression, and treatment resistance (Ma and Ji, 2020). Previous
studies have confirmed that GBM is more heterogeneous than
other peripheral tumors, suggesting that multiple factors may
influence developmental plasticity and immune checkpoint
blockade therapy in GBM, possibly including the TME, RNA
modifications, and stem cell phenotype (Malta et al., 2019).
Immunotherapies represented by anti-PD-1 and PD-L1 are
currently showing impressive clinical efficacy in a small group of
patients. It has been shown that the eraser FTO acts as an m6A
demethylase to promote melanoma tumorigenesis and induce
resistance of tumor cells to anti-PD-1 therapy, and moreover, the
combination of FTO inhibition and anti-PD-1 blockade may
synergistically reduce melanoma resistance to immunotherapy
(Yang et al, 2019). Another study confirmed that METTL3 and
METTL14 significantly promote human GSC growth and
tumorigenesis, and that overexpression of METTL3 or inhibition
of FTO inhibits GSC self-renewal and growth (Cui et al,, 2017). There
is also an interaction between Ms, with knockdown of FTO
increasing m6A methylation in key pro-tumor cell-intrinsic genes
including PD-1, SOX10 and CXCR4, resulting in increased RNA
decay through the reader YTHDF2 (Yang et al, 2019). The
relationship between some Ms and oncogenic pathways has also
been explained (Li et al., 2017). In addition, as an important part of
cancer research, several recent studies have revealed a specific
association between m6A modifications and TME-infiltrating
immune cells (ICs). For example, YTHDF1 increased the
translation efficiency of lysosomal cathepsins in dendritic cells
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(DCs), and inhibition of YTHDF1 improved the therapeutic effect
of anti-PD-L1. m6A of the METTL3-mediated TLR4, CD80, and
CD40 signaling adaptor Tirap transcripts increased their translation
in DCs, thereby stimulating T cell activation and enhancing TLR4/
NF-kB signaling-induced cytokine production (Wang et al., 2019).
Cancer formation is the result of multiple genes acting together, and
previous studies have been limited to one or two Ms and cell types.
Thus, it is very necessary to conduct a comprehensive analysis of the
expression of all Ms in GBM, including TME ICs infiltration,
stemness, and novel immunotherapy, which will provide new
theoretical support for subsequent biological studies.

In our study, we collected genes from two databases, TCGA-GBM
and CGGA-GBM, to analyze m6A modification patterns and finally
determined the molecular, immunological and stemness
characteristics of GBM cells with different m6A modification
patterns, respectively. Here we identified two different m6A
modification  patterns for the immune activation/desert
dedifferentiation phenotype. With the aim of comparing
individual differences in different modifications, we designed the
m6AScore system with reference to a previous study. This system was
subsequently shown to be closely associated with the prognostic and
molecular characteristics of GBM. Moreover, our m6AScore system
could predict patient response to novel immunotherapies, and we
subsequently further validated the correlation of m6AScore with ICs
infiltration and novel immunotherapies in a pan-cancer analysis.

2 MATERIALS AND METHODS

2.1 GBM Dataset Source and Preprocessing
Supplementary Figure S1A showed the flow chart of our whole
study. The GBM data were derived from two datasets, TCGA-
GBM (https://portal.gdc.cancer.gov/) and CGGA-GBM (http://
www.cgga.org.cn/). We also collected healthy human data from
the Genotype-Tissue Expression (GTEx) database (http://
commonfund.nih.gov/GTEx/). 154 methylation data from the
Xena repository (https://xena.ucsc.edu/). The dataset used for
copy number variation (CNV) analysis was also downloaded
from the UCSC Xena browser (https://xenabrowser.net). All of
our data were analyzed with the R (version 3.6.1) and R
Bioconductor packages.

2.2 Unsupervised Clustering of 21 Ms

By reviewing the literature (Chen et al., 2019; Pan et al., 2021a)
and extracting from the datasets, we selected a total of 21 widely
accepted and reported Ms. The 21 selected Ms include 11 readers
(YTHDF1, YTHDE2, YTHDEFE3, YTHDCI, YTHDC2, IGF2BP1,
HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1), 8 writers
(METTL3, METTL14, WTAP, RBM15, RBM15B, ZC3HI3,
CBLL1, ZC3H13) and two erasers (ALKBHS5, FTO).

2.3 Bioinformatic Analysis: Gene Set
Variation Analysis and Gene Ontology

Annotation
We used ConsensusClusterPlus of the R package to divide
TCGA-GBM and CGGA-GBM patients into two clusters each.
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Principal component analysis (PCA) in each cluster was
performed to observe the distribution of gene expression.
Differential analysis was performed for each gene in the pre-
classified samples using the limma package and the DESeq2
package in R, respectively, and the intersection of the results
of the two packages was taken as the differentially expressed genes
(DEGsS).

Variation in biological processes (BP) between different m6A
modification patterns was investigated using Gene Set Variation
Analysis (GSVA) analysis. Upregulated DEGs analysis was
performed by Gene Ontology (GO) functional analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis. The functions associated with different
GBM clusters were studied by Gene Set Enrichment Analysis
(GSEA).

2.4 Estimation of Tumor Microenvironment
Cell Infiltration

We used the single-sample gene set enrichment analysis
(ssGSEA) algorithm to quantify the relative abundance of each
cell infiltrate in the GBM TME. By calculating the enrichment
score we can know the relative abundance of TME infiltrated cells
in the relative samples, where the minimum value was 0
(Supplementary Table S1). And we classified the immune
cells according to their cell functions, the pro-tumor immune
cells and immunosuppressive cells include: pDC, Neutrophil,
CD56dimNK, TAM, imDC, Th2, MDSC, and Treg; the anti-
tumor immune cells include: NKT, TemCD4, TemCDS8, ActCD4,
ActCD8, Thi, Th17, ActDC, TcmCD4, TcmCD8, CD56briNK,
and NK. In addition, we used 29 immune signatures to detect
immunophenotypes  (Supplementary Table S2). The
deconvolution method CIBERSORT (http://cibersort.stanford.
edu/) was used to estimate the abundance of 22 different
leukocyte subsets with GBM gene expression profiles. To
investigate the association between m6A gene features and
some related biological pathways, we collected gene sets
storing genes associated with a number of BP (Supplementary
Table $3) (Subramanian et al., 2005), and 10 sets of oncogenic
pathway gene sets (Supplementary Table S4) (Sanchez-Vega
et al.,, 2019).

2.5 Identification of Hub Genes Between
m6A Different Clusters

Weighted co-expression network analysis of DEGs between the
two clusters in the TCGA-GBM cohort was performed using
weighted correlation network analysis (WGCNA) package in R to
further identify stemness and immunophenotype-related genes.
Based on the characterization indices, mRNAsi, ESTIMATE
score and mDNAsi and were defined as interesting phenotypes
for further studies. To further explore the relationship between
each module Eigengenes and the clinical parameters,
hypergeometric tests were used to design the overlap between
the parameters and the combined modules, and the correlation
between the parameters and the module Eigengenes expression
pattern was used as gene significance (GS).

The mBA Regulators in GBM

2.6 Construction of a Scoring System That
Can Quantify m6A Gene Signature

In order to quantify the m6A modification patterns of individual
tumors and assess their impact on sensitivity to different
treatments, we constructed a scoring system, called m6Ascore.
The procedures for building m6AScore are as follows:

The DEGs identified from two clusters of the TCGA-GBM
cohort were normalized and the crossover genes between the two
clusters were extracted, the procedure was repeated in the CGGA-
GBM cohort, and finally, the overlapping genes of the two
crossover results were extracted. Prognostic analysis was
performed for each gene in the signature using a univariate
Cox regression model, and genes with prognostic significance
were extracted for final analysis. And then we performed PCA to
construct an me6A-associated gene signature, and principal
components 1 and 2 were both selected as feature scores.
With the principal component results, we used a method
similar to the gene expression grade index (Sotiriou et al,
2006) formula to construct the m6Ascore:

mé6Ascore = [Z(PClg + PCZg) - X]/SD

g indicates the expression of m6A phenotype-related genes. X
indicates the average of PClg + PC2g values of all samples in the
cohort. SD indicates standard deviation.

2.7 Assessment and Validation of the Ability
of the m6A Scoring System to Reflect
Treatment Sensitivity in Different Malignant

Tumors

To analyze the association of m6AScore with immunotherapy, we
collected three cohorts of patients with metastatic melanoma
treated with anti-PD-1 therapy (Hugo et al., 2016), patients with
metastatic uroepithelial cancer treated with anti-PD-L1 therapy
(Mariathasan et al., 2018), patients with GBM treated with anti-
PD-1 therapy (Lee et al,, 2021) (Cloughesy et al, 2019). To
investigate the differences in the extent to which m6A
modifications affect immunity and stemness, immune markers
and typical BP were introduced to compare the potential
mechanisms of the different clusters. We wused the
TCGAmutations package in R to calculate the TMB.

2.8 Statistical Analysis

All statistical analyses in our study were generated by R (version
3.6.1). For comparisons between two groups, the chi-square test
was used, and for comparisons among three or more groups, one-
way ANOVA and the Kruskal-Wallis test were used as
parametric and non-parametric methods, respectively.
Spearman and distance correlation analyses were performed to
calculate correlation coefficients between sample phenotypes and
expression of Ms and mé6AScores. Survival curves for all
prognostic analyses in this study were performed by the
Kaplan-Meier method, and the significance of differences was
determined using the log-rank test. hazard ratios for m6A
phenotype-associated genes and Ms were calculated by the
univariate Cox regression model, and the remaining
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FIGURE 1 | The landscape of genetic variation of m6A regulators in GBM. (A) Reversible and dynamic processes of m6A RNA methylation mediated by 21
regulators and their potential biological functions for RNA. (B) Heatmaps of expression levels of 21 m6A RNA methylation regulators. Pink represents GBM samples,
green represents normal samples. (C) A summary of protein-protein interactions between 21 m6A regulators. The lines linking regulators showed their interactions, the
circle size represented the connection strength of each node. Erasers were labeled as pink dots in the circle; writers were labeled as green dots in the circle; readers
were labeled as blue dots in the circle. (D) The location of CNV alteration of 21 m6A regulators on 23 chromosomes. The red dot in the outer ring indicates amplification,
while the blue dot in the inner ring indicates deletion. (E) Heatmaps of expression levels of 21 m6A RNA methylation regulators from 423 samples. Pink represents

(Continued)
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FIGURE 1 | recurrent samples, green represents primary samples, columns represent samples, rows represent regulators. (F) Spearman correlation analysis of the
studied mBA modification regulators. (G) The expression of mBA regulators between normal tissues and GBM tissues in the CGGA-GBM cohort. (H) The expression of
mMBA regulators between normal tissues and GBM tissues in the TCGA-GBM cohort. (I) The expression of m6A regulators between IDH molecular subtypes. (J) The
expression of MBA regulators between 1p/19q subtypes. The upper and lower ends of the boxes represented an interquartile range of values. The lines in the boxes
represented the median value, and the dots showed outliers. The asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; **p < 0.001, ns, no significant).

independent prognostic factors were determined by multivariate
Cox regression models. The standardization method used to
normalize the multi-omics data is the scale function in R. The
forestplot package in R was used to visualize the results of
univarijate and multivariate prognostic analyses of m6AScores
and other clinical parameters.

3 RESULTS

3.1 The Landscape of Genetic Variation of
21 m6A Regulators in GBM

We summarize the dynamic reversible process of these m6A
RNA methylations mediated by Ms, including the
identification, addition and removal of m6A modification
sites, and their biological functions on RNA (Figure 1A).
We evaluated the association between the Ms and the clinical
molecular phenotype of GBM, and Figure 1B revealed that the
methylation levels of Ms were different between GBM and
normal tissues. We used the Ms network to paint a
comprehensive landscape of Ms interactions and regulator
connections (Figure 1C). We identified that not only Ms in
the same category showed a significant correlation in
expression, but also Ms in different categories showed a
significant correlation with each other. METTL3 and
METTL14 were the hub nodes of the m6A writers, and the
hub node of the reader was HNRNPA2BI1. Recently, He et al.
(He et al., 2021) demonstrated that METTL3 regulates tumor
growth by cooperating with YTHDF2. This is to some extent a
validation of our prediction. We labeled the locations of Ms
showing amplification or deletion of individual regulators and
compared the differences in CNV of individual Ms in normal
and GBM tissues and found significant differences in 4 Ms,
and these results suggested that the CNV status of these 4 Ms
correlates with the development of GBM (Figure 1D). Further
correlation analysis of regulator co-expression revealed
significant correlations between YTHDCI, KIAA1429,
HNRNPA2BI1 and multiple Ms, with the highest correlation
coefficient between YTHDCI and HNRNPA2B1 (0.91)
(Figure 1E). We further evaluated the difference in
expression of methylation levels of Ms between primary
and recurrent GBM tissues (Figure 1F). In addition, we
analyzed the relationship between writers, readers and
erasers. There were significant differences in the expression
values of 17 and 12 Ms in the high versus low FTO expression
group, and 17 and 15 Ms in the high versus low ALKBH5
group, respectively (Supplementary Figures S1D-G,
S2A-D).

The correlation between the molecular characteristics of GBM
and the expression patterns of Ms was next investigated. The
difference in Ms expression in normal versus GBM tissues
showed statistical significance (Figures 1G,H). Although Ms’
expression showed differences between primary and recurrent
GBM, this difference was not statistically significant
(Supplementary Figures S1B,C). In addition, we found that
the expression values of most of the Ms were significantly
different in the groups based on molecular subtype
classification (Figure 1I), 1pl9q classification (Figure 1J),
TCGA-GBM subtypes (Supplementary Figure S3).

To analyze the prognostic value of Ms in the GBM cohort, we
used Cox proportional hazards regression analyses employing
univariate and multivariate models. The results showed that five
moderators were significantly associated with overall survival
(OS) in the univariate model and four moderators were
significantly associated with OS in the multivariate model
(Supplementary Figures S2E,F). We also investigated the
correlation between the expression values of Ms and the
composition of ICs and immune signatures (Supplementary
Figures S2G,H). ALKBH5, WTAP, RBM15B, FTO, YTHDF1,
YTHDEF2, YTHDEF3, LRPPRC, and ELAVL1 were significantly
and positively correlated with immune signatures and ICs
composition.

3.2 Identification of Two Clusters of GBM

Samples

We then extracted GBM samples with complete clinical
parameters from the TCGA-GBM and CGGA-GBM cohorts
separately for subsequent consensus clustering analysis. From
the sample size of both cohorts, when k = 3, unbalanced
distributions were observed in all three subgroups of the
CGGA-GBM (Supplementary Figure S4A) and TCGA-GBM
(Supplementary Figure S4B) cohorts. By combining the relative
changes in the area under the consensus clustering cumulative
distribution function (CDF) curve for k = 2-10 (Supplementary
Figures S4C,D), and the changes in the CDF (Figures 2A,B), we
concluded that k = 2 (Figures 2C,D) was the best choice for
expressing similarity based on the m6A regulator. Next, the GBM
samples were pre-classified into two groups by consensus
clustering analysis (Supplementary Tables S5, S6). Our results
from PCA of the two clusters demonstrated a significant
difference in transcriptional profiles between the CL1 and CL2
groups (Figures 2E,G). Based on the significant differences in
PCA analysis, we further analyzed the differences in Ms
expression between the two clusters, and the results
demonstrated that the expression values of most of the Ms
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CGGA-GBM cohort (P), MTORC1 signaling in CGGA-GBM cohort (Q).

FIGURE 3| expression in the CL2 subgroup were enriched for hallmarks of malignant tumors, Angiogenesis in TCGA-GBM cohort (G), DNA repair in TCGA-GBM cohort
(H), Coagulation in TCGA-GBM cohort (1), IL6-JAK-STATS signaling in TCGA-GBM cohort (J), Kras signaling in TCGA-GBM cohort (K), PI3k-AKT-MTOR signaling in
TCGA-GBM cohort (L), TGFp in TCGA-GBM cohort (M), Apoptosis in CGGA-GBM cohort (N), G2M-Checkpoint in CGGA-GBM cohort (0), Inflammatory response in

presented significant differences between CL1 and CL2 groups
(Figures 2F,H). Survival curves from K-M survival analysis for
the CL1 and CL2 subgroups showed significantly lower OS in the
CL2 compared to the CL1 subgroup (Figures 2L]J). The
proportions of DNA methylation subtypes, molecular
subtypes, and TCGA subtypes in the CL1 and CL2 subgroups
are shown in Figure 2M; Supplementary Figures S4E,F. We can
see that the samples with IDH mutation, classical or
mesenchymal subtypes are mainly distributed in the CL2
group. This result was consistent with the report that classical
and mesenchymal have a worse prognosis than neural and proto-
neural (He et al., 2021). The results of the above study confirmed
that consensus clustering results were closely related to the
prognosis of GBM.

3.3 Annotation of Classification Functions
Determined by Consensus Clustering

Analysis

To further understand the mechanisms by which the Ms affect
GBM progression, we investigated DEGs between CL1 and CL2
subgroups. By differential analysis, a total of 1,000 genes were
identified as DEGs in the TCGA-GBM cohort (Figure 3C) and
3,948 genes were identified as DEGs in the CGGA-GBM cohort
(Figure 3D). To investigate the potential functions of DEGs, we
performed KEGG pathway analysis and GO functional analysis
on 634 and 1,576 significantly upregulated genes in the CL2
subgroups of TCGA-GBM (Figures 3A,B; Supplementary Table
§7) and CGGA-GBM (Supplementary Figures S4G,H;
Supplementary Table S8), respectively. The top 10 GO terms
for TCGA-GBM indicated that upregulated genes were enriched
in neutrophil activation, neutrophil activation involved in
immune response, translational initiation, mRNA catabolic
process, gliogenesis, response to hypoxia, I-kB kinase/NF-x B
signaling, regulation of mitotic cell cycle phase transition,
response to transforming growth factor B. The top 10 GO
terms for TCGA-GBM and CGGA-GBM (Figures 3E,F)
indicated that upregulated genes were enriched in malignancy
associated processes, including neutrophil activation, neutrophil-
mediated immunity, translational initiation, mRNA and RNA
catabolic process, cell proliferation, cell-substrate adhesion,
response to hypoxia, response to transforming growth factor
and I-xB kinase/NF-k B signaling.

Meanwhile, our GSEA analysis showed that the malignant
hallmarks of tumors, including Angiogenesis, DNA repair,
Coagulation, IL-6/JAK/STAT3 signaling, KRAS signaling,
PI3K/AKT/MTOR signaling, TGFp signaling were significantly
related to the CL2 subgroup in TCGA-GBM cohort (Figures
3G-M). In the analysis of the CGGA-GBM cohort, CL2 subgroup
was statistically significant associated with the following markers

in addition to the above malignant hallmarks of tumors
(Supplementary Figures S4I-0), including Apoptosis, G2M
checkpoint, Infammatory response, MTORCI signaling
(Figures 3N-Q).

3.4 TME Immune Cell Infiltration
Characteristics in Distinct m6A

Modification Patterns

Furthermore, in immune signatures’ analyses, the CL2
subgroup was downregulated compared to the CL1 subgroup
in both pro- and anti-tumor immune signatures (Figures 4A,B;
Supplementary Table S9), suggesting that the effect of this
modification pattern on tumor immunity is bidirectional. In
the study of ICs enrichment in both clusters, we found that the
CL1 subgroup exhibited an enrichment advantage for almost all
ICs relative to the CL2 subgroup (Figure 4C; Supplementary
Figure S4P; Supplementary Table S9), which may be related to
the fact that patients in the CL1 subgroup presented a
significant survival advantage. We then divided ICs into two
main categories including pro- and anti-tumor ICs and
compared their relevance. We first investigated the
correlation between pro- and anti-tumor ICs in the overall
sample (Figure 4D), the CL1 subgroup (Figure 4E) and the
CL2 subgroup (Figure 4F) of the TCGA-GBM cohort, and
found that the CL1 subgroup had higher anti-tumor immunity,
while the CL2 subgroup showed more tumor immune-
promoting effects. The results from CGGA-GBM cohort
(Supplementary Figures S5A-C) also confirmed it. To
further understand the effect of different modification
patterns on TME, we analyzed the expression differences of
typical immune-related genes in the two clusters. In the TCGA-
GBM cohort, a significant increase in the expression of
checkpoint inhibitor-related genes was found in the CL2
group compared to the CL1 group (Figure 4G), while the
expression of major histocompatibility complex (MHC)
(Figure 4H) and stimulator-related genes (Figure 4I) did
not show significant differences. To our surprise, the
expression of inhibitor (Supplementary Figure S5E) and
MHC-related genes (Supplementary Figure S5F) in the
CGGA-GBM cohort was found to be similar to the results of
the TCGA-GBM cohort, but the expression of stimulant-
related genes (Supplementary Figure S5D) showed
significant differences in the two clusters. Accordingly, it is
reasonable to believe that different DNA damage-related
phenotypes in the two clusters may promote or inhibit the
anti-tumor capacity of ICs. In view of this, we simultaneously
examined which BP were enriched for DNA damage and
showed that DNA-related processes, such as Angiogenesis,
cell cycle, DNA replication, mismatch repair and WNT
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FIGURE 4 | Patterns of m6A methylation modification and biological characteristics of each pattern. (A) The enrichment differences of immune signatures between
CL1 and CL2 subgroups in the TCGA-GBM cohort. (B) The enrichment differences of immune signatures between CL1 and CL2 subgroups in the CGGA-GBM cohort.
(C) The enrichment fraction differences of immune cells between CL1 and CL2 subgroups in the TCGA-GBM cohort. (D-F) Correlation of samples between infiltration of
cell types executing pro-tumor, immune-suppressive functions (pDC, Neutrophil, CD56dimNK, TAM, imDC, Th2, MDSC, and Treg) and cell types executing anti-
tumor immunity (NKT, TemCD4, TemCD8, ActCD4, ActCD8, Th1, Th17, ActDC, TcmCD4, TecmCD8, CD56briNK, and NK). (D) All samples in the TCGA-GBM cohort.
(E) CL1 group samples in the TCGA-GBM cohort. (F) CL2 group samples in the TCGA-GBM cohort. (G) Differences in the expression of inhibitor genes in the CL1 and
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p-value (p < 0.05; *p < 0.01; **p < 0.001, ns, no significant).

FIGURE 4 | CL2 subgroups of TCGA-GBM cohort. (H) Differences in the expression of MHC genes in the CL1 and CL2 subgroups of TCGA-GBM cohort. (I) Differences
in the expression of stimulator genes in the CL1 and CL2 subgroups of TCGA-GBM cohort. (J) Kaplan-Meier curves for progression-free survival for two robust clusters
in the TCGA-GBM cohort in the log-rank test. (K) Differences in the expression of m6A regulators in the mRNAsi-high and mRNAsi-low subgroups in TCGA-GBM cohort.
(L) Differences in the expression of m6A regulators in the mDNAsi-high and mDNAsi-low subgroups in TCGA-GBM cohort. The upper and lower ends of the boxes
represented an interquartile range of values. The lines in the boxes represented the median value, and the dots showed outliers. The asterisks represented the statistical

target were significantly increased in the CL2 subgroups
compared to the CL1 subgroups (Supplementary Figures
S4Q,R; Supplementary Table S9).

Another hot topic of research in TME-related studies at GBM
is GBM cancer stem cells (GSCs). Recent studies have confirmed
the effect of m6A modifications on the state transition and drug
resistance of GSCs (Zepecki et al., 2021). As described in the
methods section, we established four stemness indices, including
mRNAsi, mDNAsi, EREG-mRNAsi and EREG-mDNAsi with
reference to the study of Malta et al. (Malta et al., 2019). We then
classified the GBM cohort based on four stemness indices and
investigated the differences in Ms expression in each stemness
index classification group. Figures 4K,L showed that almost Ms
were significantly differentially expressed in the mRNAsi-high
and -low groups as well as the mDNAsi-high and -low groups.
Similar results were also observed between the high and low
groups of EREG-mRNAsi and EREG-mDNAsi (Supplementary
Figures S5G,H). Progression-free survival (PF) was further
analyzed using K-M survival analysis for the CL1 and CL2
subgroups, with the CL1 subgroup being significantly higher
than the CL2 group (Figure 4J). We further investigated the
difference in somatic mutations distribution between the two
clusters, and the tumor TP53 mutational load was higher in the
CL2 subgroup than in the CL1 subgroup, 38 and 20%,
respectively (Supplementary Figures S5LJ). TP53 expression
has been shown to be associated with poorer prognosis in
GBM (Kwok et al., 2017).

In terms of immune characteristics, the CL1 subgroup was the
immune activating differentiated phenotype exhibiting immune
activation and anti-tumor immune infiltration, while CL2 was the
immune desert dedifferentiated phenotype exhibiting immune
suppression and promoting tumor immune infiltration. In
addition, the CL2 subgroup showed dedifferentiation and
DNA damage relative to the CL1 subgroup.

3.5 Identification of Hub Genes and

Functional Annotation

To further pinpoint specific phenotype-associated genes for every
m6A modification pattern, WGCNA was performed to identify
biologically significant modules corresponding to the specified
phenotype-associated genes. The DEGs used to build a scale-free
system were determined by using p < 0.05 and |logFC| > 1 as
cutoff criteria. Supplementary Figures S6A,B showed our scale-
free graph, choosing the most appropriate  valuel2 to convert
the adjacency matrix into a scale-free topology. By combining
modules with correlation coefficients above 0.75, we obtained a
total of 12 modules (Figure 5A). After that we first identified the
module Eigengenes (MEg) represented by the gene expression

patterns in the module and then calculated the correlation with
the specified phenotypes. Figure 5B showed the key modules
associated with specific phenotypes in GBM. The most positively
correlated modules for the mRNAsi, mDNAsi and ESTIMATE
were MEgreen, MEbrown and Meblue, respectively, and the most
negatively correlated modules were MEblue, MEblue, and
Megreen, respectively. We first performed further analysis of
the hub genes of all modules of mRNAsi (Supplementary Figures
S6C-E), ESTIMATE (Supplementary Figures S6F-H), and
mDNAsi  (Supplementary Figures S7A-C) respectively,
further validating our identification of the most positive and
most negative modules. Next, we combined the heat map results
to select the hub genes in the key modules for additional analysis,
and the relevant results were shown in Figures 5C-H.

We then identified a total of 186 immune phenotype-
associated genes and 107 stemness phenotype-associated genes
(Supplementary Table S10). To our surprise, several genes
related to the stemness and immunity phenotype-related genes
were overlapped, suggesting that the regulation of tumor
immunity and stemness by m6A modifications is not
completely independent. Simultaneous GO analysis for genes
associated with the immune phenotype and the stemness
phenotype showed that both enrichment BP were closely
associated with tumor immunity and stemness (Figures 5LJ;
Supplementary Table S11).

We next correlated 186 immune phenotype-associated genes
and 107 stemness phenotype-associated genes with reference to
unsupervised consistent clustering analysis of m6A modification
patterns, and divided the total sample into corresponding
subgroups. By combining the distribution of samples
(Figure 5K; Supplementary Figures S7D-H), relative changes
in the area under the consensus clustering CDF curve for k =2-10
(Figure 5L; Supplementary Figure S7I), and the changes in the
CDF (Figures 5M,N), we concluded that k = 2 was the best choice
(Supplementary Tables S12, S13). K-M analysis showed that
patients clustered in the stemness and immune B group presented
a better prognostic advantage than A group (Figures 50,P). In
addition to this we also investigated the difference in expression
of Ms between immune and stemness subgroup A and B. The
results showed that most of the regulators were significantly
differentially expressed between the groups (Supplementary
Figures S7J,K).

We next further explored potential trait characteristics
associated with both regulatory modes of immunity and
stemness, first comparing differences in BP and immune
signatures typical of each subgroup. The results showed that
the Stemness B subgroup exhibited strong enrichment of cell
cycle, DNA damage repair, FGFR3-related genes, DNA
replication, mismatch repair and WNT target signaling, while
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FIGURE 5 | Functional annotation of the immunity phenotype-related genes of the biological processes. (J) GO Functional annotation of the stemness phenotype-
related genes of the biological processes. (K-M) Consensus clustering analysis based on the 159 immune phenotype-related genes, (K) consensus clustering matrix for
k =2, (L) the relative change in area under the CDF curve for k = 2-10, (M) consensus clustering CDF for k = 2-10. (N) Consensus clustering analysis based on the 159
stemness phenotype-related genes, consensus clustering CDF for k = 2-10. (O) Kaplan-Meier curves for two stemness clusters in the Log-rank test. (P) Kaplan-Meier
curves for two immunity clusters in the Log-rank test. (Q) The enrichment of typical biological processes between the two stemness clusters. (R) The enrichment of
typical biological processes between the two immunity clusters. (8) The expression of inhibitor genes among Immunity clusters. (T) The expression of inhibitor genes
among stemness clusters. The asterisks represented the statistical p-value ("p < 0.05; **p < 0.01; **p < 0.001, ns, no significant).

the A subgroup exhibited strong EMT, immune checkpoint and
pan-fibroblast TGFP response signaling pathways (Figure 5Q).
Further exploration of the expression of stemness markers
between the groups revealed significant differences
(Supplementary Figure S7L). In immune groups showed
similar patterns of BP enrichment, with immune B subgroup
characterized by enrichment of gene-related pathways and A
subgroup by enrichment of immune-related pathways
(Figure 5R). ICs infiltration was further investigated between
the subgroups, and it was found that A subgroup showed a
massive infiltration of ICs, including both pro- and anti-tumor
cells (Supplementary Figure S8A), and the same results were
found in the stemness A subgroup (Supplementary Figure S8B).
We further analyzed the expression of typical immune-related
genes in different immunity modification pattern groups and
found that the expression of most checkpoint inhibitor (Figures
5S,T), MHC-related genes (Supplementary Figures S8C,D) and
stimulation (Supplementary Figures S8E,F) were significantly
increased in the immune and stemness B group. Unlike
previously, MHC features representing the intensity of antigen
presentation showed a significant predominance in the immune
and stemnes B subgroups, suggesting that antigen presentation is
involved in the immune and stemness regulatory processes in the
immune and stemness B subgroups. We also summarized the
differences in regulator expression between all subgroups using
heat maps (Supplementary Figure S9A).

3.6 The Role of m6A Modification Pattern in

GBM Prognosis

We obtained the DEGs and constructed m6AScore
(Supplementary Table S14). The samples were divided into
m6AScore high group and m6AScore low group by using the
median of m6AScore as the cut-off value, respectively. We
assessed cancer survival between high and low m6AScore
groups in different molecular subtypes, different methylation
status, 1p19q codeletion, different m6A modification patterns,
and TCGA-GBM subtypes using K-M analysis. K-M analysis
showed the best survival advantage in the IDH-Mutant-
m6AScore low group and the worst overall survival in the
IDH-WT-m6AScore high group (Supplementary Figures S9B,
S10A), the MGMT-methylated-m6AScore low group had the
highest OS and the MGMT-unmethylated-m6AScore high group
had the worst OS (Supplementary Figures S9C, S10B). The
significant survival advantage of the m6AScore low group over
the high group was also observed in the subsequent study of
1p19q (Supplementary Figures S9D, S10C) and m6A
modification patterns (Supplementary Figures S9E, S10D). In

addition, mesenchymal, neural and proto-neural subtype samples
with low m6AScore had survival benefits, while classical subtype
hadn’t (Supplementary Figures S10E-H). We performed
another separate K-M analysis with the only m6AScore and
the results still showed that the OS of the m6AScore low
group was significantly higher than that of the high group
(Supplementary Figure S9F). Meanwhile m6AScore had a p
value below 0.05 (HR > 1) in both univariate and multivariate
models (Figures 6A,B).

We next explored the mechanisms underlying the prognostic
impact of the m6AScore on GBM. First, we analyzed the difference
in expression of Ms between the m6AScore high and low groups
overall samples, and the results showed that almost Ms were
significantly different in expression between the groups
(Supplementary Figure S9G). Next, we tested the uniqueness
of various m6AScore clusters. We found a higher m6AScore in
mesenchymal GBM than in other types, matching the fact that
mesenchymal GBM is more malignant than other types of GBM
(Hernandez-Vega et al., 2020) (Supplementary Figure S10I).
Differences in m6AScore were also observed in the immune
and stemness clusters, with higher m6AScore in immune and
stemness group B than in immune and stemness group B,
respectively, which is consistent with the fact that their group
B have a worse prognosis (Supplementary Figures S10J,K). We
analyzed the differences in ICs infiltration and typical BP between
the high and low m6AScore groups and found that most of the
infiltrating ICs were significantly enriched in the m6AScore high
group (Supplementary Figures S10N,0). But the two cohorts did
not show consistent changes in the enrichment of BP
(Supplementary  Figures SI10L,M). We analyzed the
enrichment of 10 classical oncogenic pathways (McCubrey
et al, 2016) in the high and low m6AScore groups and found
that basically all oncogenic pathways were significantly enriched
in the high m6AScore group (Supplementary Figure S9H).
Correlation analysis of pro- and anti-tumor ICs in the high
and low m6AScore groups revealed that pro- and anti-tumor
ICs were significantly and positively correlated in all groups, with a
greater slope in the low m6AScore group than in the high group,
indicating a relatively larger proportion of pro-tumor ICs in the
low group (Supplementary Figures S9LJ). Therefore, the tumor
immunogenicity difference between the high and low m6AScore
groups was significant. We then analyzed the differences in the
distribution of somatic mutations between the low and high
m6Ascore using the maftools package, and found that
mutations in the high mé6Ascore group were significantly
higher than those in the low group, for example, TP53 was
41% in the high m6Ascore group and 28% in the low group
(Supplementary Figures S9K,L).
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0.001, ns, no significant).

FIGURE 6 | IMvigor210CoreBiologies cohort. (H) Patients receiving anti-PD-L1 immunotherapy were analyzed for survival, stratified by m6AScore and neoantigen load
using Kaplan-Meier curves. NEO, neoantigen burden (Log-rank test). (l) Differences in 10 oncogenic pathways between low-mBAScore and high-mBAScore subgroups
in the IMvigor210CoreBiologies cohort. (J) Differences in five biological pathways between low-mBAScore and high-mBAScore subgroups in the IMvigor210Cor-
eBiologies cohort. (K) The proportion of patients in the GSE78220 (PD-1) cohort with clinical response in low-mBAScore or high-mBAScore subgroups. (L) Survival
analyses for the low-m6AScore and high-m6AScore subgroups in the GSE78220 (PD-1) cohort using Kaplan—Meier in Log-rank test. (M-P) Radar chart of the
correlation between m6AScore and tumor mutation burden (TMB) (M), MSI (N) and PD-L1 expression value (CD274) (0), (CD8A) (P). (Q) Correlations between the
m6AScore and immune cell fractions for each cancer type (Pearson test). A total of 54 gene sets representing distinct immune cell populations was selected, and the
sSGSEA scores of each were calculated across 11014 samples in the pan-cancer cohort. The upper and lower ends of the boxes represented an interquartile range of
values. The lines in the boxes represented the median value, and the dots showed outliers. The asterisks represented the statistical p-value (*p < 0.05; “*p < 0.01; **p <

3.7 m6AScore in the Role of anti-PD-1/L1

Immunotherapy

Responsible for cancer immune escape, the PD-1/PD-L1 axis
suppresses the immune response and promotes self-tolerance,
making a huge impact on cancer treatment (Salmaninejad et al.,
2020). Since our our m6AScore system was associated with
numerous biomarkers, we decided to study the response of
m6AScore to anti-PD-1/PD-L1 therapies and thus identify
biomarkers that are sensitive to immunotherapy. We first
investigated Ms expression between conventional adjuvant
therapy and anti-PD-L1  therapy (IMvigor210), but
regulators were not differentially expressed between the two
groups (Supplementary Figure S11A). Therefore, novel
immunotherapies do not alter the expression of Ms, but this
does not mean that the m6AScore does not reflect the
sensitivity of immunotherapy. First, we extracted data from
three cohorts involving anti-PD-L1 (IMvigor210, urothelial
cancer), anti-PD-1 (GSE78220, melanomas) and anti-PD-1
(GSE154795, GSE121810, GBM) immunotherapies,
respectively. The drugs involved in the two cohorts were
Atezolizumab (anti-PD-L1) and pembrolizumab (anti-PD-1)
(Nusrat, 2020), respectively. The m6AScore of the samples of
patients treated with anti-PD-L1 was calculated and then
subjected to K-M survival analysis, which showed a
significant survival advantage for the low m6AScore group
over the high group (Figure 6C; Supplementary Table S15).
We further analyzed the difference of m6AScore in the sample
of patients with urothelial cancer responding to anti-PD-L1
therapy and found that the m6AScore in the response group
(CR and PR) was lower than that in the disease group (SD and
PD), with a statistically significant difference, indicating that
our m6AScore could reflect the sensitivity of patients to anti-
PD-L1 therapy (Figure 6D). Moreover, the low m6AScore
group was mainly composed of patients from the response
group (Figure 6E). We next classified the samples according to
the three immunophenotypes and calculated the respective
m6AScore, and we found that the immune inflamed
phenotype had the lowest m6AScore among the three
groups (Figure 6F). This result is consistent with previous
reports that inflamed cancers are the most responsive to
checkpoint blockade among the three immune phenotypes
(Hegde al,, 2016). Moreover, we found that the
correlation study of m6AScore and PD-L1 expression on
tumor cells (TC) revealed a significant correlation, with TC1
having the lowest m6AScore (Figure 6G). We further

et

investigated the relationship between m6AScore and the
number of mutations and showed a negative correlation
(Supplementary Figure S11B). Neoantigens are important
targets of T cell-mediated antitumor immunity, and tumor
neoantigen burden (TNB) can be a direct molecular marker of
immunotherapeutic response (Ott et al., 2020), which we used
to analyze the survival benefit among patients with m6AScores.
K-M analysis showed a negative correlation between m6AScore
and TNB, patients with low m6AScore and high TNB having
the best survival advantage, while patients with high m6AScore
and low TNB had the lowest survival rate (Figure 6H). Finally,
we analyzed the enrichment of 10 typical oncogenic pathways
and five BP and found that most pathways were highly enriched
in the m6AScore-high group (Figures 6I,J; Supplementary
Table S16).

In the study of the anti-PD-L1 treatment cohort, it was
demonstrated that our m6AScore not only reflects the
sensitivity of patients to anti-PD-L1 treatment, but also
correlates with the progression of cancer. We next revalidated
it in the anti-PD-1 treatment cohort. Similar results were
obtained for the response group (CR and PR) and the disease
group (PD) (Figure 6K; Supplementary Table S17). Response
group samples were also mainly distributed in the low m6AScore
group. K-M survival analysis also showed a significant survival
advantage for the low m6AScore group (Figure 6L). However, in
the analysis of the 10 classical oncogenic pathways, there was no
uniform trend between the low and high m6AScore groups,
although they showed significant differences (Supplementary
Figure S11C), and we considered that it might be an effect of
the small sample size. The study of five classical BP got similar
results to the anti-PD-L1 treatment cohort, all enriched in the
high m6AScore group (Supplementary Figure S11D;
Supplementary Table S18).

In the study of the patients with GBM by anti-PD-1 therapy, it
also got similar results. Our m6AScore correlates with the
progression of GBM. In the analysis of the 10 classical
oncogenic pathways, nine of them were enriched in the high
m6AScore group (Supplementary Figure S11E). In the study of
five classical BP, all of them were enriched in the high m6AScore
group (Supplementary Figure S11F). Interestingly, we found
that almost all anti-tumor ICswere enriched in the low m6AScore
group, nearly all pro-tumor ICs were enriched in the high
m6AScore group (Supplementary Figure S11G). We also
produced heat maps on each trait based on the m6AScore,
showing that different traits were clustered differently in the
high and low m6AScore groups (Supplementary Figure S11H).
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3.8 Expression of Ms in Pan-Cancer and the
Utility of m6AScore Across Tumor Types

We first analyzed the expression levels of Ms in the pan-cancer
cohort and the results were presented as a heat map
(Supplementary Figure S12A). HNRNPA2B1, HNRNPC,
LRPPRC, ALKBH5 showed high expression in almost all
cancers. Further analysis of the expression differences of 21 Ms
between normal and tumor tissues in the pan-cancer database
showed that almost all of them were significantly differentially
expressed between normal and tumor tissues (Supplementary
Figure S12B). CD274 and CD8A (Supplementary Figures
S$12C,D) showed a broader positive correlation with Ms than
GZMA and PRFI1 (Supplementary Figures S13A,B) with Ms.
CD274 and CD8A can reflect PD-L1 and PD-1 expression values,
suggesting that Ms are associated with novel immunotherapy for
some cancers.

We have demonstrated a link between mé6AScore and
immunotherapeutic response, and we now further analyze the
potential applications of the m6AScore system in different
cancers. We first analyzed the association of Ms and
m6AScore in different cancers, and the results showed that Ms
and m6AScore were significantly associated in each cancer type in
the pan-cancer database (Supplementary Figure S$13C;
Supplementary Table S19). We used cox proportional risk
regression employing a univariate model to analyze the
association between the m6AScore and the prognosis of each
cancer. The results showed that m6AScore was a significant
prognostic risk factor for most cancers, and we selected the
TOP 10 displays in order of p value (Supplementary Figures
S13D,E). The main clinically validated biomarkers reflecting the
response to checkpoint blockade immunotherapy include: MSI,
TMB, and inflammatory cell infiltration in TME (Razvan et al,,
2018). The radar plot of the marker TMB showed a significant
correlation between m6AScore and TMB for 15 of the 33 cancers
(Figure 6M). Correlation analysis between markers MSI and
m6AScore revealed a significant correlation for 26 of 33 cancers
(Figure 6N). We also analyzed the correlation between PD-L1
and PD-1 expression values and m6AScore, and the results
showed that 23 out of 33 cancers had a significant correlation
between m6AScore and CD274 (Figure 60); 20 out of 33 cancers
had a significant correlation between mé6AScore and CD8A
(Figure 6P). Over the course of the entire checkpoint
blockade immunotherapy marker analysis, trends were not
uniform across cancers in the correlation of markers with
m6AScore, with positive and negative correlations. This
precisely demonstrated the reasonable and accurate design of
our m6AScore system. Since each cancer is distinct in terms of
immune infiltration of TME, different ICs and BP may be
involved. Finally, we analyzed the correlation between the
m6AScore and the ICs fraction for each cancer type, selecting
a total of 54 ICs populations and performing a single-sample
gene-set enrichment analysis for each cell population in a pan-
cancer cohort of 11014 samples (Figure 6Q; Supplementary
Table S20). PAAD and PCPG were found to be positively
correlated with ICs, however, the trend of correlation was not
uniform for other cancers. Most ICs were associated with the
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m6AScore in most cancers, which contains both pro- and anti-
tumor ICs, suggesting that the effects of the individual Ms on
immune function may not be uniform.

4 DISCUSSION

In this study, we retrieved relevant data from the TCGA and
CGGA databases for GBM and other cancers, including mRNA
expression, post-translational modifications, molecular subtypes,
DNA methylation, mutations, and relevant clinical parameters.
Then based on Ms, we showed two different kinds of m6A
methylation modification patterns. Moreover, by multi-omics
analysis of Ms, we identified the association between these Ms
in GBM tumorigenesis and distinct tumor subtypes. Through
ssGSEA analysis, we obtained a better understanding of GBM
with different modification patterns and identified a number of
malignant hallmarks of tumors associated with a worse prognosis
in the CL2 subgroup, including angiogenesis, DNA repair,
coagulation, IL -6/JAK/STAT3 signaling, PI3K/AKT/MTOR
signaling, and TGFp signaling.

In recent years, several studies have demonstrated that Ms can
affect GSCs, involving the promotion of stem cell self-renewal,
induction of tumorigenesis, tumor cell proliferation and apoptosis,
and resistance to adjuvant therapy (Dixit et al., 2021). The m6A
writers are essential for the development of GBM, for example, the
m6A methyltransferase METTL3 maintains its oncogenic effects by
regulating the splicing factor NMD and selective splice isoform switch
in GBM (Li et al,, 2019). In addition, overexpression of the dominant-
negative mutant METTL3 or silencing METTL3 inhibited the self-
renewal and growth of GSCs (Li et al., 2019). In the reported studies,
the m6A erasers have been shown to promote the development of
GBM. For example, FTO not only promoted the occurrence of GBM
but also induced GBM resistance to the alkylating agent
temozolomide (TMZ), indicating that FTO may be a new target
for GBM treatment (Xiao et al., 2020). Previously, YTHDCI1 was the
only m6A reader that has been proven to have an impact on GBM,
and it affects the progress of GBM by binding to RNA (Li et al., 2019).
A recent study demonstrated that the m6A reader YTHDEF2
specifically stabilizes MYC mRNA in cancer stem cells and that
YTHDEF2 provides a therapeutic target to interfere with MYC
signaling in GBM (Dixit et al, 2021). However, some scholars
have presented a different view that some writers have anti-cancer
properties (Dong and Cui, 2020). This further illustrates the necessity
of our comprehensive research. In particular, revealing the
relationship between different patterns of m6A modification and
TME ICs infiltration and cancer stemness of GBM will help broaden
our understanding of m6A modification and provide theoretical
support for subsequent studies.

Some studies have reported the relationship between m6A
methylation and immune infiltration, cancer stemness that
cannot be explained by classical RNA degradation (Zhang
et al, 2020). It has been demonstrated that METTL3
contributes to the activation of DCs and that the specific
depletion of METTL3 in DCs leads to impaired phenotype
and function of DCs, reduced expression of co-stimulatory
molecules (CD40, CD80, and IL-12), and reduced ability to
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stimulate T cell responses (Wang et al., 2019). The homeostasis of
T cells can be regulated by METTL3 through the IL-7/STATS5/
SOCS pathway (Li et al., 2017). We further analyzed the TME ICs
infiltration in both clusters and quantified the stemness index of
individual tumors to determine the immune phenotypes of both
clusters, with the CL1 subgroup showing an immune-activating
differentiation phenotype, and the CL2 subgroup showing an
immune desert dedifferentiation phenotype. It is noteworthy that
although the immune excluded phenotype also revealed the
presence of a large number of ICs, they did not penetrate the
tumor cell parenchyma but were reserved in the stroma
surrounding the tumor cell nests (Zhang et al., 2020). There
are reports that the cellular stroma may be confined within the
tumor envelope or possibly penetrate through the tumor, making it
appear that the ICs are actually inside the tumor (Gajewski, 2015).
METTLS3 has been shown to be associated with the maintenance of
stemness in GCSs and to mediate resistance to radiotherapy for GBM
(Visvanathan et al., 2019). We identified hub genes and performed
functional annotation to elucidate that m6A methylation
modifications regulate potential mechanisms of cell stemness and
immune phenotypes. In our study, inconsistent ratios of anti-tumor
and pro-tumor ICs in individual tumor TME, disruption of
oncogenic dedifferentiation phenotypes from distinct pathways,
and dysregulation of different signaling pathways may be
associated with m6A modification patterns. This study also
confirmed that mRNA transcriptome differences between different
m6A modification patterns were significantly correlated with
stemness and immune-associated biological pathways. It is
possible to consider these differentially expressed genes as mo6A-
associated signature genes. Moreover, Ms selectively consumed in
TME can benefit patients receiving immunotherapy by reducing the
infiltration of immunosuppressive cells (Tong et al., 2018). This also
explains why our immune group A and stemness group A patients
have a survival advantage, and confirms the accuracy of our
calculation and clustering methods.

Quantification of m6A modification patterns in individual tumors
is particularly important because of the individual heterogeneity of
m6A modifications. For that, we analyzed Ms™ expression values,
performed PCA analysis to construct méA-associated gene signatures
and built the m6AScore system. The m6A modification pattern
characterized by immune-activating differentiation phenotype
exhibited a lower m6Ascore, while the pattern characterized by
immune desert dedifferentiation phenotype showed a higher
m6Ascore. Reflecting individual methylation modification patterns,
the m6AScore system could accurately stratify immune and stemness
regulatory patterns that have different survival rates, molecular and
immune characteristics. Our results confirmed that the m6AScore
system could not only affect the prognosis of GBM patients with
molecular subtypes, methylation status, 1p19q codeletion, and
different modification patterns, but also independently predict the
prognosis of GBM patients. EMT, as the process by which epithelial
cells acquire mesenchymal characteristics, is related to tumor
invasion, initiation, metastasis and resistance to treatment in
many cancers (Paget, 1889). EMT can confer stem cell-like
properties to cancer cells, driving stemness and tumorigenic
features of the cells (Morel et al, 2008). EMT presenting TMZ
resistance mechanisms were highly enriched in the m6AScore high
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group in our study. Interestingly, the majority of transcriptomic data
from the database came from pre-EMT state primary tumors.
However, there are also primary solid tumor cells that are not in
a pre-EMT state, although other cells in this situation can still acquire
mesenchymal features through additionally mutated accumulation
and then spread and metastasize through the lymphatic and
hematologic systems (Fabregat et al, 2016). In addition, it was
reported that the EMT induced by TGF-P in hepatoma cells was
related to changes in stem marker expression (Fernando et al., 2015).
Our data also showed significant TGF-B enrichment in the high
m6AScore subgroup, suggesting that this association also applies
in GBM.

Novel immunotherapies represented by anti-PD-1 and PD-L1
(immune checkpoint blockade) are a developing and promising
field. We observed a consistent association between anti-PD-L1
and anti-PD-1 treatment response and m6AScore with that
between m6AScore and GBM, which we suggested may be due
to the relatively high component of ICs infiltration in the
m6AScore high group (Karachi et al., 2018). m6AScore system
showed consistency in the immune and stemness patterns also
suggesting that our system can act as a representative of the m6A

modification patterns of individuals. Surprisingly, the
determination regarding the immunophenotype was also well
validated in the IMvigor210 cohort with a defined
immunophenotype  (Mariathasan et al, 2018). This

demonstrated that our m6Ascore system is a trusted tool for
comprehensive  assessment of individual m6A
modification patterns, which can be used to determine tumor
immune and stemness phenotypes and predict patient sensitivity
to novel immunotherapies, and has potential for future clinical
application as a pre-evaluation system prior to immunotherapy.

Applying the m6AScore system in other cancers treated with
novel immunotherapy, the low m6AScore group also presented a
significant survival advantage. It can be demonstrated that the
m6AScore also represents the malignancy and aggressiveness of
the cancer to some extent. Almost all Ms showed significant
differences in expression between cancer and normal tissues. In
tumors, the correlation between cancer cell stemness, immune
signatures and m6AScore may suggest that both of them are
influenced by m6A methylation, leading to uncontrolled immune
dysregulation and dedifferentiation defined by origin structure loss.
Integrated with several biomarkers, including TMB, MSI status, PD-
L1 expression (CD274), PD-1 expression (CD8A), the m6A gene
signature may be a more effective predictive strategy for
immunotherapy. In the study of a pan-cancer cohort, the
relationship between the m6AScore system and the different
phenotypes of multiple tumors probably reflects the TME
immune infiltration specificity, differences in immune checkpoint
expression, BP diversity, and cancer cell stemness specificity. Our
results also demonstrated that high m6AScore was associated with
mesenchymal subtype, Inmunity Group B, Stemness Group B, high
infiltration of ICs, low sensitivity to immunotherapy. Overall, the
m6Ascore system has the potential to be applied to comprehensively
assess m6A methylation modification patterns, TME cell infiltration
and stemness characteristics in individual patients to further define
the immune phenotype and develop a more reasonable treatment
plan. Studies in pan-cancer cohorts also confirmed that the

tumor
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m6AScore systerm can be applied to multiple cancers, with the
corresponding m6AScore  representing m6A  methylation
modifications, classifying tumors according to the degree of
modification and providing reasonable predictions about patient
treatment sensitivity and prognosis.

5 CONCLUSION

In conclusion, our work demonstrated the relevant regulatory
mechanisms of m6A methylation modifications on GBM and
other tumors TME ICs infiltration, stemness, and BP. The
clustering based on the expression profiles of Ms confirmed
that differences in m6A modification patterns are important
factors contributing to the complexity and heterogeneity of
individual cell stemness and TME ICs infiltration. A
comprehensive assessment of tumor m6A modification
patterns will help to improve our understanding of the
characteristics of cancer cell stemness and TME ICs
infiltration and guide the development of more -effective
immunotherapeutic approaches. Our m6AScore system can
also be used to comprehensively assess m6A modification
patterns as well as patient sensitivity and survival benefit to
various therapies. Our results will facilitate the development of
diagnostic tools to quantify cancer methylation modifications in
individual tumors, with possible future applications to predict
cancer recurrence, the selection of therapies, and the
identification of new biomarkers of therapeutic response.
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