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Metabotropic glutamate receptor subtype 5 (MGIURD) is a G-protein-coupled receptor
found widely in the central nervous system. It has been involved in the development and
progression of some neurodegenerative diseases, but its role in prion diseases is rarely
described. In this study, the changes of mGIuR5 and its downstream signaling pathways in
prion-infected cell line SMB-S15 and the brains of scrapie-infected experimental rodents
were evaluated by various methodologies. We found the levels of mGIuR5 were
significantly increased in a prion-infected cell line SMB-S15 and the cultured cells
transiently express an abnormal form PrP (Cyto-PrP). Using immunoprecipitation tests
and immunofluorescent assays (IFA), molecular interaction and morphological
colocalization between PrP and mGIuR5 were observed in the cultured cells. We
identified that the (GPCRs)-IP3-IP3R-Ca”" pathway was activated and the levels of the
downstream kinases p38, ERK, and JNK were increased in SMB-S15 cells. After treated
with mGIuR5 antagonist (MTEP) or the removal of prion replication by resveratrol in SMB-
S15 cells, the upregulations of MGIURS and the downstream kinases were restored in a
certain degree. Moreover, increased mGIURS contributes to the cell damage in prion-
infected cells. Contrarily, the levels of mGIURS in the brains of several scrapie-infected
rodent models were decreased at terminal stage. IFA of the brain sections of scrapie-
infected rodents demonstrated that the signals of mGIuR5 were preferentially colocalized
with the NeuN-positive cells, accompanying with severe neuron losses in Nissl staining,
which might be a reason for the decrease of mGIuR5. Our data indicate the different
aberrant alterations of mGIuR5 and the downstream signaling pathways during prion
infection in vivo and in vitro.
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Altered mGIuR5 in Prion Infection
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INTRODUCTION

Prion diseases or transmissible spongiform encephalopathies
(TSE) are a group of fatal neurodegenerative diseases affecting
humans and various species of animals (Scheckel and Aguzzi,
2018). The causative agent is prion, a pathogenic form (PrP*)
caused by abnormal conformational changes from the normal
cellular prion protein (PrP<), which is relatively insoluble, partial
protease resistant, and infectious (Sigurdson et al., 2019). The
main pathological features include spongiform degeneration,
reactive gliosis, neuron loss, and amyloid plaque deposition in
central nervous system (CNS) (Prusiner, 1998; Wadsworth and
Collinge, 2011). As a membrane-anchored protein, PrP© shows
active molecular interactions with many other membrane
proteins, leading to activating relevant signaling pathways and
inducing physiological functions of downstream factors (Aguzzi
and Calella, 2009). While in the presence of PrP*, those
molecular interactions may cause pathological outcomes upon
the host cells.

Metabotropic glutamate receptors (mGluR) are a class of
membrane proteins, belonging to G-protein-coupled receptors
(GPCRs). According to the homology of amino acid (aa.)
sequence, binding specificity and transduction mechanism,
GPCRs consist of eight mGluRs that are divided into three
groups (Conn and Pin, 1997). mGluR5, belonging to group I,
is widely distributed in CNS, especially in hippocampus and
cortex, mainly located in the post-synaptic membrane
(Shigemoto et al., 1993; Jong et al, 2005). Plenty of studies
have found that mGluR5 participates in the development and
progression of neurodegenerative diseases, including Alzheimer’s
disease (AD) (Abd-Elrahman and Ferguson, 2021), Parkinson’s
disease (PD) (Zhang et al., 2019), and Huntington’s disease (HD)
(Ribeiro et al., 2014). Recent evidences have suggested that
amyloid beta oligomers (APo) in AD mediate synaptotoxic
signaling through PrP“ and mGluR5, while a-synuclein-PrP®
interaction induces cognitive impairment through mGIuR5 and
NMDAR2B (Um et al., 2013; Hamilton et al., 2015; Beraldo et al.,
2016; Ferreira et al, 2017). mGIluR5 is known to modulate
mitogen-activated  protein  kinases (MAPKs) signaling
pathways (Mao et al, 2005; Zhang et al, 2016). mGluR5
activates phospholipase C (PLC) by coupling with Gq protein
and heterotrimeric G protein. PLC hydrolyzes 4,5-bisphosphate
phosphatidylinositol in cells to produce inositol 1,4,5-
triphosphate (inositol 1,4,5-triphosphate, IP3) and second
messenger  diacylglycerol (DAG). IP3 can activate
phosphoinositide receptors on the endoplasmic reticulum (ER)
of cells to release the stored Ca**, increase the concentration of
Ca®', and activate the Ca’' signaling pathway, while DAG
activates protein kinase C (PKC), PLA2, MAPK, and
regulation of ion channels (Conn and Pin, 1997; Ireland and
Abraham, 2002; Wang et al, 2020). Understanding mGluR5
signaling pathway is of great significance for understanding of
its role in the pathogenesis of neurological diseases. However, the
role of mGluR5 in prion disease remains unsettled.

In the present study, the potential changes of mGluR5 were
evaluated in a prion-infected cell line SMB-S15 and several
prion experimental animals. The levels of mGluR5 were
increased in prion-infected cells and the cells transiently
express abnormal Cyto-PrP. Meanwhile, the IP3-IP3R-Ca®*
pathway was activated and its downstream kinases p38, ERK,
and JNK were increased in prion-infected cells. The
molecular interaction and morphological colocalization
between PrP and mGluR5 were also addressed. After
treated with mGIluR5 antagonist (MTEP) or removal of
prion replication in cells, the upregulations of mGluR5 and
the downstream kinases were restored in a certain degree. On
the contrary, the levels of mGluR5 in the brains of scrapie-
infected rodent models at terminal stage were decreased,
especially in the regions of cortex and hippocampus. The
signals of mGIuR5 were preferentially colocalized with the
NeuN-positive neurons in brain tissues of scrapie-infected
rodent models, accompanying with severe neuron losses in
Nissl staining, which may be a reason for the decrease of
mGluR5.

MATERIALS AND METHODS

Cell Culture

Cell line SMB-S15 and its control partner cell line SMB-PS
were acquired from Roslin Institute, United Kingdom (Clarke
and Haig, 1971). Cell line SMB-S15, a mesodermal-derived
cell line, was originally established by culturing with the brain
tissues taken from a mouse clinically affected with scrapie
strain Chandler, in which PrP*¢ replication was maintained by
cell passage. Cell line SMB-PS was derived from SMB-S15
cells after exposing to pentosane sulfate (PS), which was
verified to be free of prion replication in vitro and
infectivity in vivo (Birkett et al., 2001). Cell line SMB-RES
was established from the SMB-S15 cells treated with 10 uM
resveratrol for 7 days, which was verified to be free of prion
replication in vitro and infectivity in vivo (Jing Wang et al,,
2016). Cell lines were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) at 33°C in a humidified incubator with 5% CO,. Human
embryonic kidney (HEK) 293T cells without detectable
endogenous PrP protein and cultured with DMEM were
supplemented with 10% FBS in a cell incubator with 5%
CO, at 37°C. Mouse microglia BV2 cultured with DMEM
were supplemented with 10% FBS in a cell incubator with 5%
CO,; at 37°C.

Drug Treatment

SMB-S15 cells were exposed to 100 uM MTEP (a selective
mGIluR5 antagonist, ab120035, Abcam, United States) for
30 min, and then stimulated by 100 uM L-glutamate
(ab120049, Abcam, United States) for 1 h; SMB-S15 cells were
exposed to 100 uM L-Glutamate for 1 h, and then treated by
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100 uM MTEP for 1 h; SMB-PS cells were exposed to 100 pM
CHPG (a selective mGluR5 agonist, abl20221, Abcam,
United States) for 1h. Various treated cells were harvested for
further study.

Cell Viability Assay

Cell viability was determined using the CCK-8 cell counting kit
(CK04, Dojindo, Japan). Briefly, 4,000 cells per well were
plated in a 96-well plate and incubated overnight for
adherence. According to the assigned protocol, 10 uL CCK-
8 reagent was added in each well at 37 °C for 4 h. Absorbance
was measured at 450 nm with a spectrophotometer. Each
experiment was performed in triplicate and repeated
two times.

Cell Transfection

The recombinant plasmids expressing human wild-type PrP
(pcDNA3.1-PrP-PG5) and cytosolic PrP (pcDNA3.1-CytoPrP)
were generated previously (Ma et al, 2002). Cells at the
logarithmic growth stage were plated into six-well plates for
24 h before transfection. About 2 ug of each plasmid DNA was
transiently transfected with Lipofectamine™ 3,000 (L3000150,
Invitrogen, United States) according to the manufacturer’s
instruction. At 48 h post-transfection, cells were harvested for
further experiments.

Preparation of Cell Lysates

Cells were harvested and centrifugated at 500xg for 10 min. The
pellets were resuspended in a cold lysis buffer (P0013B, Beyotime,
China) supplemented with the protease inhibitor cocktails set III
(535140, Merck, United States), and maintained on ice for
30 min. The supernatants were collected and the protein
concentrations were determined by a BCA method (71285-3,
Merck, United States).

Preparation of Brain Homogenates

Golden hamsters inoculated intracerebrally with hamster-
adapted scrapie agent 263K and C57BL/6 (C57) mice
inoculated intracerebrally with mouse-adapted scrapie
strains 139 A and ME7 were described previously (Gao
et al.,, 2004; Shi et al., 2012). The average incubation times
of 263 K-infected hamsters and 139A- and ME7-infected mice
were 80.1 £5.7,183.9 +23.1,and 184.2 + 11.8 days. Five 263 K-
infected hamsters and healthy controls at different time points
post-inoculation were randomly selected and sacrificed; the
brains were surgically removed and frozen at —80 °C for
further study.

Brain homogenates were prepared based on the protocol
described previously (Chen et al.,, 2014). Whole brain tissues
were washed in TBS (10 mM Tris-HCl, 133 mM NacCl, pH 7.4)
for three times, and then 10% (w/v) brain homogenates were
prepared in cold lysis buffer (100 mM NaCl, 10 mM EDTA,
0.5% Nonidet P-40, 0.5% sodium deoxycholate, 10 mM Tris,
pH 7.5) with protease inhibitor cocktail set III (Merck,
535,140). The tissue debris was removed with low-speed
centrifugation at 2000 g for 10 min and the supernatants
were collected for further study.

Altered mGIUR5 in Prion Infection

Western Blots
Aliquots of brain homogenates and cell lysates (approx. 50 ug for

each lane) were separated by 12% sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and electro-
transferred onto nitrocellulose membranes. Membranes were
blocked with 5% (w/v) skimmed milk in 1 x Tris-buffered
saline containing 0.1% Tween 20 (TBST) at room temperature
for 30 min and incubated with primary antibodies against
mGluR5 (1:1,000, AB5675, Merck, United States), PrP (1:
1,000, 6D11, Santa Cruz, United States), Gq/11a (1:1,000, 06-
709, Merck, United States), IP3R (1:1,000, 8568S, CST,
United States), p38 (1:1,000, 8690S, CST, United States), p-p38
(1:1,000, 4511S, CST, United States), ERK (1:1,000, 136,200,
Thermo, United States), p-ERK (1:1,000, 4695S, CST,
United States), JNK (1:1,000, 9252S, CST, United States),
p-JNK (1:1,000, ab124956, Abcam, United States), mGluR1 (1:
1,000, 125518, CST), and P-actin (1:5,000, TA-09, ZSGB-BIO,
China) at 4 °C overnight. After washing with TBST, membranes
were subsequently incubated with individual HRP-conjugated
secondary antibodies and reactive signals were developed using a
commercial ECL kit. Images were captured by ChemiDocTM
XRSC Imager (Bio-Rad, United States). To detect the presence of
Protease K (PK) resistant PrP®, the cell lysates were digested with
a final concentration of 20 ug/ml PK at 37 °C for 60 min prior to
Western blots. The PK digestion was stopped by incubating the
samples at 100 °C for 10 min.

ELISA

The values of IP3 in the cell lysates were quantitatively measured
with a commercial ELISA kit (CSB-E13410m, CUSABIO, China).

Co-Immunoprecipitation (Co-IP)

About 1ml of different cell lysates were mixed with 4 ug of
captured antibodies and 50 pl of Dynabeads®—coated Protein G
(10004D, Invitrogen, United States) at room temperature (RT) for
1-2 h. Subsequently, the mixtures were incubated at 4 °C overnight.
The immunocomplexes were collected by separating the magnet
and washed five times in washing buffer before being resolved by
SDS-PAGE. The complexes were detected by further Western blots
with relative detecting antibodies.

Immunofluorescence Assay (IFA)

Brain tissues of normal and 263 K-infected hamster and 139A-
and ME7-infected mice were fixed in 10% buffered formalin
solution and paraffin sections (5um in thickness) were
prepared routinely. Subsequently, brain sections were
subjected to permeate with 0.3% Triton X-100 in PBS for
30 min and blocked with normal goat serum for 1h. After
blocked, sections were incubated with anti-mGIuR5 (1:200,
AB5675, Merck, United States), anti-mGluR1 (1:200, 125518,
CST, United States), anti-NeuN (Neuronal specific nuclear
protein, 1:200, MAB377, Merck, United States), anti-GFAP
(glial fibrillary acidic protein, 1:200, #3670, CST,
United States), and anti-ibal (Ion calcium-binding bridle
molecule 1, 1:200, SAB2702364, Sigma, United States) in
dilution solution (PBS with 2% BSA and 0.3% Triton X-
100) at 4 °C overnight. The sections were subsequently
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incubated with 1:200-diluted Alexa Fluor 488-labeled goat-
derived anti-rabbit (1:200, A11034, Invitrogen, United States)
and Alexa Fluor 568-labeled goat-derived anti-mouse (1:200,
A11031, Invitrogen, United States) secondary antibodies at
37 °Cfor 1 h. After removing secondary antibodies, DAPI were
used to stain the nucleus at final concentration of 1 mg/ml at
RT for 30 min (Hu et al., 2021). Slices were sealed and the
images of the targeting proteins were viewed and analyzed
using high-content screening system (Operetta Enspire, Perkin
Elmer, United States) or confocal microscopy (LEICA TCS
SP8, Germany). The integrated optical density (IOD) values of
each field-specific fluorescence staining were collected
automatically. The IOD values of the specific staining were
determined relative to that of DAPI-specific staining.

Immunohistochemical Staining (IHC)

Brain sections were microwaved in sodium citrate buffer at
100 °C for 30 min for antigen retrieval, and then sections were
quenched for endogenous peroxidases in 3% H,0, in
methanol for 10min before blocking with 5% BSA for
15min at RT. The sections were incubated with anti-
mGluR5 antibody (1:200, AB5675, Merck, United States) at
4 °C overnight. Subsequently, the sections were incubated with
1:250-diluted HRP-conjugated goat anti-rabbit antibody
(SV0002-12, Boster, China) at 37 °C for 1h and visualized
by incubation with 3,3-diaminobenzidine tetrahydrochloride
(DAB, AR1000, Boster, China). The slices were counterstained
with hematoxylin (AR0005, Boster, China) for 1 min,
dehydrated, and routinely mounted (Chen et al., 2020).
Images were captured with an OLYMPUS BX41 microscopy
with DP Controller software and quantified with Image-Pro
Plus 6.0 software (Media Cybernetics).

Quantitative Real-Time PCR (qPCR)

Real-time PCR was performed with Power SYBR Green PCR
master mix (Applied Biosystems, TSE202, United States) in
an ABI 7900HT Fast Sequence Detector (Applied Biosystems,
United States). Total RNA was extracted from SMB cells with
Trizol reagent (15596026, Gibco, United States) and then
subjected to first-strand c¢cDNA synthesis with reverse
transcription system (11752050, Invitrogen, United States)
according to the manufacturer’s protocol. The specific
primers were designed based on the sequences of mouse
mGluR5 and GAPDH genes in GenBank (NC_000073.7
and NC_000072.7). The primer sequences are as follows:
GAPDH (forward: 5'-TTTGCAGTGGCAAAGTGGAG-3’;

reverse: 5-GATGGGCTTCCCGTTGATGA-3") and
mGluR5 (forward: 5'-CCCTGGTACCCCTATCTGCT-3’;
reverse: 5'-GTCTCTTGGGCAGGTGATGG-3'). PCR

amplification was performed in triplicate with a total of 40
cycles (30s at 95°C, 30s at 60°C, and 60s at 72°C). The
comparative Ct (the fractional cycle number at which the
amount of amplified target reached a fixed threshold) method
was used for the relative quantitative detection of the
expressions of the target gene. The relative Ct for the
target gene was subtracted from the Ct for the GAPDH
gene using the comparative Ct method (244",

Altered mGIUR5 in Prion Infection

Nissl Staining

Brain paraffin sections were stained with Nissl (1% toluidine
blue) for 30 min. After rinsing quickly in distilled water, the
sections were differentiated in 95% ethyl alcohol for 0.5 min
(Gittins and Harrison, 2004). After dehydration, the slices
were mounted with permount and observed under a
microscope (Olympus BX51). The cells containing Nissl bodies
were considered as neurons and counted manually.

Statistical Analysis

Data analyses were performed using the software GraphPad
Prism 7.0. Quantitative analysis of Western blots and
quantification of colocalization were processed with Image]
software. The final results were presented as mean + stand
error of mean (SEM). The student’s t test was evaluated for
statistical analysis *: p < 0.05; #*: p < 0.01; **=: p < 0.001.

RESULTS

The Levels of mGIuR5 Were Increased in a
Prion-Infected Cell Line and the Cells
Transiently Expressing Cyto-PrP

To determine the possible alteration of mGluR5 along with
prion accumulation, the cellular lysates of the prion-infected
cell line SMB-S15 and its normal partner cell line SMB-PS were
subjected into mGluR5-specific Western blots. Compared with
that of SMB-PS cells, the signal of mGluR5 in SMB-S15 cells
was markedly stronger, revealing remarkably increased in the
relative gray values after quantitative assays with the
individual data of B-actin (p < 0.001, Figure 1A). IFA with
mGluR5 antibody illustrated more brilliant green signals in
SMB-S15 cells, showing notably higher IOD value than that in
SMB-PS cells (p < 0.05, Figure 1B). Further, total RNAs of
SMB cells were prepared and the transcriptional levels of
mGluR5 were comparatively assessed by real-time PCR with
mGluR5-specific primers. It revealed that the average level of
mGluR5 mRNA in SMB-S15 cells was about 2.5 folds of that in
SMB-PS cells, showing significant difference (p < 0.01,
Figure 1C).

To further assess the relationship between increased
mGluR5 and accumulated PrP, the recombinant plasmids
expressing wild-type human PrP (PG5-PrP) and Cyto-PrP
were separately transfected into 293T cells that were
previously verified not to contain detectable endogenous
PrP (Wang et al,, 2011). At 48 h post-transfection, the cells
were harvested and the levels of mGIuR5 were evaluated with
Western blots. Compared with the control transfected with the
blank vector pcDNA3.1, the mGluR5 level in the cells
expressing PG5-PrP was almost unchanged while that in the
cells expressing Cyto-PrP was significantly increased
(Figure 1D). It seems that accumulation of either prion
agent or abnormal PrP construct causes higher expression
of mGlIuRS5 in cultured cells.

Further, as the other subtype of mGIuR group I, the
potential changes of the mGIluR1 levels in SMB cell line
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SMB cell lines. Relative molecular weights are marked on the left. (1, 2, 3) indicate the number of replicates. Right: Densitometric analyses of the average gray values of
the signals of the mGIURb after being equilibrated with that of p-actin. The relative gray value of mGIUR5 in SMB-PS cells is set to 1 and Y-axis represents the fold changes
in SMB-S15 versus SMB-PS. (B) Left: Immunocytochemical assays of the distributions of mGIUR5 in two SMB cell lines. The images of DAPI (blue), mGIuR5

(green), and merge (yellow arrows) are indicated above. Two SMB celllines are indicated on the left. Right: The IOD analysis for the signals of mGIuR5 in the images of two
SMB cell lines. The quantitative results are presented as mean + SEM. The IOD value of mGIUR5 in SMB-PS cells is set to 1 and Y-axis represents the fold changes in
SMB-S15 versus SMB-PS. (C) Comparative analysis of the levels of mGIuR5-specific mRNAs in SMB-PS and -S15 cells by real-time PCR. The transcriptional level of
mGIuR5-specific MRNA was determined relative to that of the individual GAPDH. The relative intensity of the transcriptions of mGIuR5 gene in SMB-S15 cells is relative to
that of SMB-PS cells that is set to 1. (D) Left: Western blot for the levels of mGIUR5 in the cells transiently expressing wild-type PrP and Cyto-PrP. Relative molecular
weights are marked on the left. Right: Densitometric analyses of the average gray values of the signals of the mGIuRS5 after being equilibrated with that of p-actin. Data are
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were assessed by mGluR1-specific Western blots. The signal
intensity of mGluR1 in SMB-S15 was extremely declined
compared with that in SMB-PS, highlighting remarkably
decreased in the relative gray values after quantitative
assays with the individual data of P-actin (p < 0.001, S-
Figure 1A). Furthermore, SMB-PS cells were exposed to
CHPG, a mGluR5 agonist, in order to simulate the statues

of increased mGluR5 in SMB-S15 cells, and the signal of
mGluR1 in CHPG-treated SMB-PS cells was decreased, even
without statistical difference compared with that of untreated
ones in the relative gray values after quantitative assays with
the individual data of B-actin (S-Figure 1B). These data imply
that increased mGIuR5 has ability to reduce the expression of
mGluRl in vitro.
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into SDS-PAGE as controls. (C) Immunofluorescent assays of the co-localization between PrP and mGIuR5 in SMB cells with confocal microscopy. Two SMB cell lines
are marked on the left. (D) Immunofluorescent assays of the co-localization between PrP and mGIuRS in 293T cell transiently expressing wild-type human PrP (PG5-PrP)
and Cyto-PrP with confocal microscopy. Various transfected 293T cells are marked on the left. The images of DAPI (blue), mGIuR5 (green), PrP (red), and merge are

indicated above. The magnification views are shown on the right each picture.

Molecular Interaction and Morphological
Colocalization Between PrP and mGIuR5

To explore the potential molecular interaction between PrP and
mGIuR5, the lysates of two SMB cells were employed to co-IP
assay using PrP antibody (SAF32) as the capturing antibody and
mGluRS5 antibody as the detecting one. Clear mGluR5 bands were
detected in the eluting products from both SMB-S15 and -PS
cells, whereas no signal in the reactions with isotypic IgG
(Figure 2A). To obtain more evidence, the lysates of
293T cells transiently expressing Cyto-PrP
immunoprecipitated with mGluR5 antibody and blotted with
PrP antibody. Specific Cyto-PrP signal was identified in the final
eluting product of mGluR5 antibody, but not in that of isotypic
IgG (Figure 2B).

To address the possible morphological colocalization of PrP and
mGluR5 in cell level, SMB cells were fluorescently double-stained
with PrP and mGluR5 antibodies. Confocal microscopy revealed
clear colocalized signals (yellow) in the positions of cytoplasm and
membrane after merged, particularly in SMB-S15 cells (Figure 2C).
293T cells transiently expressing PG5-PrP and Cyto-PrP were also
subjected into double-stained IFA with PrP and mGluR5 antibodies.
Amounts of colocalized signals (yellow) were identified in the cells
expressing PG5-and Cyto-PrP contrast to the mock cells receiving
the blank vector (Figure 2D). More colocalized signals were
observed in the cells transfected with Cyto-PrP than that with

PG5-PrP, especially in the cytoplasm. Those data supply the
evidence of molecular interaction and morphological
colocalization between PrP and mGIuR5 in the cultured cells.

Activation of G-Protein-Coupled Receptors
(GPCRs)-IP3-IP3R-Ca®* Pathways and
Downstream Kinases in Prion-Infected
Cells

The potential influence of the increased mGIuR5 on the
downstream GPCRs-IP3-IP3R-Ca** pathway was analyzed in
two SMB cell lines. Western blot for Gq/lla, one of the
subunits of GPCRs, showed significantly stronger signals in
SMB-S15 than that in SMB-PS (Figure 3A). Measurement of
IP3 with a commercial kit identified approximately 8-fold
increase of IP3 in SMB-S15 cells compared to SMB-PS cells
(Figure 3B). Western blot for IP3R revealed remarkably
higher level in SMB-S15 cells (Figure 3C). Further staining of
Fluo-8 on those two cell lines illustrated obviously higher
fluorescent intensity in SMB-S15 cells, highlighting a higher
Ca** concentration (Figure 3D).

The levels of several downstream kinases and their
phosphorylated forms in two SMB cells were measured with
Western blots with various antibodies, including anti-p38, anti-
ERK, and anti-JNK. As shown in Figure 4, the levels of those
three kinases were comparable between two cell lines, whereas
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FIGURE 3 | Activation of the GPCRs-IP3-IP3R-Ca* pathway in two SMB cell lines. (A) Left: Western blots for the levels of Gg/11a. Relative molecular weights are
marked on the left. Two SMB cell lines are indicated above. (1, 2, 3) indicate the number of replicates. Right: Densitometric analyses of the average gray values of the
signals of the Ga/11a after being equilibrated with that of f-actin. (B) ELISA for the levels of IP3. (C) Top: Western blots for the levels of IP3R. Relative molecular weights
are marked on the left. Two SMB cell lines are indicated above. Bottom: Densitometric analyses of the average gray values of the signals of the IP3R after being
equilibrated with that of -actin. (D) Top: Immunocytochemical assays for the levels of Ca?* concentration. Bottom: The IOD analysis for the signals of Ca?*inthe images
of two SMB cell lines. The quantitative results are presented as mean + SEM.

those of the phosphorylated isoform of p38 (Figure 4A), ERK
(Figure 4B), and JNK (Figure 4C) in SMB-S15 cells were higher
than that in SMB-PS cells with statistical differences.
Furthermore, two SMB cell lines were immunofluorescent
stained with p-p38-, p-ERK- and p-JNK-specific antibodies
separately, showing significantly stronger fluorescent intensities
in SMB-15 cells compared to SMB-PS cells (Figures 4D-F).

To verify the activation of mGluR5 on the GPCRs-IP3-IP3R-
Ca®" pathways after prion infection, SMB-S15 cells were treated
with 100 uM or 200 uM of MTEDP, a selective mGluR5 antagonist,
which did not change the level of mGIluR5 in Western blots
(Figure 5A). Subsequently, SMB-S15 cells were exposed to
100 M MTEP and the levels of GPCRs-IP3-IP3R-Ca**
pathways were comparatively analyzed. IP3-specific ELISA
assay revealed approximately 2-fold decrease of IP3 in MTEP-
treated SMB-S15 cells compared with untreated ones
(Figure 5B). Fluo-8 staining illustrated remarkably lower
fluorescent signal in MTEP-treated SMB-S15 cells, revealing
an inhibition of Ca®" concentration in a certain degree
(Figure 5C). Furthermore, Western blots revealed the levels of
phosphorylated p38, ERK, and JNK were decreased in MTEP-
treated SMB-S15 cells (Figures 5D-F).

To assess the potential influence of blocking mGluR5 in the
cell survival during prion infection, SMB-S15 cells were treated
with MTEP before or after exposure to L-glutamate. The cell

survival was evaluated with CCK-8 assays. When compared with
the mock cells without any treatment, the relative cell survival
rates of SMB-S15 were lower after exposure to L-glutamate,
which revealed the worsen of cell viability in the preparation
of 1 h incubation, while that of SMB-S15 alternatively treated by
METP before or after exposure to L-glutamate exhibited the
opposite (Figures 5G,H). These data indicate that increased
mGluR5 has ability to activate the (GPCRs)-1P3-IP3R-Ca**
pathways and downstream kinases, and cause cell damage in
prion-infected cells.

Down-Regulation of the Levels of mGIuR5
and Its Downstream Elements After
Removal of Prion Replication in SMB-S15
Cells

Our previous study has verified that the treatment of
resveratrol completely removes the prion replication in
SMB-S15 cells (Jing Wang et al., 2016). To test the effect of
removal of prion propagation on the cellular mGluR5 and its
downstream factors, SMB-S15 cells were exposed to 10 uM
resveratrol. Western blots showed a marked reduction of
PrP*¢ in the cellular lysate treated for 3 days and almost
undetectable PrpS° the cells treated for 7 days
(Figure 6A). Accompanying with the reduction and

in
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FIGURE 4 | Activation of the MAPK pathway in two SMB cell lines. (A-C) Left: Western blots for the levels of p38 and p-p38 (A), ERK and p-ERK (B), JNK and
p-JNK (C). Relative molecular weights are marked on the left. Two SMB cell lines are indicated above. (1, 2, 3) indicate the number of replicates. Right: Densitometric
analyses of the average gray values of the signals of the target proteins after being equilibrated with that of -actin. (D-F) Top: Immunocytochemical assays of the levels
and distributions of p-p38 (D), p-ERK (E), p-JNK (F) in two SMB cell lines. The images of DAPI (blue), p-38/p-ERK/p-JNK (green), and merge are indicated above.
Bottom: The 10D analysis for the signals of p-38/p-ERK/p-JNK in the images of two SMB cell lines. The quantitative results are presented as mean + SEM. The IOD
values of p-p38, p-ERK, and p-JNK in SMB-PS cells are set to 1 and Y-axis represents the fold changes in SMB-S15 versus SMB-PS.

removal of PrP°, the level of mGIuR5 in SMB-S15 cells  identified the decreased fluorescent intensity in SMB-S15 cells
treated with resveratrol for 3 and 7days was also treated for 7 days (Figure 6C). It indicates a synchronous
significantly reduced to the level of the untreated SMB-PS  reduction of PrP*® and mGluR5 in SMB-S15 cells after
cells in Western blot (Figure 6B). mGluR5-specific IFA also treatment of resveratrol.
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FIGURE 5| Inhibition of GPCRs-IP3-IP3R-Ca?* and MAPK pathways in MTEP treated SMB-S15 cells. (A) Left: Western blot for level of mGIUR5 in 100 and 200 pM
of MTEP treated SMB-S15 cells. Right: Densitometric analyses of the average gray values of the signals of the mGIuR5 after being equilibrated with that of p-actin. (B)
ELISA for the levels of IP3. (C) Immunocytochemical assays for the levels of Ca®* concentration. (D-F) Left: Western blots for the levels of p-ERK (D), p-JNK (E), and
p-p38 (F) after MTEP treatment. Relative molecular weights are marked on the left. SMB cell lines are indicated above. (1, 2, 3) indicate the number of replicates.
Right: Densitometric analyses of the average gray values of the signals of the target proteins after being equilibrated with that of p-actin. The quantitative results are
presented as mean + SEM. The 10D values of p-p38, p-ERK, and p-JNK in SMB-S15 cells is set to 1 and Y-axis represents the fold changes in MTEP-treated SMB-S15
versus SMB-S15. (G,H) Cell viability of SMB-S15 cell treated with L-glutamate only or L-glutamate and MTEP alternatively.

Subsequently, the levels of the phosphorylated forms of the = separately. As shown in Figure 6D, the levels of p-p38, p-ERK,
downstream kinases in two SMB cell lines exposed to resveratrol ~ and p-JNK maintained also unchanged in SMB-PS cells after
for 3 and 7 days were measured by the individual Western blots ~ exposure to resveratrol for 3 and 7 days compared to the
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FIGURE 6 | The levels of mGIuR5 and its downstream elements after removal of prion replication in SMB-S15 cells. (A) PrP-specific Western blots of resveratrol-
treated SMB-S15 cells. RO: The lysates of SMB-S15 cells without treatment of resveratrol. R3: The lysates of SMB-S15 cells receiving 10 pM resveratrol for 3 days. R7:
The lysates of SMB-S15 cells receiving 10 pM resveratrol for 7 days. PK proteinase K. (B) Top: Western blots for the levels of mGIuR5 in two SMB cell lines before and
after removal of PrPS°. Bottom: Densitometric analyses of the average gray values of the signals of mGIUR5 after being equilibrated with that of p-actin. (C) Left:
Immunocytochemical assays of the distributions of MGIUR5 in various SMB cell lines. The images of DAPI (blue), mGIuR5 (green), and merge are indicated above. Right:
The IOD analysis for the signals of mGIUR5 in the images of various SMB cell lines. The IOD value of mGIUR5 in SMB-PS cells is set to 1 and Y-axis represents the fold
changes in SMB-S15 versus SMB-PS. (D) Left: Western blots for the levels of p-ERK/p-JNK/p-p38 in two SMB cell lines before and after removal of PrP°. Right:
Densitometric analyses of the average gray values of the signals of p-ERK/p-JNK/p-p38 after being equilibrated with that of B-actin.

untreated one, remaining at obviously low level. However, the Decreased Levels of mGIuRS in the Brains

levels of those three phosphorylated kinases i.n the re.:sveratrol— of Scrapie-Infected Rodent Models

treat.ed SMB-515 cells were downregulated in certain degree, T, evaluate the changes of mGluRS5 in the brain tissues during
particularly p-p38 and p-JNK in the cells treated for 7 days prion infection, 10% brain homogenates of three scrapie strain
(R7), highlighting an association between cellular PrP*and those 263 K-infected hamsters at terminal stage and three age-matched
phosphorylated kinases. controls were evaluated by Western blots with the mGIluR5-
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FIGURE 7 | The levels of mGIuR5 in the brains of scrapie-infected rodent models. (A-B) Left: Western blots for the levels of mGIURS in brains of 263 K-infected

hamsters (A) and 139 A or ME7-infected mice (B). Various prion-infected rodent models are indicated above. (C) Left: Dynamic assays of the levels of mGIURS in brains
tissues of 263 K-infected hamsters during the incubation period. The data of dpi are shown at the top. Relative molecular weights are marked on the left. (1, 2, 3) indicate
the number of replicates. Right: Densitometric analyses of the average gray values of the signals of the mGIuR5 after being equilibrated with that of p-actin. (D-E)

Left: Immunofluorescent staining of mGIuRS in cortex (D) and hippocampus (E) regions of 263 K-infected hamsters. The images of DAPI (blue), mGIuR5 (green) and
merge are indicated above. Right: The 10D analysis for the signals of mGIuR5 in the images of cortex and hippocampus sections. The 10D value of mGIURS5 in control is
set to 1 and Y-axis represents the fold changes in Ha-263 K versus control brains.
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FIGURE 8| The levels of GPCR and downstream kinases in the brain tissues of 263K-infected hamsters. (A-D) Left: Western blots for the levels of Gg/11a (A), p38
and p-p38 (B), ERK and p-ERK (C), JNK and p-JNK (D). Relative molecular weights are marked on the left (1, 2, 3) indicate the number of replicates. Right: Densitometric
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specific antibody. The blotting pattern of mGluR5 in the brain
tissues was different from that in SMB cells, that beside of
130 kDa band representing the monomer, there were signals
with obviously larger molecular weight mobilizing at
approximately 260 kDa (Figure 7A), probably representing the

dimers. Surprisingly, compared with that of healthy controls, the
brain mGIuR5 levels in forms of both dimer and monomer were
markedly weaker in three 263 K-infected hamsters, showing
significant reduction (p < 0.01, Figure 7A). Remarkable
decreases of brain mGluR5 were also detected in the Western
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FIGURE 9 | Immunofluorescent staining of mGIuR5 in cortex and

hippocampus slices of prion-infected rodent models. (A-C) Double-staining of

mGIuRS with NeuN (A), GFAP (B) and Ibat (C) in cortex and hippocampus

slices of 263 K-infected hamsters. (D-E) Double-staining of mGIuR5

with NeuN (D) and GFAP (E) in cortex and hippocampus slices of 139 A-
(Continued)

FIGURE 9 | infected mice. The images of DAPI, NeuN, GFAP or Iba1, mGIuR5
and merge are indicated on the top. The magnification views are shown on the
right each picture. (F) Top: Nissl staining for neurodegeneration in the cortex
and hippocampus regions of 263 K-infected hamsters. Scale bar 20 pm.
Bottom: Quantity of neurons in cortex and hippocampus cells. (G) IHC assays
of cortex and hippocampus regions of 263 K-infected hamsters, Scale

bar 20 um.

blots of other two scrapie-infected mouse models, 139 A- and
ME7-infected mice, at end stage (Figure 7B). In addition, brain
mGluR1 levels were also decreased in 263 K-infected hamsters
compared with that of uninfected ones, with statistical difference
(p < 0.05, S-Figure 2A) and mainly observed in the regions of
hippocampus, cerebellum, and cortex (S-Figure 2B).

To access the alteration trend of the brain mGIuR5 during
prion infection, the brain specimens of 263 K-infected hamsters
collected at different time points after inoculation were
comparatively subjected into mGIuR5-specific Western blots.
Prior to the test, the brain mGluR5 levels of the young
(roughly 3 weeks after weaning) and adult (12 weeks old)
healthy hamsters were evaluated by mGluR5-specific Western
blots, revealing quite comparable levels (S-Figure 3). Compared
to that in uninoculated hamster, the signals of mGIluR5 were
weaker in the samples of 20 and 40 days post-inoculation (dpi)
and notably weaker in that of 60 and 80dpi (Figure 7C),
highlighting that the decrease of brain mGluR5 occurs at the
early stage of prion infection.

The brain sections of 263 K-infected hamsters at terminal
stage were subjected into mGluR5-specific IFAs. Confocal
microscopy revealed much smaller number of the mGIuR5
signals (green) in the cortex (Figure 7D) and hippocampus
(Figure 7E) regions of 263 K-infected hamsters than that of
the controls. Further quantitative analysis indicated
significant differences in the IOD value of mGIuR5 per
image compared with those of the controls. These results
indicated that the levels of both mGluR5 and mGluR1 were
decreased in the brain of scrapie-infected rodents.

Relatively Weak Alterations of GPCR and
Downstream Kinases in the Brain Tissues of
263 K-Infected Hamsters

To see the changes in the downstream components of mGluR5
in the brains of 263 K-infected hamsters at terminal stage, the
levels of Gq/1la, p38, ERK, and JNK were analyzed by
individual Western blots. Compared with healthy control, the
signals of brain Ggq/lla in 263 K-infected hamsters were
significantly weaker (Figure 8A). Both brain p38 and
phosphorylated p38 in 263 K-infected hamsters were stronger
than that in the controls (Figure 8B). Brain levels of ERK and
phosphorylated ERK in 263 K-infected hamsters were increased
compared with that of control, without statistical difference
(Figure 8C). The levels of both JNK and phosphorylated JNK
were comparable between healthy and infected hamsters
(Figure 8D).
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Correlation of Reduction of the Brain
mGIuR5 With Neuron Loss in 263 K-Infected

Hamsters

To see the localization of mGluR5 among the different types of
cells in brain tissues, the brain sections from 263 K-infected
hamsters at end stage and healthy controls were double-stained
immunofluorescently with mGluR5 antibody, together with
NeuN-, GFAP- or Ibal-specific antibodies, respectively.
Among them, NeuN is a neuronal specific nuclear protein in
vertebrates. GFAP is the main constituent of intermediate
filaments in astrocytes and serves as a cell-specific marker
that distinguishes differentiated astrocytes from other glial
cells during the development in CNS. Ion calcium-binding
bridle molecule 1 (Ibal) is a marker of microglia/
macrophages. As illustrated in Figure 9, much less mGluR5-
and NeuN-specific signals, while much more GFAP- and Ibal-
specific signals were observed in the brains of the 263 K-infected
hamsters, both of cortex and hippocampus. Merged pictures
showed the clearly overlapped images of mGluR5 with NeuN
signals (Figure 9A) in the brain sections of normal and infected
hamsters, but extremely less with GFAP (Figure 9B) or Ibal
(Figure 9C) signals. Similar distributive pattern of mGluR5 was
also noticed in the brain sections of normal and scrapie agents
139 A- and ME7-infected mice, that mGluR5 signals were
mainly overlapped with NeuN positive cells (Figure 9D), but
not with GFAP cells (Figure 9E). It seems that the mGIuR5 is
highly distributed in neurons, but not in the activated astrocytes
and microglia during prion infection.

Altered mGIuR5 in Prion Infection

Neuron loss is one of the key features in prion diseases. To evaluate a
possible relationship between brain mGluR5 levels and neuron numbers,
the brain sections of healthy and 263 K-infected hamsters were subjected
into Nissl staining and mGluR5-specific IHC, respectively. Compared to
the healthy control, there were markedly less Nissl positively stained cells
(blue) in the regions of cortex and hippocampus of 263 K-infected
hamsters, showing statistical differences in the numbers of Nissl-stained
cells per field (Figure 9F). Coincidentally, there were significantly less
mGluR5 positive cells in the same brain regions of 263 K-infected
hamsters (Figure 9G). In addition, the mGluR1 signals were also
overlapped with NeuN positive cells in the regions of hippocampus,
cerebellum, and cortex of 263 K-infected hamsters (S-Figure 4),

Since microglia also express mGluR5, to evaluate the possible
difference of microglia between inactivate and activated states, a
microglia cell line BV2 was stimulated with different
concentrations of LPS. More round and relatively small cells were
observed in the cells for 24 h after received LPS (Figure 10A).
mGluRS5-specific Western blots did not reveal significant difference
in the mGluR5 levels in BV2 cells before and after LPS stimulation
(Figure 10B). It implies that the mGIuR5 levels in the cultured
microglia do not change after activation. These data might
highlight a linkage between decreased mGluR5 levels and neuron
loss in 263 K-infected hamsters.

DISCUSSION

In this study, we have found for the first time aberrantly elevated
levels of mGIuR5 in prion-infected cell line SMB-S15, which is

LPS-1ug

FIGURE 10 | The levels of mGIuR5 in LPS-stimulated BV2 cells. (A) The morphology of BV2 cells after LPS stimulation. (B) Left: Western blot for the levels of
mGIuRS5 in various LPS-stimulated BV2 cells. Relative molecular weights are marked on the left. (1, 2, 3) indicate the number of replicates. Right: Densitometric analyses
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closely associated to the accumulation of PrP* in the cells.
Coincidentally, some elements in the downstream pathways of
mGIuR5, such as (GPCRs)-IP3-IP3R-Ca** and MAPK signaling
pathways, were also upregulated. Notably, the increased mGIuR5
and MAPK signaling levels partially recovered when removal of the
prions in SMB-S15 cells by resveratrol. In contrast, we have also
found that the levels of mGluR1/5 and Gq/1la are significantly
reduced in the brain tissues of prion-infected rodents at the terminus
of infection. Meanwhile, several kinases in MAPK signaling
pathways maintain almost unchanged. Additionally, we assume
that the reduced levels of mGIuR1/5 in brain tissue are likely
associated with the neuron loss during prion infection.

The implications of mGluR5 in the pathogenesis of many
neurological diseases have been documented recently, including
AD, PD, HD, autism spectrum disorders (ASD) (Zantomio et al.,
2015), etc. However, there is a few of studies on the characteristics of
mGluR5 in prion disease. mGluR5 interacts with a variety of proteins
to participate in the regulation of neural excitatory networks, the
generation of neurogenesis, and the formation of synaptic plasticity
related to learning and memory (Bhattacharyya, 2016). In this study,
we have proposed morphological and molecular evidence of the
interaction between PrP and mGluR5 in both prion-infected SMB-
S15 cells and its normal partner SMB-PS cells, as well as in 293T cells
expressing abnormal Cyto-PrP. mGIuR5 have been determined to
interact with PrP in vivo and may work as a co-receptor for the
complexes of AP oligomer and PrP<, and a-synuclein and PrP,
involving or at least partially involving in synaptic dysfunction and
memory loss (Um et al., 2013; Haas et al., 2014; Beraldo et al., 2016;
Ferreira et al., 2017; Brody and Strittmatter, 2018). mGluR5 interacts
physically and directly with both wild-type and mutant htt (Ribeiro
et al.,, 2014). Moreover, we have identified the increased mGluR5 that
influenced the expression of mGluR1 in our experimental condition
which is consistent with the results of other groups (Nakanishi et al.,
1998; Mannaioni et al, 2001; Poisik et al, 2003; Kramer and
Williams, 2015). It is reasonable to assume that the interaction of
mGluR5 with PrP, especially with pathological PrP%, is likely to
involve in the pathophysiology of prion.

On the level of a prion-infected cell model, we have noticed the
overexpression of mGluR5 and IP3R, as well as the increase of
intracellular Ca*" in this study. Transient expression of abnormal
Cyto-PrP also induces the upregulation of cellular mGluR5.
Moreover, the overexpression of mGluR5 can be reverted by the
removal of the propagation of cellular prions after treatment of
resveratrol, while the mGIuR5 level does not change in the normal
partner cells in the same experimental condition, highlighting a close
association of the increased cellular mGluR5 with continuous
replication of prions and accumulation of abnormal PrPc.
Exposure to AP leads to the overexpression of mGIuR5 and its
downstream IP3R in hippocampal astrocytes (Grolla et al,, 2013).
The toxic prion-mimetic compounds can increase mGluR5
clustering and accumulation at dendritic heads (Goniotaki et al.,
2017). Mutant htt can sensitize IP3-mediated release of Ca®* from
intracellular stores (Tang et al.,, 2003; Ribeiro et al., 2014). It displays
a scenario that accumulations of those misfolded peptides induce
mGIuR5 overexpression and intracellular Ca®" increase. The
increased mGluR5 mediated by prion propagation is convertible
by the removal of prions in vitro.

Altered mGIuR5 in Prion Infection
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FIGURE 11 | A hypothetical processing schema of GPCR-IP3-IP3R-
Ca®* and mGIuR5-MAPK signaling pathway before and after removal of prpsSe
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It is well known that activation of mGluR5 mediates many
biological activities. One pathway is that mGluR5 couples with
Gq/11a, activates PLC, subsequently cleaves DAG and IP3, and
eventually releases Ca®* from intracellular stores (Figure 11). The
other is that mGluR5 mediates the activations of a number of factors
in MAPK pathway (Figure 11). The elevations of the downstream
signaling pathways Gq/11a-IP3-IP3R-Ca** and MAPK in prion-
infected cell line in this study reflect an increase of mGIuR5 not only
in the expression level but also in the activity during prion
replication. Meanwhile, selective mGIuR5 antagonist (METP)
used in the present study also verifies the activation of mGluR5
increased in prion-infected cells. The abnormalities of intracellular
Ca”* homeostasis and the kinases in MAPK pathways have been
repeatedly described in many neurodegenerative diseases including
prion disease via the dysfunctions of various biological pathways
(Brini et al,, 2014; Ahmed et al., 2020). It is worth noting that the
removal of prion propagation efficiently reduces the levels of
mGluR5 and Gq/11a, but less affects the levels of phosphorylated
p38, ERK, and JNK. It highlights a much closer association of
increased mGluR5 with Ca*" dysregulation.

The distribution of mGIuR5 in CNS tissues is considered wide
both in neuronal and non-neuronal cells, including astrocytes,
microglia, oligodendrocytes, and stem cells (Balazs et al, 1997;
Biber et al., 1999; Kumar et al., 2015). However, our IFA assays
of brain sections have illustrated that mGIuR5 signals, particularly
the increased mGIuR5 signals in the scrapie-infected experimental
hamsters and mice, mainly colocalize with neurons. Furthermore,
mGluRl1, the other subtype of mGluR group I, also colocalize with
neurons. Meanwhile, our data here have proposed that over
activation of mGIuR5 contributes to the cell damage in vitro. It
may let us speculate that the overexpression of mGluRS5 at early stage
of prion infection influences the survival of cells. With the
progression of the disease, a large number of neurons were lost,
resulting the levels of mGluR1/5 were significantly reduced at the late
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stage of disease. However, it cannot be ruled out that other factors are
involved in nerve damage, especially in the early stages of prion
infection. Although mGluR5 is detectable in cultured BV2 cells,
stimulation of BV2 cells with LPS seems not to affect the mGluR5
level. Astrocytic mGIuR5 is believed to involve in glia-neuron
interactions, regulation of glutamate reuptake, and the coupling
of the neurovascular to neuronal activity (Vermeiren et al., 2006;
D’Ascenzo et al,, 2007). Increased mGluR5 in astrocytes is reported
in several acute and chronic neurodegenerative conditions, e.g.,
epilepsy, brain injury, amyotrophic lateral sclerosis, and multiple
sclerosis, which contribute selectively to the apoptosis of astrocytes
(Paquet et al, 2013). A more detailed study has demonstrated
different reactive phenomena of astrocytes collected from
different brain regions to the exposure of AP, that the astrocytes
from hippocampus show the increased mGluR5 and InsP3R while
those from entorhinal cortex fail (Grolla et al., 2013). Contrary to
above observations, we notice extremely less colocalization of
mGluR5 with the proliferative astrocytes in the regions of cortex
and hippocampus from three scrapie agents infected rodent models.
Although we cannot exclude the limitation from the point
experimental technique, the alteration of mGluR5 in the brains of
prion-infected animals seems to be less associated with the
proliferated astrocytes and activated microglia. Further assays
with different mGluR5 antibodies may help to address those
differences.

Unexpectedly, the brain mGIuRS5 levels of three scrapie-infected
rodent models are remarkably decreased at the end stage in this study,
even, the reduction of brain mGIuR5 occurs at early stage of prion
infection. Furthermore, decreased mGluR1 levels are also observed in
brains of 263 K-infected hamsters. The brain Gq/11a in scrapie agent
infected animals also decreases. Such alteration of brain mGluR5 in
scrapie-infected experimental rodents seems to be contrary to the
observations in prion-infected SMB-S15 cells. Our previous studies
have demonstrated many proteins in SMB-S15 cells that are
abnormally changed, which display similar changing trends as
prion-infected individuals. However, we have also identified that
lots of abnormally regulated brain proteins in prion-infected animals
do not significantly change in SMB-S15 cells or change in opposite
direction, such as oaB-crystalline, brain-derived neurotrophic factor
(BDNF) and the relevant factors (TrkB, p-TrkB, GRB2 and p57NTR),
metalloproteinase (ADAM10), glucose transporter 3 (GLUT3), and
Polo-like kinases 3 (PLK3) (Wang et al., 2013; Chen et al., 2014; Yan
et al, 2014; Ting-Ting Wang et al, 2016; Wang et al, 2017).
Moreover, majority of the abnormally expressed proteins in SMB-
S15 cells can be completely or partially converted by removal of prion
replication with resveratrol, but some do not, such as RyR2 and
caspase 8 (Shi et al,, 2018; Ma et al,, 2019). We assume that although
prion-infected cell lines mimic to some extent the prion infection in
vivo, it more reflects a situation that the cells adopt the propagation
and accumulation of prions; thus, the protein changing profile in
prion-infected cell line may differ with that in the brains of prion-
infected animals.

Early studies have illustrated a highly expressed mGluR5 in the
brain regions of some neurodegenerative diseases, e.g., AD, PD, and
HD. The expression of mGluR5 is also markedly elevated in caudate
nucleus of normal elderly individuals (Tsamis et al, 2013). PET
imaging assay has showed an elevated brain mGluR5 in LPS-induced

Altered mGIuR5 in Prion Infection

murine neuroinflammation model and in the brains of AD and ALS
patients (Muller Herde et al,, 2019). mGluR5 signaling may lead to
the activation of either neuroprotective pathways or neuronal toxicity.
Recently, the roles of the interaction mGIuR5 with Af and a-
synuclein-PrP© complexes in mediating the pathogenesis and
progression of AD and PD attract great attention (Overk et al,
2014; Ferreira et al,, 2017; Brody and Strittmatter, 2018; Lee et al,
2018). Therapeutic intervention designed to disrupt AP oligomer-
PrP® signaling through mGluR5 become a pharmacological hot point
(Brody and Strittmatter, 2018). The impairment of mGluR5 signaling
in CNS tissues of prion disease is poorly understood. Although the
results of three scrapie-infected rodent models here show a reduced
brain mGIuR5 which is speculated to be associated with relatively
rapid neuron loss, more studies with human and other animal prion
diseases are expected to get deep understanding of the alteration of
brain mGluR5 in prion disease.
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Supplementary Figure S1 | The level of mGIuR1 in SMB-PS and -S15 cells as well
as CHPG treated SMB-PS cells. (A) Left: Western blot for the levels of mGIuR1 in
SMB-PS and SMB-S15. Relative molecular weights are marked on the left. Right:
Densitometric analyses of the average gray values of the signals of the mGIuR1 after
being equilibrated with that of p-actin. (B) Left: Western blot for the levels of mGIuR1
in CHPG treated SMB-PS cells. Right: Densitometric analyses of the average gray
values of the signals of the mGIuR1 after being equilibrated with that of p-actin.

Supplementary Figure S2 | The level of mGIuR1 in brains of 263K-infected
hamster at end stage. (A) Upper: Western blot for the levels of brain mGIuR1 in
control and Ha-263K. Relative molecular weights are marked on the left. Lower:
Densitometric analyses of the average gray values of the signals of the mGIuR1 after
being equilibrated with that of B-actin. (B) Immunofluorescent staining of mGIuR1 in
cortex, cerebellum and hippocampus regions of 263K-infected hamsters. The
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