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Since traditional two-dimensional (2D) cell culture cannot meet the demand of simulating
physiological conditions in vivo, three-dimensional (3D) culture systems have been
developed. To date, most of these systems have been applied for the culture of
gastrointestinal and neural tissue. As for the female reproductive system, the culture of
endometrial and oviductal tissues in Matrigel has also been performed, but there are still
some problems that remain unsolved. This review highlights recent progress regarding
endometrial organoids, focusing on the signal for organoid derivation and maintenance,
the coculture of the epithelium and stroma, the drug screening using organoids from
cancer patients, and provides a potential guideline for genome editing in endometrial
organoids.
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INTRODUCTION

In recent years, many studies have focused on modeling organs in vitro due to the many
differences between monolayer cells cultured in vitro and complex environments in vivo.
Regardless of the types of constitutive cells, the polarity of the cells or the spatial structure of
the tissue, the two-dimensional (2D) culture method cannot effectively simulate physiological
conditions (Duval et al., 2017; Simian and Bissell, 2017). Organoid derived from human or
mouse progenitor/stem cells can drive division and differentiation, and lead to the expansion
of cell clones (Syed et al., 2020). These organ-specific clones will assist in the acquisition of
organ/tissue precursor identity with the application of cytokines and nutrient supplements.
These organoids provide a supporting structure that can sustain progenitor/stem cell self-
organization as well as lineage commitment, and communication between coculture
compartments can be achieved in a spatially defined manner. A large number of organoids
originating from organs such as the intestine, kidney, and brain become full-grown (Lancaster
and Knoblich, 2014; Koledova, 2017; Vargas-Valderrama et al., 2020); however, similar studies
in regard to the female reproductive system are still in their infancy. An established
endometrial organoid model replicates the characteristics of the endometrium acquiring a
hollow lumen, secretion function, and apico-basal polarity (Lancaster and Knoblich, 2014),
which can be used to assess normal physiological processes and perform oncology research.
Resembling the endometrial epithelia, endometrial epithelial organoids comprise at least 2 cell
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types: ciliated and nonciliated/secretory cells; fortunately,
single-cell sequencing has helped us learn more about this
mixed cell population and the important signaling pathways
that are vital for organoid formation (Lancaster and
Knoblich, 2014; Syed et al., 2020).

THE SOURCE OF HUMAN ENDOMETRIAL
ORGANOIDS

Human endometrial organoids mimic normal epithelial
function and are influenced by reproductive hormones.
Transcription signature expressed in organoids help us
identify the cell subtypes of endometrial organoids:
progenitor cells (LRIG1, PROM1, AXIN2, SOX9, SSEA-1,
CADN), epithelial cells (EPCAM, KRT7, CLDN10, CDH1,
LAMA4, FOXA2, KLF5, SOX17), secretory activity (PAEP,
MUC1, MUC20, PAX8, KLK11, SPP1, HSD17B2), and cilia
formation (FOXJ1, PIFO, RSPH1) (Valentijn et al., 2013;
Nguyen et al., 2017; Turco et al., 2017; Marinic et al.,
2020; Garcia-Alonso et al., 2021). In general, the
endometrium models derived from normal situations are
suitable for research under physiological conditions. Some
studies have demonstrated that menstrual flow, which can
provide tissue in a non-invasive way, contains viable cells and
can successfully establish organoid with the same growing
rate and transcription signature as the organoids derived
from scratch biopsies (Cindrova-Davies et al., 2021).
Patient-derived tumor organoids are usually used for
tumor-related drug-sensitivity research because of their
similar immunohistochemical and histomorphological
properties. RNA-sequencing data shows the consistency of
gene expression profiles between organoids derived from
tumor tissues and source endometrial tumor tissue
(Tamura et al., 2018). P0 cultures rather than multiply
passaged cultures are recommended because P0 cultures
contain almost all the cellular elements of primary tumors
and no exogenous growth factors are needed (Girda et al.,
2017). Endometrial stem/progenitor cells can be also derived
from the decidual tissue when endometrial biopsies or
elective abortion surgery is performed which initially used
to optimize culture condition because they can generate high
cell numbers (Turco et al., 2017). A recent study showed that
organoids can be isolated from post-partum placenta tissue
from patients with known pregnancy outcomes (preterm or
term placenta) (Marinic et al., 2020).

During menses, removal of endometrial functionalis,
residual stumps of glands of the layer basalis located at
stroma regenerates intact endometrial epithelium (Ludwig
and Spornitz, 1991). Evidence showed that endometrial stem
or progenitor cells for epithelial regeneration anticipated in
the process (Padykula, 1991). Axin2, a canonical Wnt/β
catenin target gene, has been used as a marker of bipotent
endometrial epithelial stem cells, and Axin2 positive epithelia
form intact and functional organoids. Moreover, organoids
derived from Axin2-expressing cells can be passaged steadily
(Syed et al., 2020).

HUMAN ENDOMETRIAL ORGANOID
CULTURE STRATEGY AND PATHWAYS
INVOLVED
Human endometrial organoid basic culture medium contains
advanced DMEM/F12 supplemented with serum substitute N2,
B27, L-glutamate, growth factors such as fibroblast growth factor
10 (FGF10) and epidermal growth factor (EGF), antioxidants,
N-acetyl-L-cysteine, Insulin-Transferrin-Selenium (ITS), PARP-
1 inhibitor nicotinamide, Wnt/β-catenin signaling pathway
activator and TGF-β signaling pathway inhibitor. It has been
reported that the effect of nicotinamide withdrawal is more
potent than the effect of the withdrawal of Noggin,
R-spondin-1, A83-01, EGF and other factors (Turco et al.,
2017). Wnt/β-catenin signaling pathway activation is
indispensable in mammalian adult stem cell self-renewal and
expansion (Yan et al., 2017). Stimulation of the Wnt/β-catenin
signaling pathway is significant for endometrial epithelial stem
cells to preserve stemness (Lien and Fuchs, 2014). R-spondin-1,
which is a secreted protein and Wnt modulator, stimulates both
Wnt/β-catenin and Wnt/noncanonical signalling. In many types
of cancer, it serves as a growth promoter and plays an important
role in cell proliferation, differentiation and stem cell function
(Yoon and Lee, 2012). For the efficient and long-term expansion
and passaging, R-spondin-1 is found to be essential with the
evidence that R-spondin-1 withdrawal reduce the number and
the passages of organoids (Boretto et al., 2017). In endometrial
organoid culture, as an upstream regulator, R-spondin-1 can
interact with the LGR4, 5 and 6, increasing phosphorylation of
LRP5/LRP6 and allowing for the persistence of surface Frizzled
receptors by avoiding ubiquitination, thus stabilizes β-catenin to
amplifies the Wnt/β-catenin signaling pathway (Carmon et al.,
2011; de Lau et al., 2014; Kessler et al., 2015; Jardé et al., 2016; Xu
et al., 2020). With the shedding of the endometrium and wound
healing, Wnt ligand 3 (Wnt3) expression fluctuates. The content
of Wnt3 in the proliferative endometrium is nearly 4.7 times that
in the secretory endometrium, which indicates that Wnt3 is
engaged in progenitor/stem cell proliferation in vivo (Tulac
et al., 2003). Indeed, both Wnt3A and R-spondin-1 are needed
for organoid culture. Another WNT pathway activator added to
culture medium is the glycogen synthase kinase 3 (GSK-3α/β)
inhibitor CHIR99021 (Santos et al., 2019; Xin Wang et al., 2020).
As an inexpensive and efficient alternative, CHIR99021 can
achieve an equal effect (Haider et al., 2019). It is encouraging
that some evidence has shown that Wnt3 may not be needed for
the growth and expansion of endometrial organoids because of
elevated and endogenously expressed Wnt ligands (Tulac et al.,
2003; Punyadeera et al., 2005; Boretto et al., 2017).

It has been reported that the TGF-β signaling pathway and
Wnt/β-catenin signaling pathway exhibit mutual interference
(Ng-Blichfeldt et al., 2019). It has been reported that the cell
cycle inhibitor p21 is a downstream gene of TGF-β signaling
pathway which induces epithelial cell growth arrest in the late G1
phase and increases the apoptosis rate (Derynck, 1994; Martin
et al., 2003; Niimi et al., 2007; Yoshimoto et al., 2015). The TGF-β
signaling pathway induce stem cell differentiation via the
activation of ALKs/Smads (Lu et al., 2017). A83-01, a
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transforming growth factor (TGF)-β type I receptor (TβR-I)
inhibitor, strongly inhibits ALK4, ALK5 and ALK7, blocks
TGF-β by reducing Smad2 phosphorylation levels thereby
inhibits TGF-β induced epithelial-mesenchymal transition
(Bates and Mercurio, 2003; Tojo et al., 2005; Cui et al., 2019).
Noggin, a BMP-4 antagonist, binds to BMP4 tightly prevent
BMP4 to interact with their receptors therefore inhibiting
differentiation. Noggin is essential to maintain self-renewal
characteristics in organoid culture (Kuijk et al., 2016;
Urbischek et al., 2019; Phan-Everson et al., 2021). Some
culture strategy proposes E2 addition can not only enhance
the number of passaging but also the growth and expansion of
organoids, however, it is not indispensable (Boretto et al., 2017).

CELL FATE DETERMINATION IN HUMAN
ENDOMETRIAL ORGANOIDS

Human endometrial organoids are realizable and practical
models to mimic the menstrual cycle. In accordance with the
in vivo process, organoids are treated with oestrogen (E2) and
medroxyprogesterone acetate (MPA). The single-cell
transcriptome atlas, which depicts a high-dimensional
search space, vividly illustrates different cell types in
human endometrial organoids include ciliated, secretory,
proliferative, stem, and unciliated cells and epithelial cells.
Ciliated cells increase throughout the E2 and E2+MPA
disposal which mimic artificial menstrual cycle in
endometrial organoids. The number of stem cells was
decreased by E2 and E2+MPA treatment, while E2+MPA
increased the number of secretory cells (Fitzgerald et al.,
2019). The NOTCH signaling pathway is known for cell
fate determination. In a clinical study, compared with
healthy fertile women, patients with endometrosis,
repeated implantation failure (RIF) and polycystic ovary
syndrome (PCOS), showed dysregulated NOTCH
signalling expression in mid-luteal region (Amjadi et al.,
2019). Other evidence in agreement with those of the
clinical study showed that the NOTCH and WNT
signaling pathway influence the proportion of ciliated and
secretory cells. WNT targets such as FOXJ1 are highly active
in the ciliated cells, however, the glandular cells show
transcriptional activation induced by WNT inhibition and
NOTCH activation (Garcia-Alonso et al., 2021). RNA
velocities projected into t-distributed stochastic neighbor
embedding (t-SNE) plots for control and Notch inhibitor
dibenzazepine (DBZ; generic name iminostilbene)-treated
cells revealed that DBZ treatment promotes ciliated cell
differentiation and transdifferentiation from secretory cells
to ciliated cells (Cochrane et al., 2020). In adult fallopian tube
organoids, NOTCH signaling has been demonstrated to
sustain the expression of stem cell markers. DBZ treatment
increases the abundance of cilia and accessory microtubules
in fallopian tubes (Kessler et al., 2015). In other human
epithelial organoid models, such as urothelial organoids,
Notch signaling participates in urothelial differentiation,
decreasing progenitor expression (Santos et al., 2019). In

an intestinal organoid model, Yap1-Notch-Dll1 axis
activation drives polarization and the formation of
complex multicellular asymmetric structures (Serra et al.,
2019).

GENETIC MANIPULATION OF HUMAN
ENDOMETRIAL ORGANOIDS

Human endometrial organoids are embedded in Matrigel, which
is similar to extracellular matrix (ECM). The ECM supports cell
physiological functions but obviously hinders the efficiency of
genome editing. Some regular genetic strategies, such as RNA
interference (RNAi) and plasmid transfection, are widely used in
mammalian cells as powerful tools to manipulate genes
(Laperrousaz et al., 2018). Lipofection combined the CRISPR/
Cas9 ensures that the targeting agent is incorporated into the
target cells to facilitate gene knock-in or knockout. However, this
traditional tool faces challenges when it is used to deal with three-
dimensional (3D) models when cells are embedded in solid ECM.
Some commercial reagents, such as Lipofectamine 2000, have
been proven to have extremely low efficiency. Polymeric
nanoparticles, which are said to be the best method, only
show a transfection efficiency of 6% in 3D culture, which is a
nearly 90% decrease compared with the efficiency in 2D culture
(Morgan et al., 2018).

By contrast, viral vectors have a higher feasibility for use in the
transfection of large plasmids or the targeting of cells that are
hard to transfect through regular lipofection. However, intrinsic
biosafety issues cannot always be avoided because vectors carried
by lentivirus insert into the genome randomly, which may lead to
gene mutation. Adenovirus transfection can circumvent this
defect to some extent, and other optimization methods are
emerging. Matrigel bilayer organoid culture (MBOC) is
reported to achieve 90% infection efficiency (Maru et al., 2019).

Even if the success rate of virus-related genome editing is
elevated, another problem still needs to be considered. The
volume of Matrigel for the viral or nonviral transfection
methods mentioned above should be as low as possible. The
usual solution is to deprive of ECM in the formed organoid and
disperse spheroids into single cells and then these cells would be
reseeded into Matrigel or hydrogel again. At this point, the cells
are in a 2D state, which presents another problem. Organoids
derived from single precursor stem cells lose homology and
polarity, which means that the gland is no longer intact (Co et
al., 2021; Tsai et al., 2018). Therefore, in situ transfection is
worthy of further study.

Compared with lipofection or lentiviral infection,
electroporation for stable DNA transduction is a powerful tool
to edit the genome in some human primary cells, digestive and
reproductive system organoids that are hard to transfect (Fujii
et al., 2015; Dekkers et al., 2021). Electroporation in situ in 3D
matrices has been attempted in other kinds of models. Single
organoids originating from glandular organs with cavity structure
have been injected with an exogenous DNA mixture by capillary
injection, and then tweezer electrode electroporation has been
performed in human liver ductal organoids (Hendriks et al.,
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2021). Homology-directed repair has been successfully applied
for genetic engineering using the electroporation combined with
CRISPR–Cas9 (Matano et al., 2015). HDR used to be considered
precise genome editing, but the efficiency is low. A recent report
named CRISPR–HOT, which depends on “error-prone”
nonhomologous end joining (NHEJ) for genetic engineering,
achieved ten times high efficiency to make knock-in
manipulation (Artegiani et al., 2020). CRISPR–Cas9 based
genome engineering has allowed the knock-in and knockout
of multiple genes to be achieved, and there are reasonable
grounds for further study of the application of endometrial
organoids (Hendriks et al., 2021).

COCULTURE MODELS WITH HUMAN
STROMA

In the process of endometrial preparation and embryo
implantation, the epithelium plays an important role.
Although the epithelium is the first one to which embryo
attaches, crosstalk between epithelial cells and stromal cells is
indispensable for the proper differentiation of both cell types. The
drawback for in vitro experience and the lack of an ideal
spontaneous decidual animal model limit research on the
human endometrium. Some attempts have been made to
decide what kind of human endometrial stromal fibroblast cell
can be cocultured with human endometrial epithelial organoids,
and the key to success may be that endometrial stromal cells can
stick to the spherical organoid structure and then form a compact
structure. Stromal cells cocultured with epithelial organoids can
be divided into several types based on the origin. It has been
reported that human pluripotent stem cell-derived endometrial
stromal fibroblasts (PSC-ESFs) can be cocultured with organoids
in Matrigel and respond to hormone signaling transforming into
decidualized endometrial stromal fibroblasts (Cheung et al.,
2021). In some respect, Matrigel is not suitable ECM for
fibroblast cells when co-cultured with the epithelia. Evidence
showed that primary stromal cells can be cocultured with
organoids in hydrogel matrix comprised 97% type I and 3%
type III collagens which resembled mid-luteal endometrium in
the constituent and in-use elastic modulus (Pa) of comparable
magnitude (Aplin et al., 1988; Iwahashi et al., 1996; Oefner et al.,
2015; Abbas et al., 2019; Rawlings et al., 2021). Recently, a new
type of synthetic matrix was discovered to be more suitable for
tumorous relevant organoids-ECM interactions. Synthetic
hydrogel design guided by multiomic evaluation of tumor and
normal tissue revealed pancreatic organoids microenvironment.
Based on this, the new synthetic scaffold uses eight-arm
adhesion-linker pre-functionalized vinyl sulfone-activated PEG
macromer (f-PEG-vs) based hydrogel system which is sensitive to
matrix metalloproteinase (MMP). The system contains the
fibrillar analogue FN-mimetic peptide PHSRN-K-RGD,
collagen analogue the GFOGER peptide, and a BM-binding
peptide which maintains cell secreted matricellular proteins to
the greatest extent (Below et al., 2022). The new system may
provide some hints for whether a more accurate ECM for
endometrial organoid and stromal cells growth and expansion

can be established. HGF, FGF10 secreted by surrounding stroma
(Sugawara et al., 1997; Chen et al., 2000; Chung et al., 2015).
Decidual cells also responding to hormone signaling secrete
decidual prolactin (PRL) and C-X-C motif chemokine ligand
14 (CXCL14) (Rawlings et al., 2021). Coculture model is a more
suitable method to investigate the relationship between pre-
implantaion embryo and receptive endometrium.

APPLICATION IN GYNECOLOGICAL
DISEASE AND ENDOMETRIAL
RECEPTIVITY
Patient-derived endometrial organoids maintaining genomic
landscape form donors have also been widely used in drug
testing and in vivo transplantation. Compared with the
primary and cell line cultures, the establishment of
pathological models have many advantages such as similar
tumorous marker expression and mutational landscape which
can guide individual therapy (Drost et al., 2017). From the
perspective of morphology, normal endometrial organoids
usually form circular spheroid a hollow lumen while the
patient-derived organoids form a compacted and solid one.
Ectopic organoids derived from endometriosis (ECT-O) grow
more slowly than those organoids from health, usually it takes
7–14 days on account of harder dissociation conditions. ECT-O
recapitulates endometriosis phenotype and disease-related traits.
It is surprising that organoids derived from endometrial
carcinoma have low formation efficiency and limited
expansion compared with organoids come from precancerous
lesions with high formation efficiency and can be passaged
steadily for more than 6 months (Boretto et al., 2019).
Evidences show that histological, molecular features, invasive
and metastatic capacity are similar with primary origins
(Kiyohara et al., 2016; Kopper et al., 2019). It has been
demonstrated in organoids which are established from ovarian
cancer, drug testing can be conducted on established organoids
derived from ovarian cancer indicates the individual drug
response (Maenhoudt et al., 2020). Consistently, Witte et al.
revealed that organoids from ovarian cancer genetically
resembled the primary tumorous and drug testing reflected
patients’ clinic response (de Witte et al., 2020). Organoids
treated with oestrogen, progesterone and cyclic adenosine
monophosphate (cAMP) can accurately mimic implantation
window and help investigate the paracrine communication of
the embryo secretome in maternal-fetal interface. Glycodelin A
(GdA) which considered an endometrial receptive marker, was
significantly upregulated in receptive endometrial epithelial
organoids after stimulating with embryo-conditioned culture
medium (Focarelli et al., 2018; Luddi et al., 2021). Coincide
with changed receptive marker and ultrastructure of epithelial
glandular organoids treated with medium conditioned using the
human embryo, the biochemical and clinical pregnancy rate of
patients undergoing IVF significantly elevated when receiving the
embryos in self-spent medium compared with those receiving the
embryos with fresh medium (Wang et al., 2021). Mimicking the
process that how human blastocyst interacts with endometrium,
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endometrial organoids can be seeded in 2D to form an open-faced
endometrial layer (OFEL). Exposure to oestrogen and
progestogen, 2D OFEL expressed the receptive marker and can
attached to the stem cell derived blastoid, while the nonreceptive
OFEL cannot. (Boretto et al., 2017;WanxinWang et al., 2020). As
happening in vivo, blastocyst didn’t attach to nonreceptive OFEL
(Kagawa et al., 2022).

CONCLUSION

The endometrial organoid model is of significance for mimicking
physiological and pathological conditions. Based on the crosstalk
occurred between the epithelium and stroma during not only the
normal menstrual cycle but also in embryo implantation, a coculture
model has been promoted, and a new type of artificial synthesized
ECM has been developed based on in vivo feature.

Endometrial organoids usually possess similar histologic
origin characteristics. Normal endometrial tissue and decidual
tissue are usually used for the physiological characteristics, and
tumor tissue possesses a strong proliferation ability. Organoid
culture involves many signaling pathways, which may influence
the size and number of organoids. With the development of
single-cell sequencing, some signaling has been shown to impact
stem/progenitor cell self-renewal and determine the fate of
differentiating cells. The problem is that normally effective
genome editing methods cannot reach ideal efficiency with the
solid ECM. Thus, most gene knock-in and knockout experiments
depend on the remove of ECM and the dispersion of spheroids
into single cells. However, gene editing in situ with Matrigel/

Hydrogel intact might be the best choice. Based on ethical
restrictions, endometrial organoids and descendant models
may be the best alternative, and understanding the intrinsic
structure and mechanism would benefit the clinical practice.
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