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Cell death is a fundamental feature of multicellular organisms’ development and a key
driver of degenerative diseases. Ferroptosis is a new regulatory cell death mediated by
iron-dependent lipid peroxidation, which is different from apoptosis and necrosis in
morphology, pathophysiology and mechanism. Recent studies have found that
ferroptosis is involved in the development of many diseases including
hepatocellular carcinoma (HCC). As further research progresses, specific
mechanisms of ferroptosis in HCC are being revealed. In this review, we
summarize these recent advances about the treatment of drug-resistance in HCC
and the latest ferroptosis-related treatment for HCC.
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INTRODUCTION

HCC is an invasive cancer prevalent worldwide, with a mortality rate ranked second among all
the cancers, which was just behind lung cancer and colon cancer (Bray et al., 2018). The 5-years
survival rate of HCC patients is less than 10%, and the average life expectancy is only 6 months
for those patients who were not eligible for surgery. And the existing treatments, including
radiofrequency therapy, radiotherapy therapy, and chemotherapy, do not significantly improve
the prognosis of HCC patients. Currently, in terms of HCC chemotherapy, the US Food and
Drug Administration (FDA) has approved a variety of small molecule multi-kinase inhibitors,
such as sorafenib, for the treatment of advanced HCC (Boland and WU, 2018). However, the
therapeutic effect of most patients is still limited due to the frequent drug resistance of those
inhibitors. Therefore, different modulation strategies and administration routes have been
proposed to enhance the antitumor activity of these agents.

Dixon identified an iron-dependent form of cell death in 2012 and defined this modality as
ferroptosis. It is now considered that ferroptosis is triggered by both exogenous and
endogenous pathways, either by inhibition of cell membrane transporters (cystine/
glutamate transporter system) or by activation of iron transporters, serum transferrin, and
lactoferrin. Endogenous pathways are activated by blocking intracellular antioxidant enzymes
such as glutathione peroxidase 4 (GPX4) (Tang and KROEMER, 2020). Unlike other known
modes of cell death, such as apoptosis, necrosis, and autophagy, ferroptosis has unique
morphological, biochemical, and genetic characteristics, such as mitochondrial atrophy,
increased membrane density, iron, and ROS accumulation.

Recent studies have found that ferroptosis is involved in the proliferation, invasion, andmigration
of HCC cells, and is also closely related to drug-resistance in HCC, of which the specific mechanism is
being gradually revealed.
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TABLE 1 | The regulators of ferroptosis in HCC.

Gene/Axis/Compound/Drug Mechanism Target Influence to
ferroptosis

References

Ubiquitin-like Modifier Enzyme 1 (UBA1) Inhibit NRF2 expression by inhibiting of UBA1 NRF2 - Shan et al. (2020)

Disulfiram (DSF) DSF inhibits the signaling pathways of NRF2 and
MAPK kinase

NRF2 + Ren et al. (20211021)

p62 p62 can down-regulate Keap1 expression and
reduce NRF2 degradation

Keap1 - Sun et al. (2016a)

Xanthine Oxidoreductase (XOR) XOR can down-regulate NRF2 expression Keap1 + Sun et al. (2020)

Tripartite motif-containing 25 (TRIM25) TRIM25 can activate NRF2 Keap1 - Liu et al. (2020)

Malic enzymes (ME) Transcriptionally activating ME1 by NRF2 when cells
encounter further episodes of ROS insult

induced by NRF2 Lee et al. (2021)

Sigma-1 receptor (S1R) S1R can regulate NRF2 thus inhibiting ROS
accumulation

NRF2 - Bai et al. (2019)

Catenin beta-1 (CTNNB1) CTNNB1 may have synergistic effect with NRF2
mutation

NRF2 Unknown Zavattari et al. (2015);
Tao et al. (2021)

miR-101 (miRNA) Target the 3′-UTR of NRF2 and negatively regulate
NRF2

NRF2 + Gao et al. (2017);
Raghunath et al.
(2018)

miR-144 (miRNA) Activation of Nrf2 NRF2 - Raghunath et al.
(2018)

miR-340 (miRNA) Target at the 3′-UTR of NRF2 and negatively regulate
NRF2

NRF2 + Shi et al. (2014);
Raghunath et al.,
2018)

miR-122 (miRNA) Inhibited by NRF2 Inhibited by NRF2 Unknown Aydin et al. (2019)

miR-129-3p (miRNA) Induced by NRF2 Induced by NRF2 Unknown Sun et al. (2019)

miR-141 (miRNA) Upregulate NRF2 Keap1 - Raghunath et al.
(2018)

miR-200a (miRNA) Increase NRF2 and inhibit TFR1 expression Keap1 - Greene et al. (2013);
Raghunath et al.
(2018)

Kral (lncRNA) Induce Keap1 to regulate NRF2 Keap1 + Wu et al. (2018)

Glutathione S-transferase zeta 1 (GSTZ1) Inhibit NRF2/GPX4 axis NRF2 + Wang et al. (2021a)

Quiescin sulfhydryl oxidase 1 (QSOX1) Inhibit NRF2 NRF2 + Sun et al. (2021)

miR-200b (miRNA) Adjust ferritin heavy chain 1(FtH1) and ferritin light
chain (FtL)

Ferritin Unknown Greene et al. (2013)

miR-122 (miRNA) Reduce iron by adjusting Nocturnin Nocturnin Unknown Zhang et al. (2020)

PVT1 (lncRNA) Increase lipid peroxidation and iron deposition in vivo
and in vitro

TFR1 + Lu et al. (2020)

miR-152 (miRNA) Inhibit TFR1 expression TFR1 - Kindrat et al. (2016)

miR-22 (miRNA) Inhibit TFR1 expression TFR1 - Greene et al. (2013)

miR-320 (miRNA) Inhibit TFR1 expression TFR1 - Greene et al. (2013)

miR-107 (miRNA) Inhibited by iron Zou et al. (2016)

miR-30d (miRNA) Inhibited by iron Zou et al. (2016)

Formosaanin C Inducing ferritinophagy and lipid ROS formation / + Lin et al. (2020)

CDGSH iron sulfur domain2 (CISD2) Excessive iron ion accumulation Fe - Li et al. (2021b)

O-GlcNAcylation Increase the iron concentration through
transcriptional elevation of TFRC

TRFC + Zhu et al. (2021)

Solasonine Increase lipid ROS levels by suppression of GPX4
and GSS

GPX4 + Jin et al. (2020)

(Continued on following page)
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TABLE 1 | (Continued) The regulators of ferroptosis in HCC.

Gene/Axis/Compound/Drug Mechanism Target Influence to
ferroptosis

References

Heteronemin Decrease GPX4 expression and induced the
formation of ROS

GPX4 + Chang et al. (2021)

Selenoproteins Constitute GPX4 GPX4 - Ingold et al. (2018)

Sigma-1 receptor (S1R) Inhibit the expression of GPX4 GPX4 - Bai et al. (2019)

Circ-interleukin-4 receptor (CircIL4R) As a miR-541-3p sponge to regulate its target GPX4 GPX4 - Xu et al. (2020)

Ketamine Decrease expression of lncPVT1 (directly interacted
with miR-214-3p to impede its role as a sponge of
GPX4) and GPX4

GPX4 + He et al. (2021)

Legumain Promote chaperone-mediated autophagy of GPX4 GPX4 + Chen et al. (2021)

vitamin D receptor (VDR) Transregulation of GPX4 GPX4 - Hu et al. (2020)

Ceruloplasmin (CP) Accumulation of intracellular ferrous iron (Fe2+) and
lipid ROS

Fe - Shang et al. (2020)

miR-22 (miRNA) Increase ROS SIRT-1 + Pant et al. (2017)

miR-92 (miRNA) Increase ROS unknown + Cardin et al. (2012)

miR-145 (miRNA) Elimination of insulin-induced PKM2 and ROS
elevation

PKM2 - Li et al. (2014)

miR-222 (miRNA) Unknown ER (endoplasmic
reticulum)

- Dai et al. (2010)

Let-7 (miRNA) Directly acts on the 3′-UTR of Bach1 and negatively
regulates expression of this protein, and thereby up-
regulates modulation of heme oxygenase 1 (HMOX1)
gene expression

Heme oxygenase-1 - Hou et al. (2012)

miR-221 (miRNA) Unknown ER - Dai et al. (2010)

miR-21 (miRNA) Increase ROS unknown + Shu et al. (2016)

miR-181 (miRNA) Increase ROS Unknown + Zhang et al. (2020)

miR-200a-3p (miRNA) Inhibite p38/p53/miR-200 feedback loop and
increased ROS

p53 + Xiao et al. (2015)

miR-125b (miRNA) Increase ROS HK2 + Li et al. (2017)

miR-26a (miRNA) Regulate fatty acid and cholesterol homeostasis and
decreasing ROS

Triglyceride,
totalcholesterol,
malondialdehyde

- Ali et al. (2018)

miR-885-5p (miRNA) Induce TIGAR (TP53-induced glycolysis and
apoptosis regulator)expression through a p53-
independent pathway and decreasing ROS

TIGAR - Zou et al. (2019)

miR-150-3p (miRNA) Induced by ROS / / Wan et al. (2017)

miR-1915-3p (miRNA) Induced by ROS / / Wan et al. (2017)

miR-34a-3p (miRNA) Induced by ROS / / Beccafico et al. (2015)

miR-34a-5p (miRNA) Induced by ROS / / Wan et al. (2017)

miR-638 (miRNA) Induced by ROS / / Wan et al. (2017)

H19 (ncRNA) Decrease ROS MAPK/ERK signaling
pathway

- Ding et al. (2018)

GABPB1-AS1 (lncRNA) Downregulate the gene encoding Peroxiredoxin-5
(PRDX5) peroxidase and the eventual suppression of
the cellular antioxidant capacity

/ + Qi et al. (2019)

miR-18a (miRNA) Downregulate the expression of Glutamate-Cysteine
Ligase Subunit Catalytic (GCLC), the rate-limiting
enzyme of GSH synthesis

GSH + Anderton et al. (2017)

(Continued on following page)

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8452323

Zhao et al. Ferroptosis in Hepatocellular Carcinoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


TABLE 1 | (Continued) The regulators of ferroptosis in HCC.

Gene/Axis/Compound/Drug Mechanism Target Influence to
ferroptosis

References

miR-152 (miRNA) Reduce GSH levels by targeting Glutathione
S-transferase

GSH + Huang et al. (2010)

miR-503 (miRNA) Unknown GSH + Wang et al. (2014)

Neat1 (lncRNA) Increase GST to increase GSH consumption GST + Wang et al. (2018)

Metallothionein-1G (MT-1G) Induce depletion of GSH GSH - Sun et al. (2016b)

Deleted in azoospermia-associated
protein 1 (DAZAP1)

Interact with the 3′UTR (untranslated region) of
SLC7A11 mRNA and positively regulate its stability

SLC7A11 - Wang et al. (2021b)

Transforming growth factor β1 (TGF-β1) Upregulate of Smad3 inhibits SLC7A11 expression SLC7A11 + Kim et al. (2020)

sulfasalazine Inhibit SLC7A11 SLC7A11 + Song et al. (2017)

Actinomycin D Inhibit of SLC7A11 expression by inhibition of CD133
synthesis

SLC7A11 + Song et al. (2017)

Circ0097009 (circRNA) Regulate of SLC7A11 expression by expression of
miR-1261

SLC7A11 - Lyu et al. (2021)

METTL14 SLC7A11 mRNA was modified at 5′UTR and
degraded

SLC7A11 + Fan et al. (2021)

transcription factors YAP/TAZ Induce the expression of SLC7A11 SLC7A11 - Gao et al. (2021)

IFN-γ Down-regulate the mRNA and protein levels of
SLC3A2 and SLC7A11

SLC7A11 + Kong et al. (2021)

activating transcription factor 3 (ATF3) Bind to the SLC7A11 promoter and repressing
SLC7A11 expression in a p53-independent manner

SLC7A11 + Wang et al. (2020)

miR-182-5p and miR-378a-3p (miRNA) Directly bind to the 3′UTR of GPX4 and SLC7A11
mRNA, downregulation of GPX4 and SLC7A11

GPX4, SLC7A11 + Ding et al. (2020)

LINC00618 (lncRNA) Increase the levels of lipid ROS and iron, decreasing
the expression of SLC7A11

ROS,SLC7A11 + Wang et al. (2021c)

microRNA-17-5p (miRNA) Activate the p38 MAPK pathway, which in turn
facilitates the phosphorylation of HSPB1

HSPB1 unknown Yang et al. (2010)

heat shock protein beta-1 (HSPB1) Reduce iron-mediated production of lipid ROS ROS - Sun et al. (2015)

protein kinase p38α (Mapk14) Decrease the expression of HSPB1 to reduce the
accumulation of intracellular ROS

HSPB1 + Sakurai et al. (2013)

dual specificity phosphatase 1 (DUSP1) Inhibit the phosphorylation of P38 MAPK and HSPB1 HSPB1 + Hao et al. (2015)

Astragalus Directly down-regulate MT1G MT1G + Liu et al. (2021b)

microRNA-205 and microRNA-211-5p
(miRNA)

Target the 3ʹUTR of ACSL4 inhibits ACSL4 expression
at mRNA and protein levels

ACSL4 - Cui et al. (2014); Qin
et al. (2020)

Lactic acid Produce sterol regulatory element binding protein 1
(SREBP1) and downstream stearoyl-coA desaturase-
1 (SCD1) to enhance the production of iron-resistant
monounsaturated fatty acids (PUFA). SCD1 acts
synergistically with acyl-CoA synthase 4 (ACSL4)

ACSL4,PUFA - Zhao et al. (2020)

NADPH-cytochrome P450 reductase
(POR) and NADH-cytochrome b5
reductase (CYB5R1)

React with iron to generate reactive hydroxyl radicals
for the peroxidation of the polyunsaturated fatty acid
(PUFA) chains of membrane phospholipids, thereby
disrupting membrane integrity

PUFA + Yan et al. (2021)

DJ-1/PARK7 (cancer-associated protein) DJ-1 depletion inhibits the transsulfuration pathway
by disrupting the formation of the S-adenosyl
homocysteine hydrolase tetramer and impairing its
activity

homocysteine - Cao et al. (2020)

hydroxycarboxylic acid receptor 1
(HCAR1)/monocarboxylate transporter 1
(MCT1)

Enhance the production of anti-ferroptosis
monounsaturated fatty acids

MUFA - Zhao et al. (2020)
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REGULATION OF FERROPTOSIS IN HCC

Sensitivity to ferroptosis is closely related to many biological
processes, such as (anti-)oxidant metabolism, iron metabolism,
lipid metabolism, energy metabolism, and regulation of non-
coding RNAs (ncRNAs). NcRNAs participate in the regulation of
tumorigenesis via various biological processes such as chromatin
modification, alternative splicing, competition with endogenous
RNAs, and interaction with proteins. Intervention in these key
links may regulate the sensitivity of HCC cells to ferroptosis. The
regulation of ferroptosis found in HCC in recent years was sorted
out in Table 1 and Figure 1.

(Anti-)Oxidant Metabolism
(Anti-)oxidantMetabolism plays an important role in ferroptosis.
Glutathione (GSH) metabolism and anti-oxidant capacity
regulate sensitivity to ferroptosis. GSH is a tripeptide
antioxidant that acts as a cofactor of Se-dependent GPX4 to
reduce lipid hydroperoxides (Yant et al., 2003; Lu, 2009).
Inhibition of cystine required for GSH synthesis eventually
leads to depletion of intracellular GSH levels (Dixon et al.,
2012; Dixon and STOCKWELL, 2014). GPX4 converts GSH
between the reduced and oxidized states and converts lipid
hydroperoxides to lipid alcohols. This process prevents the
formation of Fe2+ dependent toxic lipid ROS (Labunskyy
et al., 2014; Forcina and DIXON, 2019). GPX4 is the only
reported enzyme that can directly reduce complex
phospholipid peroxides and is the downstream target gene of
NRF2 (Nuclear factor E2-related factor 2) (Forcina and DIXON,
2019; Friedmann Angeli et al., 2019). Erastin, a classical
ferroptosis-inducing drug, depletes GSH and indirectly
inactivates GPX4, leading to accumulation of toxic lipid ROS

and subsequent lipid peroxidation (Dixon et al., 2012; Dixon and
STOCKWELL, 2014), ultimately leading to ferroptosis.

At present, most studies on NRF2 in HCC involve the p62-
Keap1 (Kelch-like ECH-associated protein 1)-NRF2 axis. The
p62-Keap1-NRF2 signaling pathway is involved in the process of
cell avoiding ferroptosis. NRF2 is a key regulator of the
antioxidant response, including the expression of the Cystine/
glutamate exchange system (system XC−) (Hassannia et al., 2019).
Inhibition or knockdown of NRF2 enhances erastin- or
sorafenib-induced ferroptosis in HCC in vitro and in vivo
(Hassannia et al., 2019). The System XC− consists of solute
carrier family 7 member 11 (SLC7A11, xCT) and solute
carrier family 3 member 2 (SLC3A2, 4F2hc) by disulfide
bonded, which import the extracellular oxidized form of
cysteine and cystine, in exchange for intracellular glutamate.
SLC7A11 indirectly inactivates GPX4 by reducing cysteine
uptake, thereby limiting GSH synthesis, increasing lipid ROS,
and ultimately leading to ferroptosis (Sato et al., 1999; Cao and
DIXON, 2016). NRF2 has antioxidant elements and is regulated
by Keap1. Its gene transcription is partially under the control of
ROS. Sun et al. (2016a) found p62 expression prevents NRF2
degradation by Keap1 inactivation and enhances the subsequent
nuclear accumulation of NRF2. They also demonstrate that
NRF2-mediated anti-ferroptosis activity depends on the
induction of NADPH (Reduced Nicotinamide Adenine
Dinucleotide Phosphate) quinone oxidoreductase 1 (NQO1),
heme oxygenase-1(HO-1), and ferritin heavy chain-1 (FTH1).

In morphology, ferroptosis mainly occurred in cells with
reduced mitochondrial size, increased bilayer membrane
density, and decreased or disappeared mitochondrial crest
(Dixon et al., 2012; Yang and STOCKWELL, 2008; Yagoda
et al., 2007). Mitochondria are the main source of ROS.

FIGURE 1 | Regulation pathways and key molecular mechanisms of ferroptosis in HCC.
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Excessive ROS can cause significant oxidative stress and lead to
cell and tissue damage (Czaja et al., 2013). Gao et al. (2019)
showed that ROS derived from mitochondria are involved in
cysteine deprivation induced ferroptosis. Li et al. (2021) found
depletes cysteine can enhance sorafenib-induced ferroptosis and
lipid ROS production, and increase oxidative stress and
mitochondrial ROS accumulation. And they point out that
sorafenib exerts its anti-HCC function partly by targeting the
mitochondrial function. Huang et al. (2021a) found the use of
ZZW-115 (Nuclear protein 1 inhibitor) induced ferroptosis and
subsequent mitochondrial morphological changes, including the
disintegration of mitochondrial network and severe
mitochondrial metabolic disorders, which were compatible
with the process of ferroptosis, and this process can be
complementary to TFAM (a core mitochondrial transcription
factor) (Zhao, 2019).

Iron Metabolism
Iron is a redox-active metal that can participate in the formation
of free radicals and the propagation of lipid peroxidation.
Elevated iron levels increase susceptibility to ferroptosis. Iron
overload or excessive activity of heme oxygenase 1 (HMOX1)
increases the labile iron pool (LIP) that cause ferroptosis.
Excessive iron increases ROS through Fenton reaction
(through reaction with hydrogen peroxide (H2O2), ferrous
iron (Fe2+) is oxidized into trivalent iron (Fe3+), forming
highly active hydroxyl radical) (Hassannia et al., 2019), ROS is
reversely neutralized by iron (Arefieva et al., 2021). Iron
metabolism mainly involves the interaction between
transferrin (TF) and its receptor (TFR), the input of iron
through divalent metal transporter 1 (DMT1), the storage of
iron as ferritin and iron-sulfur clusters (ISC), and the output of
iron through iron transporter (FPN) (Abeyawardhane and
LUCAS, 2019; Wang et al., 2019a).

The protection of the p62-Keap1-NRF2 signaling pathway on
ferroptosis in HCC cells also involves the regulation of Fe
homeostasis. An early study showed an increase in TFR1 and
a decrease in ferritin (FTL and FTH1) expression in ferroptosis
sensitive cells compared with iron-resistant cells (Yang and
STOCKWELL, 2008). Sun et al. (2016a) showed that it was
FTH1, not FTL or TFR1, that was regulated by NRF2 in
ferroptosis. FTH1 inhibited ferroptosis by storing and
transporting Fe2+ in HCC cells. In addition, excess iron in the
liver may play a role in carcinogenesis by promoting tumor
growth and altering the immune system (Kowdley, 2004). It is
important to note that induction of ferroptosis in the liver may
have different roles in tumorigenesis and cancer therapy.

Lipid Metabolism
Ferroptosis is iron-dependent regulatory necrosis induced by
lipid peroxidation that occurs in cell membranes, a
peroxidation reaction by polyunsaturated fatty acids catalyzed
by the synthesis of acyl-CoA synthetase long-chain family
member 4 (ACSL4) (Doll et al., 2017; Conrad and PRATT,
2019). Some polyunsaturated fatty acids (PUFAs) such as
phosphatidylethanolamine (PE) and phosphatidylcholine (PC)
are responsible for inducing ferroptosis by lipid peroxidation.

Since de novo synthesis of PUFAs is strictly limited in mammals,
various PUFAs are produced by the PUFAs biosynthesis pathway
through the uptake of essential fatty acids from the blood and
lymphatic fluid by cells. Free polyunsaturated fatty acids can be
incorporated into cell membranes by various enzymes, such as
ACLS4 and LPCAT3 (lysophosphatidylcholine acyltransferase 3),
and lipid peroxidation can be induced by enzyme-induced and
non-enzyme-induced mechanisms, resulting in ferroptosis (Lin
et al., 2021). In this regard, knockdown of ACLS4, which
preferably converts arachidonoyl (AA) to acylated AA, or loss
of LPCAT3, which catalyzes the insertion of acylated AA into PLs
(phospholipids), and make cells resistant to ferroptosis (Dixon
et al., 2015; Yuan et al., 2016; Doll et al., 2017; Kagan et al., 2017).
Magtanong et al. (2019) found that acyl-CoA synthetase long-
chain family member 3 (ACSL3) converts monounsaturated fatty
acids (MUFAs) into its acyl-CoA ester for incorporation into
membrane phospholipids, thereby protecting cancer cells from
ferroptosis. However, the levels of fatty acids (include MUFAs
and PUFAs) in human serum are much higher than those in
classical media containing fetal bovine serum (FBS), so how cells
maintain the level of free fatty acid pools in cells is important to
determine whether cells experience ferroptosis (Kamphorst et al.,
2013; Magtanong et al., 2019).

Energy Metabolism
Cellular energy metabolism is directly related to ferroptosis
because it regulates antioxidant defense by mediating the
synthesis of biological macromolecules and biological
reductants such as NADPH (Zheng and CONRAD, 2020).
Tumor cells typically exhibit upregulated glycolysis and PPP
(pentose phosphate pathway) activity, which not only reduces
ROS production by inhibiting mitochondrial respiration but also
replenishes NADPH supply, thereby helps maintaining redox
homeostasis to ensure cell survival. In energy metabolism,
previous studies have reported that Cytochrome P450
oxidoreductase (POR) is a key mediator of ferroptosis, which
promotes ferroptosis through the peroxidation of saturated
phospholipids in cell membranes (Zou et al., 2020). Glucose 6-
phosphate dehydrogenase (G6PD) is a key enzyme in PPP and
plays a key role in NADPH production (Yang et al., 2019). G6PD
may negatively regulate ferroptosis in HCC by regulating POR
(Cao et al., 2021). Lu et al. (2018) pointed out that G6PD induces
epithelial-mesenchymal transition (EMT) by activating the Signal
Transducers and Activators of Transcription 3(STAT3) pathway,
thereby promoting migration and invasion of HCC. Therefore, it
can be concluded that disruption of tumor energy metabolism
pathway not only changes the sensitivity of mutant tumor cells to
ferroptosis, but also reduces their antioxidant defense ability to
promote ferroptosis, and even affects tumor migration and
invasion.

Regulation of Ferroptosis by Non-Coding
RNAs
According to length and shapes, ncRNAs are divided into various
types including microRNAs (miRNAs), PIWI-interacting RNAs
(piRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs
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TABLE 2 | Common chemotherapeutic agents in HCC.

Chemotherapeutic agent Mode of action References

Sorafenib Tyrosine-kinase inhibitor Shaaban et al. (2014)

5-Flurouracil Inhibition of thymidylate synthase Longley et al. (2003)

Cisplatin DNA damage Shaaban et al. (2014)

Gemcitabine Nucleotide analogue mis-incorporated into DNA Heinemann et al. (1988); Mini et al. (2006)

Capecitabine Inhibition of DNA synthesis Walko and LINDLEY (2005)

Doxorubicin Generation of free radicals and the intercalation into DNA Gewirtz, (1999)

Epirubicin Inhibitor of DNA topoisomerase II Shaaban et al. (2014)

Lenvatinib An inhibitor of VEGF receptors 1–3, FGF receptors 1–4, PDGF receptor α, RET, and KIT Kudo et al. (2018)

TABLE 3 | The adjustment of hepatocellular cancer-related chemotherapy resistance.

Gene/Axis/Compound/Drug Mechanism Target Influence
to drug resistance

References

Aspirin Silences of ACSL4 and induction of GADD45B
expression

ACSL4 synergized with sorafenib Xia et al. (2017)

GSTZ1 Inhibit NRF2/GPX4 axis GPX4 synergized with sorafenib Wang et al.
(2021a)

QSOX1 Inhibit NRF2 NRF2 synergized with sorafenib Wang et al.
(2021a)

MT-1G Knockout of MT-1G increases glutathione consumption
and lipid peroxidation

MT-1G synergized with sorafenib Sun et al.
(2016b)

Malic enzymes (MEs) Produce NADPH and neutralizes ROS NRF2 synergized with sorafenib Lee et al. (2021)

Astragalus Directly down-regulate MT-1G MT-1G synergized with sorafenib Liu et al. (2021b)

Secreted protein acidic and rich in
cysteine (SPARC)

LDH release and ROS accumulation ROS synergized with sorafenib Hua et al. (2021)

Artesunate Degradation of ferritin, lipid peroxidation lysosomal synergized with sorafenib Li et al. (2021c)

disulfiram/copper Inhibit NRF2 and MAPK kinase signaling pathways NRF2 synergized with sorafenib Ren et al.
(20211021)

Haloperidol Antagonize sigma receptor 1 S1R synergized with sorafenib Bai et al. (2017)

CISD2 Excessive iron ion accumulation FE synergized with sorafenib Li et al. (2021b)

Transcription factors YAP/TAZ Induce SLC7A11 expression SLC7A11 Antagonism with sorafenib Gao et al. (2021)

Apoptosis-inducing factor
mitochondria-associated 2 (AIFM2)

Activation of membrane repair mechanisms that
regulate membrane germination and fission

unknown Antagonism with sorafenib Dai et al. (2020)

Sigma-1 receptor (S1R) Inhibit the accumulation of ROS NRF2 Antagonism with sorafenib Bai et al. (2019)

DAZAP1 Interact with the 3′UTR (untranslated region) of
SLC7A11 mRNA and positively regulated its stability

SLC7A11 Antagonism with sorafenib Wang et al.
(2021b)

Sulfasalazine Inhibit SLC7A11 SLC7A11 associated with drug resistance of
cisplatin, doxorubicin and sorafenib

Song et al.
(2017)

miR-340 (miRNA) Targetes NRF2 NRF2 synergized with cisplatin Shi et al. (2014)

Apigenin Inhibit Mir-101/Nrf2 pathway NRF2 synergized with doxorubicin Gao et al. (2017)

KRAL (lncRNA) Induce Keap1 to regulation NRF2 NRF2 synergized with 5-Fluorouracil (5-FU) Wu et al. (2018)

miR-144 (miRNA) Targete NRF2 NRF2 synergized with 5-Fluorouracil (5-FU) Zhou et al. (2016)

ATP-binding cassette C5 (ABCC5) Stabilize SLC7A11 protein to increase intracellular GSH
and attenuate lipid peroxidation accumulation

SLC7A11 Antagonism with sorafenib Huang et al.
(2021b)

Ungeremine Increase ROS production ROS related Mbaveng et al.
(2019)

XCanthine oxidoreductase (XOR) NRF2 degradation NRF2 related Sun et al. (2020)
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(snoRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs),
transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) (Wang
et al., 2019b; Alzhrani et al., 2020). MiRNAs exhibit functions by
binding to the 3′-untranslated regions of target mRNAs and
suppressing their expression (Majidinia et al., 2020). MiRNA can
regulate ferroptosis and control cancer progression by regulating
GSH, iron levels, NRF2, and ROS. LncRNAs mainly act as the
regulatory factors of transcription factors in the nucleus or as
miRNAs of sponges in the cytoplasm to regulate ferroptosis (Wu
et al., 2020). However, there were few studies on the relationship
between ferroptosis and circRNA, tRNA, rRNA, piRNA, snRNA,
and snoRNA. Studies have reported that the tRNA mutations in
HCC leads to decreased expression of selenoproteins, except for
GPX4 and GPX1 (glutathione peroxidase 1), and introduces some
weak changes in ferroptosis (Kipp et al., 2013; Becker et al., 2014;
De Spirt et al., 2016). The regulation of ferroptosis found in HCC
about ncRNAs in recent years was sorted out in Table 1 and
Figure 1. Wider and deeper studies are needed to explore the
function of ncRNAs in ferroptosis.

TREATMENT OF FERROPTOSIS IN HCC

Ferroptosis AssociatedWith Chemotherapy
Resistance in HCC
Although the treatments have become more diversified in recent
years, the average life expectancy of HCC was lagged far behind
those of other cancers. The result of systemic chemotherapy has
been particularly disappointing, not only because of the
chemotherapeutic resistance of HCC, but also the severe
results of major side effects, making the treatment of advanced
HCC depends on the degree of underlying liver dysfunction, the
burden of malignancy, and the patient’s general profile or
expectations. Treatment options for advanced HCC are limited
comparing to early HCC. In this context, several therapeutic
agents have been developed over the past 50 years to provide
better responses and improve the average life expectancy in
patients with HCC. Some common chemotherapeutic agents
in HCC are summarized in Table 2. However, In two
randomized clinical trials of advanced HCC patients in stage
III, Sorafenib, which is a commonly used chemotherapy drug,
only increased overall survival by 2.8 and 2.3 months compared
to the placebo, suggested limited effect to drug-resistant HCC in
advanced HCC (Llovet et al., 2008; Cheng et al., 2009). Therefore,
overcome the resistance of sorafenib and find more effective new
drugs has become an urgency for advanced HCC patients and
postoperative adjuvant chemotherapy patients. Different
regulatory strategies and delivery routes have been proposed
to enhance the antitumor activity of these drugs (Kodama
et al., 2008; Hung et al., 2012; Li et al., 2013; Song et al.,
2013). Although some ferroptosis inducers, for example,
Erastin, are very effective in killing cancer cells in vitro, their
pharmacokinetic properties, such as solubility and metabolic
stability, are not suitable for the usage in vivo (Yang et al.,
2014). It is now believed that sorafenib can induce a new type
of regulated cell death-ferroptosis (Louandre et al., 2013), distinct
from apoptosis, necrosis, and autophagy (Dixon et al., 2012), not

only sorafenib, Guo et al. (2018) killed a variety of tumor cells
with cisplatin, which can simultaneously cause apoptosis and
ferroptosis. Wu et al. (2018) found that some ncRNAs affect the
sensitivity of 5-Fu-resistant cells by regulating some key steps of
ferroptosis.

In recent years, the adjustment of HCC-related chemotherapy
resistance is shown in Table 3.

Ferroptosis Associated With Radiotherapy
Tolerance in HCC
Radiation therapy is an important non-surgical treatment for
cancer, but the clinical problems such as low efficacy and severe
side effects remained unsolved. Gene therapy can synergistically
increase the effect of radiation therapy through its antitumor
mechanisms, which may reduce the dose. Radiotherapy induces
ferroptosis by down-regulation of SLC7A11 and up-regulation of
ACSL4, resulting in GSH production, increasing lipid synthesis,
and subsequent oxidative damage (Lang et al., 2019; Lei et al.,
2020). Studies have found that collectrin (CLTRN), as a target of
radiation, is regulated by NRF1 (nuclear respiratory factor 1)/
RAN (RAS oncogene family)/DLD (dihydrolipoamide
dehydrogenase) protein complex and enhances the
radiosensitivity of HCC cells through ferroptosis (Yuan et al.,
2021). A combination of gene therapy and radiation therapy is
one way forward, allowing the radiation doses to be reduced and
the side effects to be reduced. It is worth considering whether the
application of iron death inhibitors to non-tumor cells can
increase their radiation tolerance to reduce the adverse effects
of radiotherapy.

Ferroptosis Associated With Emerging
Therapies in HCC
The use of nano drugs to induce ferroptosis will become a new
anticancer strategy (Shen et al., 2018). More and more anticancer
nano drugs have been approved by FDA, and the development of
drugs with higher efficacy and safety will become an emerging
road for future cancer treatment (Bobo et al., 2016). Tang et al.
(2019) synthesized manganese-doped mesoporous silica
nanoparticles (MMSNs) from manganese and silica. This
reaction resulted in the inactivation of GPX4 and the increase
of intracellular lipid peroxides through the consumption of
intracellular GSH induced by the degradation of MMSNs. Ou
et al. (2017) used natural omega-3 fatty acid docosahexaenoic
acid (LDL-DHA) reconstructed into Low-density lipoprotein
nanoparticles to selectively kill HCC cells. LDL-DHA induces
ferroptosis by increasing tissue lipid hydroperoxide levels and
inhibition of GPX4 expression. Tian et al. (2022) reported a novel
cascade copper-based metal-organic framework (MOF)
therapeutic nanocatalyst using HKUST-1 (a kind of metal
organic framework) combining meloxicam (Mel), a
cyclooxygenase-2 (COX-2) inhibitor, and sorafenib (Sol).
Down-regulation of COX-2 induces PINK1/Parkin-mediated
mitochondrial autophagy, chemodynamic Therapy (CDT)
-mediated cytotoxic ROS, accumulated lipid peroxides (LPO)
and Sol through inhibition system XC−, the three interacted to
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activate ferroptosis and increase the sensitivity of HCC cells to
chemotherapy. Liu et al. (2021a) constructed mil-101 (Fe)
nanoparticles (NPs) loaded with sorafenib and iRGD (iRGD
peptide (amino acid sequence: CRGDK/RGPD/EC) [MIL-101
(Fe) @ SOR], which co-administration significantly promoted the
development of ferroptosis. Ma et al. (2017) enhanced the
sensitivity of cancer cells to cisplatin by loading cisplatin
prodrug onto iron oxide nanoparticles to increase ROS
production. Du et al. (2021) designed an exosome with three
parts, including surface functionalization of CD47, membrane
loading of ferroptosis inducer Er (Erastin), and core of
photosensitizer RB (Rose Bengal), and demonstrated potent
antitumor therapeutic effects with surprisingly low toxicity.

DISCUSSION

In this review, we summarize recent advances in potential
regulators of ferroptosis in HCC and look into the ways
ferroptosis can be used to create new therapies in the future.
We demonstrate multiple advances in the drug resistance
assessments in HCC treatment, the use of multiple genes or
compounds to sensitize sorafenib, and the treatment of
ferroptosis in HCC in some emerging areas, Nanoparticles
such as MMSNs and LDL-DHA prepared in the tumor
microenvironment and engineered exosomes with ferroptosis
inducers are utilized to induce ferroptosis to bring better
prognosis for patients.

The combination of ferroptosis with other therapies, such as
immunotherapies, is also promising. Recently, it has been
reported that anti-PD-L1 (programmed cell death-Ligand 1)
immune checkpoint blockade can induce cancer cell
ferroptosis responses by down-regulating SLC7A11 expression
in cancer cells as a result of IFN-γ (Interferon γ) secreted by CD8+

T cells (Wang et al., 2019c). Therefore, we believe that therapeutic
expansion in ferroptosis may realize effective treatment for
patients with advanced HCC.

There are still some issues to be resolved: Although lipid
peroxidation is an important factor affecting ferroptosis, what is
the actual mechanism of ferroptosis downstream of phospholipid
peroxidation? There are many mechanisms of ferroptosis, and many
metabolic factors affect the death of tumor cells, the formation of drug
resistance, and the avoidance of immune-inducedmetastasis. It is still
unknown that which metabolic factor plays a more important
decisive role. In vivo pharmacokinetics of some ferroptosis
inducers are still not suitable for in vivo usage, especially how
ferroptosis drugs work in liver-specific biotransformation in the
treatment of HCC. The fatty acid pool of cells affects the progress
of ferroptosis in cells, how to use the change of fatty acid in the blood
to determine the progress of ferroptosis in cells? and how to create a
fatty acidmicroenvironment that is conducive to killing tumor cells in
the liver?
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