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Density-Dependent Migration
Characteristics of Cancer Cells Driven
by Pseudopod Interaction

Gerhard A. Burger, Bob van de Water, Sylvia E. Le Dévédec and Joost B. Beltman*

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands

The ability of cancer cells to invade neighboring tissue from primary tumors is an important
determinant of metastatic behavior. Quantification of cell migration characteristics such as
migration speed and persistence helps to understand the requirements for such
invasiveness. One factor that may influence invasion is how local tumor cell density
shapes cell migration characteristics, which we here investigate with a combined
experimental and computational modeling approach. First, we generated and analyzed
time-lapse imaging data on two aggressive Triple-Negative Breast Cancer (TNBC) cell
lines, HCC38 and Hs578T, during 2D migration assays at various cell densities. HCC38
cells exhibited a counter-intuitive increase in speed and persistence with increasing
density, whereas Hs578T did not exhibit such an increase. Moreover, HCC38 cells
exhibited strong cluster formation with active pseudopod-driven migration, especially at
low densities, whereas Hs578T cells maintained a dispersed positioning. In order to obtain
a mechanistic understanding of the density-dependent cell migration characteristics and
cluster formation, we developed realistic spatial simulations using a Cellular Potts Model
(CPM) with an explicit description of pseudopod dynamics. Model analysis demonstrated
that pseudopods exerting a pulling force on the cell and interacting via increased adhesion
at pseudopod tips could explain the experimentally observed increase in speed and
persistence with increasing density in HCC38 cells. Thus, the density-dependent migratory
behavior could be an emergent property of single-cell characteristics without the need for
additional mechanisms. This implies that pseudopod dynamics and interaction may play a
role in the aggressive nature of cancers through mediating dispersal.

Keywords: cell migration, single-cell analysis, pseudopods, computational modeling, cellular Potts model, breast
cancer

Abbreviations: ABM, Agent-Based Model; BC, Breast Cancer; CIL, Contact Inhibition of Locomotion; CPM, Cellular Potts
Model; DAC, Directional Auto Correlation; DIC, Differential Interference Contrast; EMT, Epithelial-Mesenchymal Transition;
EpCAM, Epithelial Cell Adhesion Marker; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; MCS,
Monte Carlo Step; PR, progesterone receptor; RCM, Random Cell Migration; RMA, Robust Multi-array Average; TNBC,
Triple-Negative Breast Cancer; WMC, Watershed Masked Clustering.
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1 INTRODUCTION

Breast Cancer (BC) is the most common cancer in women, and
one of the main contributors to cancer mortality (WCRF, 2021).
The primary cause of cancer mortality is metastasis, yet, because
of its complexity, metastasis remains poorly understood (Suhail
et al., 2019; Fares et al., 2020). Migration of cancer cells plays a
crucial role in the metastatic cascade, not only for the long-range
translocation of cells from the primary tumor to potential
metastatic sites but also for the short-range dispersal of cells
within the tumor, thus allowing accelerated tumor growth
(Waclaw et al, 2015; Gallaher et al, 2019). A detailed
understanding of cancer cell migration is essential to obtain
insight into cancer progression and metastasis (Stuelten et al,
2018), especially since expression of genes associated with
migration is strongly associated with breast cancer survival
(Nair et al., 2019).

A complicating factor in studying cancer cell migration is that
BC is a highly heterogeneous disease. Two methods that are used
to subdivide BCs into clinically-relevant subtypes are gene
expression profiling and hormone receptor status (Viale,
2012). PAMS50, a 50-gene classifier, divides BC into five
intrinsic subtypes: luminal A, luminal B, basal-like, HER2
(human epidermal growth factor receptor 2)-enriched, and
normal-like (Perou et al., 2000; Sorlie et al., 2001; Parker et al.,
2009). This classification largely corresponds to classification by
ER (estrogen receptor), PR (progesterone receptor), and HER2
status. BCs that are negative for these three receptors are called
Triple-Negative Breast Cancers (TNBCs). Claudin-low BC,
recently redefined as a BC phenotype rather than an intrinsic
subtype (Fougner et al., 2020), is characterized by its enrichment
for Epithelial-Mesenchymal Transition (EMT) markers and stem
cell-like features (Prat et al., 2010).

Different (breast) cancer cells display a stunning variety in
migratory strategies, and various methods have been developed to
study these strategies in vitro (Kramer et al., 2013; Pijuan et al,,
2019), in vivo (Beerling et al., 2016), and in silico (Szabo and
Merks, 2013; Wu et al., 2014; Huang et al.,, 2015; Te Boekhorst
et al., 2016). Collective cell migration, where cells migrate in
loosely or closely associated clusters, has been extensively studied
in morphogenesis (Mayor and Etienne-Manneville, 2016), yet it is
also highly relevant during cancer metastasis (Rorth, 2009; Friedl
et al, 2012). For example, in recent years the existence of
intermediate EMT phenotypes has been increasingly
recognized. Such phenotypes are associated with the collective
migration of tumor cell clusters (Brabletz et al., 2018), which can
have 23-50 fold increased metastatic potential compared to single
cells (Aceto et al, 2014). Despite this attention, many open
questions remain regarding the mechanisms at play in
collective cell migration (Angelini et al, 2011; Vedel et al,
2013). Recently, Jayatilaka et al. (2017) presented experimental
evidence that paracrine IL-6/8 signaling amplified by cell density
causes fast migration of MDA-MB-231 BC cells. Another
approach was taken by Vedel et al. (2013), who studied the
3T3 fibroblast cells at different densities using computational
modeling, thereby demonstrating how complex collective
migratory behavior can be an emergent property of single-cell
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migration properties. Thus, computational modeling is an
invaluable tool to understand experimentally observed cell
migration behavior, as hypothesized underlying mechanisms
can be studied both at the single and collective level (Te
Boekhorst et al, 2016). Various computational model
formalisms for cell migration exist (reviewed by Van
Liedekerke et al., 2015; Te Boekhorst et al., 2016; Buttenschén
and Edelstein-Keshet, 2020). The Cellular Potts Model (CPM)
(Graner and Glazier, 1992; Glazier and Graner, 1993) is widely
used for this purpose owing to its explicit incorporation of cell
shape, and its flexibility to describe various biomechanical
properties. For example, CPM has been used to model T cell
migration behavior (Beltman et al., 2007; Ariotti et al.,, 2012),
collective cell migration (Szab¢ et al., 2010; Kabla, 2012; Czirok
et al,, 2013; Szab¢ et al., 2016), chemotactic migration (using a
hybrid CPM) (Vroomans et al., 2012), traction forces by cells on
2D substrates (Rens and Edelstein-Keshet, 2019), actin-inspired
shape-driven cell migration (Niculescu et al., 2015; Wortel et al.,
2021b), enhanced persistence in cooperatively aligning clusters
(Debets et al., 2021), and glassy dynamics of cells in confluent
tissue (Sadhukhan and Nandi, 2021) (see Szabé and Merks
(2013); Sun and Zaman (2017); Buttenschén and Edelstein-
Keshet (2020) for more elaborate reviews).

Here we study the migratory behavior of HCC38 and Hs578T,
two highly migratory and invasive, claudin-low, basal B TNBC
cell lines (Neve et al., 2006; Herschkowitz et al., 2007; Kao et al.,
2009; Prat et al, 2013), using time-lapse microscopy and
computational modeling with the CPM. To investigate
whether these cells exhibit disparate behavior at different cell
densities, we plated these cells at various densities and performed
2D cell migration assays using Differential Interference Contrast
(DIC) and fluorescence microscopy. In this setting, cell density
clearly affected cell migration characteristics such as clustering,
speed, and persistence for HCC38 cells, yet not for Hs578T cells.
Specifically, at low densities, HCC38 cells formed tight clusters
which loosened at high densities; this coincided with increased
speed and persistence. We could not reproduce these density
effects with published CPM models describing persistent cell
migration, yet an extension of a CPM model of pseudopod-driven
persistence with a pulling force mediated by pseudopods and
increased adhesion at pseudopod tips was sufficient to achieve the
experimentally observed speed and persistence increase for
HCC38 cells. Thus, pseudopodial dynamics can explain speed
and persistence increase with density, provided that the
pseudopods of a cell have the ability to affect each other’s
extension.

2 RESULTS

2.1 HCC38 and Hs578T Cell Lines Both Form

Streams During In vitro Imaging

To investigate the migratory behavior of the TNBC cell lines
HCC38 and Hs578T, we plated these lines in triplicate at 4
different cell densities within 24-well plates (20,000, 50,000,
100,000, and 150,000 cells per well). Subsequently, we
performed a Random Cell Migration (RCM) assay (van
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FIGURE 1 | Identification of streams in automatically tracked videos of HCC38 and Hs578T. (A) Experimental setup and tracking workflow: nuclei were segmented
using Hoechst, after which they were tracked. Images show HCC38 cells at 50,000 cells per well (frame 50 out of 71 frames). (B) Measured speed from automated tracking
using CellProfiler and from manual tracking using MTrackJ. (C) Local migration directions at one time point in Hs578T cells. Size and color indicate instantaneous speed and
current direction of migration. Image is a magnification of the top left corner of the bottom-rightmost video in Supplementary Video S1 (Hs578T, 50,000 cells per well,
frame 51/71). (D) Analysis of migration angles between cell pairs as a function of the shortest distance between their centers of mass, at indicated plated cell densities.
Horizontal dashed lines show theoretically expected average angle for random migration, vertical dashed lines show approximate nuclei diameter. (E) Polar histogram of

migration directions of HCC38 and Hs578T cells. Note that “plated density” in (B,D) refers to the number of cells introduced into an entire well.

Roosmalen et al., 2011) using DIC and fluorescence microscopy
of Hoechst-stained cells, imaged every 11-13min for
approximately 15h  (Supplementary Figure S1 and
Supplementary Video S1). To quantify the migratory
behavior of cells, we performed automated cell tracking
(Figure 1A, see Section 4.3.1 for details) by first segmenting
the nuclei using Watershed Masked Clustering (WMC) (Yan and
Verbeek, 2012) and then tracking the segmented nuclei in
CellProfiler (Carpenter et al., 2006) using overlap tracking.
Because of vignetting following stitching of adjacent images

(see Figure 1A DIC + Hoechst) and the high densities of cells
in some fields of view (Supplementary Figure S1), some
segmentation errors still occurred. Since these can affect the
quantification of migration characteristics such as cell speed
(Beltman et al, 2009), we compared our automated tracking
to manually determined tracks in a subset of wells. Analysis of the
two methods of tracking revealed that they resulted in similar
estimates for cell speed yet that automated tracking led to slightly
lower instantaneous cell speeds compared to manual tracking
(Figure 1B). This minor difference could be explained by an
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FIGURE 2 | Quantification of observed dynamic clustering of HCC38 cells. (A) Stillimages of HCC38 (top row) and Hs578T (bottom row) at the two lowest densities
att=10 h (insets show zoom-ins). (B) Vimentin expression of a collection of BC cell lines (data from Neve et al., 2006). Values are in log2 after Robust Multi-array Average
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overestimation of cell speed due to variability in manual center-
of-mass determination (Huth et al., 2010). Therefore, and because
overall differences between wells were similar for the two tracking
approaches, we continued our analysis using automated tracking.

A particularly striking feature that can be appreciated from the
time-lapse videos is that Hs578T «cells form “streams”
(Supplementary Video S1, lower right; clockwise flow in
Figure 1C). To quantify this streaming behavior, we analyzed
the migration directions of all cells compared to the directions of
all other cells. If cells were to migrate randomly, the average angle
between two cell migration directions should approach 90°
(Beltman et al., 2009). Consistent with the observation of
streams within the videos, close-by cells had a lower average
angle between their migration directions than remote cells
(Figure 1D). This streaming effect was more pronounced for
Hs578T cells than for HCC38 cells and occurred at all densities,
although visually, it was mainly apparent at high densities. For

both cell lines, but especially for Hs578T, the average angle
remained below 90° at all densities, which suggests a preferred
direction of migration within wells. We confirmed this finding by
polar histograms of cell migration direction (Figure 1E), showing
that the migration directions of HCC38 cells were approximately
uniformly distributed, whereas Hs578T displayed a clear bias in
migration direction. However, such large-scale streams could also
be due to stage drift (Beltman et al., 2009). Therefore, we took
advantage of having two imaged locations per well (technical
replicates), for which it would be expected that the polar plots
would look highly similar if the streaming effects were due to
stage drift. The individual polar plots of two associated well
locations frequently exhibited a directional bias for Hs578T cells,
yet this bias was typically different between the locations
(Supplementary Figure S2A), strongly suggesting that
streaming was not due to stage drift. Besides the presence of
large-scale streams, both cell lines exhibited strong local streams,
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as evident from the strong decrease of migration angles for nearby
cell movements compared to remote movements (Figure 1D).
Moreover, this difference in angle profiles remained present after
correction for large-scale streams by subtracting the net overall
displacement from each frame (Supplementary Figure S2B). In
conclusion, both HCC38 and Hs578T cells formed local streams
at all observed cell densities, and especially for Hs578T these
streams occurred at a scale beyond the employed image
dimensions.

2.2 HCC38 Cells Form Dynamic Clusters at

Low Densities

Visual inspection of images of HCC38 and Hs578T cells
(Supplementary Video S1) revealed that at low density HCC38
cells formed clusters (Figure 2A top left), whereas Hs578T cells were
less closely apposed to each other, although they may still be in
contact via extended pseudopods (Figure 2A top left). At high
densities (Figure 2A top right), clustering became less dominant for
HCC38 yet remained similar for Hs578T. This clustering is
surprising since HCC38 is a basal B cell line which are typically
considered mesenchymal-like because of their high Vimentin levels
(Figure 2B). Consistent with differential clustering between the two
cell lines at low density, Hs578T cells traveled further than HCC38
cells, as visible from tracks with starting points normalized to the
origin (Figure 2C). Nevertheless, the adhesion presumably driving
HCC38 clustering did not completely prevent them from escaping
these clusters, a feature that seems to be mediated by pseudopod-
driven attachment (Supplementary Video S1).

To quantify clustering, we employed spatial descriptive statistics
by means of the Ripley L function (Ripley, 1977). Ripley L allows
objective quantification of clustering compared to fully random
placement of objects within a region, which is especially useful at
high densities where differences in clustering are hard to determine
by eye. Specifically, negative values for the quantity r—L(r) (see
Section 4.5 for details) imply clustering, whereas positive values
imply preferred dispersion. Beyond the diameter of an average
nucleus (approximately 25um for Hs578T and 30pm for
HCC38), HCC38 cells clearly exhibited clustering, yet this
clustering gradually disappeared at increasing densities
(Figure 2D, red). Hs578T cells did not cluster but rather
exhibited preferred dispersion (Figure 2D, cyan), suggesting that
these cells actively stay away from close apposition. Note that the
initial increase in Figure 2D shows short-range dispersion for both
cell lines, which is caused by volume exclusion (the small dips in this
initial bump could be the result of occasional oversegmentation).
Over time HCC38 clusters became less compact, as evident from an
upward shift in the Ripley-L curves (Supplementary Figure S3). In
conclusion, HCC38 cells formed clusters at low densities, whereas
this was not the case for Hs578T cells.

2.3 HCC38 Cells Exhibit Increasing
Instantaneous Speed and Persistence With

Increasing Density
Following our analysis of (collective) migration and clustering, we
turned our attention to other aspects of cell migration and
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whether these depended on cell density and cell type. First, we
studied instantaneous speed, for which we investigated the
relation with the observed cell densities within wells rather
than with the plated densities (Figure 3A), because these
might differ due to spatial heterogeneity at different well
locations. This speed analysis revealed that HCC38 cells move
faster with increasing density (Figure 3A left). In contrast, the
speed of Hs578T cells was largely unaffected by cell density
(Figure 3A right), ie., despite substantial experiment-to-
experiment variability, there was a similar speed at all
densities for each separate experiment.

In addition to cell speed, a short-term measure of migration,
we also analyzed the directional persistence of cells, a long-term
measure of migration. A commonly used measure of persistence
is the confinement ratio [also known as “straightness” (Wortel
et al,, 2021a) or “meandering index” (Svensson et al., 2018)].
However, since this measure is strongly biased by track duration
(Beltman et al., 2009; Gorelik and Gautreau, 2014), it is not
suitable for our data which has substantial variation in track
duration (Supplementary Figure S5). Instead, we analyzed
persistence with Directional Auto Correlation (DAC) (Gorelik
and Gautreau, 2014), which represents an unbiased measure of
how fast cells lose their direction of migration (see Figure 3A in
Gorelik and Gautreau, 2014). Whereas for Hs578T there is no
notable difference in the decay of the DAC for different densities,
for HCC38 there is a fast decay for the lowest density (Figure 3B).
The relation between the DAC and the lag time 7., can be
characterized by the following exponential decay function:

¢ eXp(—Tlag/Tp).

Here, 7, is the persistence time and ¢ is the persistent fraction,
a measure for the fraction of cells that is persistent (Vedel et al.,
2013). Calibration of 7, and ¢ for the two cell lines
(Supplementary Figure S6) allowed us to study the
correlations between cell density, speed, and persistence time.
However, it should be noted that the optimal parameter fit did not
always describe the decrease in the DAC well (see Supplementary
Figure S7), so the resulting parameters should be interpreted
cautiously, especially ¢. For Hs578T, an increase in cell density
was not associated with an effect on persistence time, but this was
the case for HCC38 cells: besides the strong positive correlation
between cell density and speed, both cell density and speed also
correlated with persistence time (Figure 3C). In conclusion,
HCC38 cells strongly increased their speed and persistence for
increasing cell densities, whereas the Hs578T cell migration
characteristics barely changed for increasing cell densities.

2.4 Previous Cellular Potts Migration
Models do Not Explain Observed
HCC38 Speed-Density Behavior

Our observation that Hs578T cells exhibit dispersion rather
than clustering or random positioning in space seems
consistent with our findings that speed and persistence do
not depend on cell density for this cell line: the cells essentially
migrate as solitary cells at all densities. This matches results of
an earlier computational model designed for 3T3 fibroblast
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FIGURE 3 | Analysis of the effect of cell density on cell speed and persistence. (A) Instantaneous speed for all individual wells as a function of the observed cell
density within wells. Colors indicate results for the three separate experiments. (B) Mean + SEM of the DAC as a function of the elapsed time for individual tracks. Note
that the data for Hs578T from experiment 2 was excluded from this analysis because the differences in density were very small [see (A) and Supplementary Figure S4].
(C) Correlogram showing the correlations between the observed cell density, instantaneous speed, and persistence time.

migration by Vedel et al. (2013), which showed constant speed
and persistence time with increased density and a decreased
persistent fraction due to a high collision rate. However, for
HCC38 cells the relation between the observed clustering and
the dependence of cell migration properties on density is less
obvious. Therefore, we employed computational modeling to
find the minimal requirements to achieve the observed HCC38
density effects. A natural framework to model cell migration is
the Cellular Potts Model (CPM), which is a grid-based
formalism where multiple grid elements constitute a cell,
and membrane elements stochastically extend and retract
on the basis of a Hamiltonian. In the base CPM (see
Section 4.6 for details), cell motion is driven only by
adhesion and cell volume requirements, therefore, cells
display Brownian motion, i.e., without any preferred

direction and/or persistence (Wortel et al., 2021b). To
model persistent cell migration realistically, several
extensions to the CPM have been proposed: 1) the “basic
persistence model” (see Section 4.6.1.1 for details) in which
membrane extensions that move a cell in the same direction as
its target direction (derived from previous movement
directions) are favored (Beltman et al., 2007; Szabo et al.,
2010), and 2) the Act model (see Section 4.6.1.2 for
details), which provides cells with persistence by modeling
local actin dynamics (Niculescu et al., 2015; Wortel et al,,
2021b).

We explored a wide range of parameter values for both the basic
persistence model and the Act model to investigate whether either of
these CPM persistence extensions could reproduce the increases in
speed and persistence with density observed in the HCC38 cell line.
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The basic persistence model does exhibit an increase in cell speed for
increasing densities, yet there is no corresponding increase in
persistence time (Figure 4A). This finding goes against the
universal coupling between speed and persistence that has been
observed across many cell types in various in vitro and in vivo
settings (Maiuri et al,, 2015). Interestingly, the speed increase with
density turns into a speed decrease with density when a connectivity
constraint (Merks et al., 2006) is added that requires all membrane
elements of a cell to remain in touch at all times, i.e., when cell
merging is hindered (Supplementary Figure S8 and
Supplementary Video S2). This suggests that the increase in
speed depends on cells being able to merge and move through
each other. The Act-CPM model matches the observed data worse
than the basic persistence model, exhibiting a decrease in both speed
and persistence with increasing density (Figure 4B and
Supplementary Video S$3). Analysis of stream formation revealed
that both CPM persistence models form local streams where cells
align over a maximum of approximately three cell diameters
(Figure 4C). In conclusion, although published CPM extensions
to describe cellular persistence lead to local streaming, these models
are not consistent with the density dependence of HCC38 cell
migration.

2.5 Pseudopod Dynamics and Increased
Pseudopod Interaction can Explain
Density-Dependent Migratory Behavior of
HCC38 Cells

Pseudopod formation is essential for persistent cell migration
(Bergert et al., 2012; Van Haastert, 2011), and we observed high
pseudopodial activity in the experimental videos, which seemed
instrumental in HCC38 cells being able to move between clusters
(Figure 5A and Supplementary Video S1). Cells simulated with
the CPM extensions implementing either basic persistence or the
Act model do exhibit a non-roundish shape with small
extensions, but these are far shorter than the experimentally
observed pseudopods, raising the question of whether the
pseudopods might play a role in the observed density effects.
Therefore, we implemented our previously developed CPM
extension in Morpheus that was used to simulate the
migration of dendritic-shaped tissue-resident memory T cells
(Ariotti et al, 2012). In this model, cells form dendrite-like
protrusions in the form of organized actin bundles that extend
and retract within the cell, and that move the cell in the direction
of the protrusions (Figure 5B; see Section 4.6.1.3 for details).
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FIGURE 5 | Effect of cell density on cell speed and persistence simulated using pseudopod-driven CPM persistence models. (A) Example of HCC38 cells at low
density crossing a cluster using pseudopods (green arrows). (B) lllustration of how modeling protrusion/retraction of an actin fiber in a cell drives pseudopod-driven
motility. (C) Results from the base pseudopod-driven model by Ariotti et al. (2012) (D) Stream formation in model by Ariotti et al. (2012) (E) Mechanisms added in the
proposed model: pseudopod tips that are more adhesive (yellow circle), a pulling force in combined direction of the pseudopods (green arrows), and Contact
Inhibition of Locomotion-like pseudopod interaction (red circle). (F) Snapshot of simulations using the proposed pseudopod-driven persistence model. Densities are
comparable to HCC38 plated density of 20,000 and 50,000 (cf. Supplementary Figure S1). (G) Speed (left panel) and persistence (right panel) resulting from the
proposed pseudopod-driven model. (H) Stream formation in the proposed pseudopod-driven model for different simulated cell numbers. () Correlograms comparing
the different persistence models to the experimental correlations (p: density, v: speed, 7,,: persistence time). Horizontal dashed lines in (D) and (H) denote theoretically
expected average angle, vertical dashed lines show approximate cell diameter.
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Although this model could achieve the dynamic clustering
observed in HCC38 (Supplementary Video S4), it could still
not reproduce the experimentally observed dependence of speed
and persistence on density (Figure 5C). Similar to the Act model,
the average speed decreased for increasing cell densities,
presumably because the fixed dendrites obstruct each other’s
extensions, thereby hampering (collective) migration, resulting
in limited stream formation (Figure 5D).

In order to test whether increased interaction between cellular
pseudopods of a cell would matter for the dependence of
migration on cell density, we adapted the modeled behavior of
pseudopods in three ways (Figure 5E; see Section 4.6.2 for
details): First, we added an adhesive bonus to the pseudopod
tips, because close observation of the experimental videos
suggested that the pseudopods allow cells to attach to and pull
on each other. Second, to further stimulate collective migration in
which cells promote rather than hamper each other’s migration,
we implemented a type of Contact Inhibition of Locomotion
(CIL) (Stramer and Mayor, 2017), where protrusions that are not
aligned with the current overall movement direction of a cell and
are touching other cells are quickly retracted and repolarized.
Third, we let the pseudopods exert a pulling force on the cell as a
whole in their combined direction (similar to Vedel et al., 2013).
These three mechanisms together result in collective migration of
clusters (Figure 5F and Supplementary Video S5). Importantly,
our extended pseudopod model could explain the experimentally
observed speed and persistence time increase with density for
HCC38 cells (Figure 5G, cf. Supplementary Figure S6). The
simulated collective migration also goes hand-in-hand with cell
alignment over whole clusters, which can be appreciated from the
streaming quantification (Figure 5H). Note though that thereis a
direct dependence of the strength of the streaming on cell density
in the simulations, whereas this is not the case in the experimental
data (cf. Figure 1D). This cell-density dependence is less
pronounced at lower surface energies Jeemed, for which there
is also less long-range alignment (Supplementary Figure S9).

Finally, we investigated the relative importance of the three
added mechanisms affecting pseudopod dynamics (pseudopod
pulling, pseudopod adhesion, and pseudopod touch behavior,
including CIL) for the relation between cell density, speed, and
persistence (Figure 5E). When varying the pulling strength and
the adhesive tip bonus, we found that pulling strength primarily
increases density-dependent persistence (Supplementary Figure
S10A and Supplementary Video S6), although with a low
adhesive tip bonus cells remain stuck in rotating clusters
(Supplementary Figure S10A and Supplementary Video S6,
top two rows). Additionally, with low pull strength, individual
cells cannot overcome the high surface energy between cell and
medium, Jeeymeda (Supplementary Figure S10A and
Supplementary Video S6, second column). Hence, with
increasing density, fewer cells are stuck, which results in high
correlations. In contrast, the effect of pseudopod adhesion is that
it promotes dynamic cell behavior inside clusters, without
displaying cluster rotation; however, without a pulling force,
these clusters barely move collectively (Supplementary Video
$6, bottom left), leading to a negative correlation between cell
density and persistence (Supplementary Figure S10A, bottom

Modeling Density-Dependent Cell Migration

left). A combination of pseudopod pulling and pseudopod
adhesion is needed to obtain the dynamic collective migration
with a density-dependent speed and persistence time qualitatively
matching HCC38 behavior (Supplementary Figure S10A and
Supplementary Video S6, bottom right). Varying the touch
behavior of pseudopods reveals that this can fine-tune
intercellular pseudopod interaction, but that this is not
essential for reproducing the observed density-dependent
speed and persistence increase; it merely influences the range
of surface energies between cells and medium (Jee;,meq) for which
the CPM simulations exhibit this behavior (Supplementary
Figure S10B).

In conclusion, our extended pseudopod model can explain an
increase of speed and persistence time with increasing cell density
as we observed for HCC38 cells, where other CPM migration
models cannot (Figure 5I). In this CPM extension, the presence
of CIL promotes these density effects, but pseudopod pulling and
adhesion are essential determinants. Thus, pseudopod interaction
between cells is an attractive explanation for the HCC38
migration patterns with density.

3 DISCUSSION

TNBC is an aggressive subtype of breast cancer for which targeted
therapies are just recently showing some promise (McCann et al.,
2019). Since migration plays a crucial role in the metastatic
cascade, more insight into the mechanisms behind TNBC
migratory behavior could help identify potential targets for
therapeutic intervention. Here we have used a combination of
time-lapse microscopy and computational modeling to unravel
the migratory behavior of HCC38 and Hs578T, two highly
migratory TNBC cell lines. Both cell lines formed streams in
our in vitro setup, yet this was most clear from visual inspection in
Hs578T cells. HCC38 cells formed dynamic clusters at low
density, which became less cohesive at high densities.
Furthermore, HCC38 cells exhibited an increase in both speed
and persistence time with increasing density. We could not
reproduce this density dependence with CPM simulations
implementing previously published persistence models, but a
pseudopod-driven persistence model with pseudopod-mediated
pulling and increased adhesion of pseudopod tips could
reproduce the key features of the experimentally observed
HCC38 migratory behavior.

Given that HCC38 is a basal B TNBC cell line with very high
Vimentin expression (Figure 2B), one would expect that HCC38
is a mesenchymal cell-line (mentioned as such by Hollestelle
etal., 2010; Kim et al., 2019). Thus, it was surprising that HCC38
cells strongly clustered, which is typically indicative of an
intermediate EMT phenotype (Bocci et al,, 2019). A possible
explanation is that HCC38 is composed of epithelial and
mesenchymal cells at a fixed ratio (as reported by Yamamoto
et al., 2017). However, we could not identify subpopulations in
our images, nor was this obvious in our single-cell migration
analysis. Two indications that HCC38 is, in fact, a hybrid
epithelial/mesenchymal cell line are that HCC38 has 1) high
P-Cadherin expression (Kao et al, 2009), indicative of an
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intermediate EMT phenotype (Ribeiro and Paredes, 2014), and 2)
high EpCAM (Epithelial Cell Adhesion Marker) expression (Klijn
et al, 2015; Koedoot et al, 2021). Especially the increased
EpCAM seems relevant because it has been reported to trigger
“the formation of dynamic actin-rich protrusions” (Guillemot
et al., 2001). Moreover, following EpCAM overexpression cell
interactions are reduced to “sporadic contacts, mainly involving
filopodia-like structures” (Litvinov et al., 1997), a description that
matches our HCC38 observations [Supplementary Video S1, cf.
Figure 2 in Winter et al. (2003)]. This suggests EpCAM could
play an important role in shaping pseudopodial interactions
between HCC38 cells, and thereby in their migration
characteristics.  Future research  should explore the
(heterogeneity in) expression of these EMT markers and their
relation to the observed pseudopodial dynamics. In addition, the
role of potentially density-dependent EMT should also be
investigated as, for example, MDCK cells secrete latent TGEp,
a potent EMT inducer, and activate the latent TGFP in
subconfluent conditions (Moyano et al., 2010).

Computational modeling of pseudopod-driven motility is a
long-standing challenge (Schindler et al, 2021), and the
incorporation of appropriate pseudopod mechanics in our
CPM simulations was not straightforward. For example, based
on the experimental images, we aimed for long, finger-like
extensions; however, for an approximately constant cell area,
such long pseudopods easily pull a cell apart in the CPM. One
solution could be to use a compartmentalized CPM with a
separate nucleus and cytoplasm (Scianna and Preziosi, 2021).
However, other model formalisms incorporating physical
mechanisms in a spatially implicit manner [e.g, an Agent-
Based Model (ABM) as applied in Vedel et al. (2013)] also
represent an appropriate way to model pseudopod dynamics
and their intercellular interactions.

Our finding that HCC38 cells increase their speed and
persistence with increasing cell density is somewhat
exceptional. Earlier studies have usually reported cell speed to
decrease (Angelini et al., 2011; Guisoni et al., 2018) or stay the
same (McCann et al,, 2010; Vedel et al,, 2013) with increasing
density. However, recently it has been shown that in MDA-MB-
231, another claudin-low basal B TNBC cell line, paracrine IL-6/8
signaling amplified by cell density does cause faster migration for
high than for low densities (Jayatilaka et al., 2017). Other
examples of a cell-density-related speed increase include cell
motion in endothelial monolayers (Szabé et al., 2010) or
confined cell migration (Liu et al., 2015; Szabd et al., 2016).
The contexts in which these other experiments were executed are
somewhat different compared to our experimental setup, in
which the speed increase occurred already at quite a low
density (Figure 3A). Nevertheless, it is possible that also in
our experimental setting, the observed density effects are
(partially) due to a density-dependent nutrient gradient or
chemotactic/chemokinetic signal. For future research, we
propose experimental exploration of the potential role of such
soluble signaling factors to explain increasing cell speed and
persistence with cell density. If there indeed is such a role for
soluble factors in determining density-dependent migration
characteristics, further CPM simulations can assist in
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distinguishing between chemokinetic and chemotactic effects.
Still, we here showed that these effects are not necessary to
explain the observed density-dependent migration. This is also
confirmed by recent modeling work by Debets et al. (2021), who
showed a density-dependent speed and persistence increase for
persistently migrating cell clusters of increasing size. In their
work, cellular persistence is achieved by implementation of a
persistent random walk combined with alignment within clusters
that is achieved by explicit neighbor-induced cell polarity updates
using a Vicsek model (Debets et al., 2021). Our model is more
mechanistic, because both cellular persistence and alignment
emerge from the included single-cell pseudopod dynamics.

Based on our simulations, it seems that cells at low density can
get “stuck” in their respective clusters (Supplementary Video
S5), which is similar to the experimental observations
(Supplementary Video S1 top left). At high densities in our
simulations, the clusters interact more, thereby avoiding rotating
clusters, which causes an increase in persistence and speed.
Nevertheless, at high densities, the differences between
simulations and experiments become more pronounced;
whereas in the experiments the clusters became less cohesive,
the simulations exhibit no difference with respect to cohesion
(compare Figure 1A HCC38 50,000 with Figure 5F 120). This is
also reflected in the streams that form during simulations: Within
the large migrating clusters that occur at high cell densities, cells’
migration directions become aligned over large distances
(Figure 5H). Lowering the surface energy between the cells
and the medium Ji¢meq results in less cohesive clusters and a
shorter-range alignment (Supplementary Figure S9). This
suggests that cell adhesion might be decreased at high
densities compared to low densities, which might also
contribute to the high cell speeds at high density (see for
example Figure 5G).

In conclusion, in this study we shed light on the influence of
cell density on the migratory behavior of two TNBC cell lines,
HCC38 and Hs578T. We could reproduce the experimentally
observed density-dependent speed increase in HCC38 cells using
a pseudopod-driven CPM with pseudopod pulling and increased
adhesion at pseudopod tips. A better understanding of the
regulatory processes involved in pseudopod formation is
urgently needed since they correlate with poor patient survival
in multiple cancer types (Jacquemet et al., 2016). Our finding that
pseudopod interaction can exacerbate the speed and persistence
of cancer cells may be a partial explanation for the aggressive
nature of such cancers due to high metastatic potential.

Additionally, together with a previous report that showed how
cell density affects the expression of cell-adhesion molecules
(Stanley et al., 1995), the data presented here emphasize the
need to include appropriate density-related controls in cell-
migration assays.

4 MATERIALS AND METHODS

4.1 Cell Culture
Twenty-four hours prior to imaging, HCC38 (ATCC Cat# CRL-
2314, RRID:CVCL_1267) and Hs578T (ATCC Cat# HTB-126,
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RRID:CVCL_0332) cells were seeded in complete medium on
24-well glass bottom plates (Sensoplate, Greiner Bio-One,
662892) coated with collagen (rat tail Type I, 10 ugml™"),
with the layout as shown in Supplementary Table S1. The
seeded densities were 20,000, 50,000, 100,000, and 150,000 cells
per well, which, assuming uniform distribution in the well,
corresponds to approximately 100, 250, 500, and 750 cells/
mm?. One hour before imaging, live Hoechst was added to
the medium, and just before imaging the medium was refreshed
(without additional Hoechst). The experiment was performed in
triplicate.

4.2 Microscopy

To allow nuclear tracking, cells were incubated for 1h with
Hoechst 33342 https://www.sigmaaldrich.com/NL/en/product/
sigma/14533. After incubation, the medium was refreshed, and
the plate was directly placed on an automated stage of a Nikon
Eclipse TI equipped with a fluorescent lamp and x20 objective
[Plan Apo, Air, numerical aperture (NA) 0.75, working distance
(WD) 1.0], a Perfect Focus System (PFS) and a temperature- and
CO,-controlled imaging chamber (custom design). Two
positions per well were imaged using both fluorescence and
DIC microscopy. The plates were imaged at 999 x 999 px
(experiment 1) or 948 x 948 px (experiment 2 and 3) using a
stitch of 2 x 2 positions with a pixel size of 0.79 um. The imaging
was repeated every 11 min (experiment 1) or 13 min (experiment
2 and 3) for 15h. Images are available at https://dx.doi.org/10.
5281/zen0do.5607734 (Le Dévédec, 2021).

Upon visual inspection of the microscopic images, we noted
that for the third experiment of the HCC38 150,000 condition,
cells were dying; therefore, we excluded these wells from further
analysis.

4.3 Image Processing

The imaging processing and analysis consisted of multiple steps.
Initially, proprietary Nikon ND2 image files were converted to the
Tagged Image File Format (TIFF) using NIS-Elements (NIS-
Elements, RRID:SCR_014329).

4.3.1 Automated Tracking

Subsequently, the resulting TIFFs were processed in a CellProfiler
pipeline (CellProfiler Image Analysis Software, V2.1.1, RRID:
SCR_007358) (Carpenter et al., 2006), containing the following
steps:

e Cropping: Following stitching of the images, they contained
zero-intensity patches at the edges as a result of (mis)
alignment. To avoid problems with segmentation and
edge detection later in the pipeline, we cropped the
images by 2 pixels at the edges.

e Segmentation: The cropped images were segmented using
the WMC approach (Yan and Verbeek, 2012). See
Supplementary Table S2 for the utilized parameters.

e Object identification: We converted the connected
components in the segmented images into objects. The
resulting objects were filtered on size; we only retained
objects with a diameter between 10 px (8 um) and 40 px
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(32um) for Hs578T, or 50px (40 um) for HCC38.
Additionally, we discarded objects touching the image
border to prevent inaccurate center-of-mass calculation.

e Tracking: We tracked the remaining objects using the
Overlap tracking method with a maximal pixel distance
of 30.

4.3.2 Manual Tracking

To compare our automated tracking to manual tracking, we used
MTrack] (Meijering et al., 2012) in Fiji (Fiji, RRID:SCR_002285)
(Schindelin et al., 2012; Rueden et al., 2017) to manually track a
representative subset of the wells by clicking the center of mass of
each cell in each frame. Although manual tracking is considered
the gold standard for tracking (Cordelieres et al., 2013), variability
in center-of-mass determination (e.g., due to operator fatigue)
can cause an overestimation of the actual cell speed (Huth et al,,
2010).

4.3.3 Nucleus Diameter Calculation

Because the cells show high pseudopodal activity, the cell
diameters are difficult to estimate. Instead, we estimated the
nucleus diameters, which are 30 and 25pum for HCC38 and
Hs578T. Using the EBImage R package (Pau et al., 2010), we first
applied an adaptive threshold on the Hoechst signal, followed by
watershed transformation and object feature analysis. Nucleus
diameters were estimated as two times the average nuclei radius
reported by EBImage, rounded up. These nucleus diameters serve
as an approximation for the nearest possible distance
between cells.

4.4 Track Analysis

Tracking data from CellProfiler was imported into R using an in-
house developed script (Wink and Burger, 2021; Wink, 2015, Ch.
7) and by fixing track identifiers with the CPTrackR package
(Burger et al,, 2021a). MTrack] data were imported using the
mdftracks package (Burger, 2021).

Analysis in R (R Project for Statistical Computing, RRID:
SCR_001905) (R Core Team, 2018) was performed with RStudio
(RStudio, RRID:SCR_000432) (RStudio Team, 2016) and with
the packages celltrackR (Wortel et al., 2021a), spatstat (Baddeley
et al,, 2015), and tidyverse (Wickham, 2017) packages.

4.4.1 Directional Autocorrelation
The Directional Auto Correlation (DAC) of all cells was
computed by

DAC(7) = (€}, * €}, ya>

where €', denotes the normalized direction of motion of cell i at
time jAt, and the angle brackets denote averaging over all cells i
and all times jAt and (j + n)At, where At is the sampling time, of
which the lag time 7 = nAt is a multiple. We computed the DAC
in R using the overallNormDot function, which we contributed to
the celltrackR package (Wortel et al., 2021a).

After removing DAC (0), which is by definition equal to unity,
we fitted the exponential decay function

(/)e'T/TP,
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which gives an estimate for the weight factor ¢ (can be interpreted as
the fraction of cells that is persistent) and persistence time 7, (Vedel
et al, 2013). Since the estimates for ¢ resulting from parameter
calibration were not always reliable (see Supplementary Figure S7),
we focused on 7, in our further analysis.

4.4.2 Correlograms

Averaged correlation values for the experimental correlograms
were computed using the Fisher transformation. First, the
Pearson correlation r for each experiment (biological replicate)
was converted into a Fisher’s z:

1, /1+

z= —ln(—r> = artanh (r),
2 \l1-r

where artanh is the inverse hyperbolic tangent. Then z can be

averaged and converted back with

_exp (2z) -

exp (2z) + 1 anh(2),

where tanh is the hyperbolic tangent (Corey et al., 1998).

4.5 Clustering Analysis With Ripley K
To analyze spatial clustering, we wused the
transformation on Ripley K (Ripley, 1977) defined as

common

L(r) =

K (r)
T

and provided in the spatstat R package (Baddeley et al., 2015). We
subsequently visualized r—L(r) as a function of r such that in case
of complete spatial randomness

L(ry=r=r-L(r)=0

which allows to determine whether clustering (r—L(r) < 0) or
dispersion (r—L(r) > 0) occurs.

4.6 Cellular Potts Modeling

In the CPM, cells are defined as a collection of lattice sites v € Z"
with the same cell identifier 0. Each cell also has an associated cell
type 7(0). At sites forming the cell boundaries (referred to as
“membrane elements” below), there is a cell-type-dependent
surface energy J; .. A simulation consists of a sequence of
Monte Carlo Steps (MCS), during which cells attempt to
extend membrane elements that would modify the cell
identifier of a lattice site 0(17) into the identifier of one of the
neighboring lattice sites o (v,) in the 2D Moore neighborhood
without the central square (i.e., the 8 sites of the first- and second-
order neighbors in 2D). The probability that such an extension is
accepted depends on the change in the Hamiltonian:

H= Z}T(U(;))J(g(aﬂ))<1 - 50(9)0(%))

ViV

v, Y (V(0) = Vi)

a

where the first term is the sum of the surface energies over all v, v,
neighbor pairs, and the second term is the elastic area constraint
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which keeps cells within a range of biologically appropriate sizes.
Furthermore, § is the Kronecker delta, Ay, is the elastic constant
for the area of cell type 7, V. is the target area of cell type 7, and
v(0) is the actual area of cell o.

The probability p that an extension is accepted depends on the
change in the Hamiltonian AH as follows:

|

where T is the temperature (Graner and Glazier, 1992; Glazier
and Graner, 1993). We used Morpheus (RRID:SCR_014975,
Starruf} et al., 2014) for the CPM implementation.

1, forAH<0

e#, for AH>0

4.6.1 Existing Persistence Models

4.6.1.1 Basic Persistence

In the basic persistence model implemented in the
PersistentMotion plugin in Morpheus, cells have a
target direction f based on previous movements which is
updated continuously according to

Frew = (1 = dr)fgq + drAx/|AX],

where dr = mm (1/dt 1) is the decay rate, with decay time dt in
MCS, and Ax = Xnew — Xold 18 the shift of the cell centr01d in the
previous MCS. For a proposed copy attempt a(v) = o(v,) in
update direction s, the additional change in Hamiltonian H due to
persistence is computed as:

AH =Y -Apv(0)(s, - £,
o€S

where S = {0 (;), 0(;,,)} is the set of involved cells, Ap the strength
of persistence, and v(0) the cell area. Note that the operator - is the
dot product. Other implementations of a basic persistence
mechanism have also been proposed (e.g., in Beltman et al.
(2007); Szabd et al. (2010); Guisoni et al. (2018)), which do
not include cell area. An advantage of including cell area in the
equation is that it may contribute to a realistic description of
inertia. However, in scenarios with a single cell type and only
limited variability in cell area over time (as is the case in our
simulations), its inclusion represents just a scaling factor on the
persistence strength Ap and is thus expected to have a negligible
effect on cell migration characteristics. For details on the
parameters used for the basic persistence model, see
Supplementary Table S3.

4.6.1.2 Act-CPM

In the Act-CPM model, persistence is achieved by recording each
lattice site’s “actin activity,” which depends on the MCS elapsed
since its most recent protrusive activity. Upon a successful copy
attempt, the target lattice site is assigned the maximum activity
value (Max,), which decreases every MCS until it reaches zero.
By making a copy attempt from an active site into a less active site
more favorable, a local positive-feedback mechanism is created,
which causes persistent motion. For a proposed copy attempt
0(17) — 0(17,,) the additional change in Hamiltonian H is
computed as
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T (GM () - M),

where GM (v) is the geometric mean of all activities of lattice
sites in the Moore neighborhood of v which share the same cell
identifier o(v) (Niculescu et al., 2015; Wortel et al., 2021b).

For this study, we used the Act-CPM model provided in
Morpheus; for details on the parameters used, see
Supplementary Table S4.

4.6.1.3 Pseudopod Model Ariotti et al.

In the pseudopod model by Ariotti et al. (2012), pseudopod
dynamics are realized by extending and retracting explicitly
described actin fibers using a finite state machine
(Supplementary Figure S11):

e A pseudopod starts in the INIT state in which its first actin
filament is added at the cell center-of-mass (rounded to the
nearest pixel location). This addition is only accepted if it is
at a location where a cell’s pixel indeed resides. Moreover, a
growth direction is drawn from a von Mises distribution
centered around the current movement direction of the cell
with  concentration i, (parameter init-dir-
strength).

¢ When initialized, the pseudopod enters the GROWING state.
During each MCS, the actin fiber is extended with
probability pe,; = 0.3; a position for a new actin filament
is determined by drawing a direction from a von Mises
distribution centered around its current growth direction
with  concentration k. (parameter cont-dir-
strength). If the new position resulting from an
extension in this direction is part of the current cell
pixels, the actin filament is added to the pseudopod’s
actin bundle, and its growth direction is updated to the
direction in which the pseudopod was extended during
this MCS.

e When the maximum growth time is reached (max-
growth-time) or if no extension has happened for 20
MCS, cells enter the RETRACTING state. In each MCS, the
actin fiber is retracted with probability p,e, = 0.3. There are
multiple retraction methods (parameter retraction-
mode): 1) backward, where actin fibers are removed
from the pseudopod tip, 2) forward, where actin fibers
are removed from the origin of the pseudopod, resulting in
“treadmilling” (Marée et al., 2007).

e When the actin fiber is completely retracted, the pseudopod
enters the INACTIVE state. This state can be used to limit
pseudopod activity; every MCS, the cell is moved to the
INIT state with probability 1/time —between —
extensions.

To couple this finite state machine description of actin fibers to
the behavior of CPM pixels, cell growth directly next to actin fiber
is promoted, and cell shrinking around actin is_prevented.
Specifically, for a proposed copy attempt o (¥) = o (vy),
presence of a site with actin fiber v, in the 2D Moore
neighborhood (including the central pixel itself) of v and
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0(17(1) = 0(17,,), leads to an additional change in the
Hamiltonian =~ AH = —neighboring — actin —bonus. To
prevent cell shrinking around actin, for a proposed copy
attempt o(v) - o(vn) presence of a site with actin fiber v, in
the 2D Moore nelghborhood (1nc1ud1ng the central pixel itself) of
vand o(vy) = 0(v) and 0 (v,) # o (v,), leads to blocking of this
attempt by an additional change in Hamiltonian AH = oo, such
that the acceptance probability p — 0. See Figure 5B for an
example of this pseudopod-driven motility with a single
pseudopod.

4.6.2 Proposed Model

To obtain realistic pseudopod-driven persistence that matches
our experimental observations, we adapted the model by Ariotti
et al. (2012) described in Section 4.6.1.3. We implemented this
model as a Morpheus plugin [thus also including the version
previously published in Ariotti et al. (2012)] and adapted it in
several ways to implement different processes involved in the
pseudopod dynamics:

e In HCC38 cells in vitro, we observed a “stickiness” of
pseudopods (Supplementary Video S1). To mimic this
effect, we added an adhesion bonus Egpponus (Eip-
bonus) to the in silico pseudopod tips. The bonus is
applied when for a proposed copy attempt a(¥) = o (v,
vy is in the 2D Moore neighborhood of another cell
aoqka(vn) and vn is within r.,, (max-distance-
for-tip-bonus) of one of its own pseudopod tips.
Moreover, when this position is also within 7, of a
pseudopod tip from neighboring cell o,, this bonus is
doubled. Thus:

0, if 76> Tmax AN 7o, > Timaxs
if 75 < Pmax X 76, < Tmaxs
if 75 <Timax A 7o, < T

AH = Z _Etip—bonusa
o€s _2Etip—bonus»

where S = {0(;),0(1_;,,)} is the set of involved cells in the copy
attempt, 7, and r,, are the minimum distances between vand one
of the pseudopods of ¢ and ¢, respectively. Note that this tip
adhesion bonus applies to cells that would grow because of the
considered expansion. However, if such an expansion promoted
by the tip bonus would also lead to shrinkage of another cell, the
tip bonus becomes a tip penalty for the second cell involved.
Thus, the net AH would be zero, preventing pseudopods from
“poking” into other cells.

e To increase the persistence of the cells, we implemented a
pseudopod pulling effect, similar to an effect simulated in
Vedel et al. (2013). leen a copy attempt a(v) — a(v,,) in
update direction s, the change in Hamiltonian is
computed as

AH =Y -F(5, }U)/v(a),

o€S

where S = {0(;), 0(17,,)} is ths set of involved cells, F the pulling
force (pull-strength), f, the vector sum of all pseudopod
vectors (i.e., the vectors from each pseudopod’s origin to its tip),
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and v(o) the cell area (note that here ¢ indicates the cell from
which a pixel copy into a neighboring pixel is considered). The
net force is divided by cell area because it should be more difficult
to accelerate a large (heavy) cell than a small cell. Nevertheless,
since we model only one cell type with cells of relatively constant
area over time, this is likely to have very only a minor effect.

e To increase the alignment of neighboring cells, we
implemented a “touch” strategy inspired by the
phenomenon Contact Inhibition of Locomotion (CIL).
Specifically, when growth of the actin fiber (see Section
4.6.1.3) is attempted into a neighboring cell, that
pseudopod is considered to be “touching.” The actin fiber
growth attempt is rejected, after which the following behaviors
can happen depending on the touch-behavior parameter:
e nothing: the simulation continues as before (this is the

behavior in the original Ariotti model (Ariotti et al., 2012),
which does not consider “touching” as a special event).

e retract: pseudopod is set to RETRACTING state,
allowing eventual reformation of a new pseudopod in
a novel direction.

e attach: to mimic cells latching onto each other with
their pseudopods, we introduced a TOUCHING state,
where a pseudopod is neither growing nor retracting.
Every MCS, there is a probability piouch_retr to enter the
RETRACTING state. Thus, on average, this introduces a
delay before pseudopod retraction occurs upon touching.

e poof-dir: when a pseudopod touches a neighboring
cell laterally (i.e., when cosa < 0.85, with « the angle
between the overall pseudopod direction (vector from
origin to tip) and the current movement direction of the
cell), the pseudopod is instantly retracted. This implies
that the RETRACTING state is omitted and that a new
pseudopod can be initialized in a novel direction.

Our final model to represent the behavior of HCC38 cells
employs the poof-dir touch strategy, yet we also compare it
with the other touch behaviors.

For details on the parameters used, see Supplementary Tables S5,
$6. A description of all pseudopod parameters can be found in
Supplementary Table S7. The code for the Morpheus plugin is
available at https://doi.org/10.5281/zenodo.5484491 (Burger and
Beltman, 2021) in the files morpheus/plugins/
miscellaneous/gab pseudopodia.cpp and morpheus/
plugins/miscellaneous/pseudopod.cpp. An example
Morpheus model using the plugin is available in the file
Examples/Miscellaneous/Pseudopodia.xml

4.6.3 Choice of Simulation Parameters

To efficiently explore the parameter space, we used the Python
Programming Language (RRID:SCR_008394) in Jupyter
Notebook (RRID:SCR_018315) (Kluyver et al, 2016), and
FitMultiCell (Alamoudi et al., 2019) [based on pyABC (Schilte
et al., 2021) and Morpheus (Starruf} et al., 2014)]. Based on this
extensive exploration, we selected representative parameter sets
that qualitatively matched (parts of) the experimental data. The
simulated number of cells was similar to the number of cells
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observed in experiments (Supplementary Figure S4) and were
initialized as randomly placed single pixels on the lattice that
quickly grew to values close to their target areas. Rather than
using the same pixel dimensions as in the experiments (~1000 x
1000 px), we used a simulation lattice size of 400 x 400 px for the
Ariotti model and our proposed model, equivalent to a CPM pixel
size of ~2 pm. This was done partly to achieve a reasonable run
time of individual simulations (~45 min on an Intel Xeon E5-
2660 v3) and to get realistic cell/pseudopod proportions. We used
our segmented experimental images to determine the cell target
area in our simulations (250 px, compare Figure 1A, HCC38, and
Figure 5F), corresponding to a cell diameter of ~20 um. All
simulations ran for 20,000 MCS. Note that we did not make an
explicit choice for the amount of real time that 1 MCS represents,
because this would mean that for every parameter change, a new
choice would be required to obtain realistic speeds. Rather,
migration characteristics were qualitatively compared to
experiments by using MCS as a time unit for simulation data.

4.6.4 Simulation Measurements

We saved the cell positions from the simulations every MCS, and after
discarding of the first 1,000 MCS to allow for equilibration, we
analyzed them in the same way as the experimental cell tracks,
except for instantaneous speed, which was estimated based on 50
MCS subtracks.
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