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Atherosclerosis is a chronic artery disease characterized by plaque formation and vascular
inflammation, eventually leading to myocardial infarction and stroke. Innate immunity plays
an irreplaceable role in the vascular inflammatory response triggered by chronic infection.
Periodontitis is a common chronic disorder that involves oral microbe-related inflammatory
bone loss and local destruction of the periodontal ligament and is a risk factor for
atherosclerosis. Periodontal pathogens contain numerous pathogen-associated
molecular patterns (PAMPs) such as lipopolysaccharide, CpG DNA, and
Peptidoglycan, that initiate the inflammatory response of the innate immunity
depending on the recognition of pattern-recognition receptors (PRRs) of host cells.
The immune-inflammatory response and destruction of the periodontal tissue will
produce a large number of damage-associated molecular patterns (DAMPs) such as
neutrophil extracellular traps (NETs), high mobility group box 1 (HMGB1), alarmins (S100
protein), and which can further affect the progression of atherosclerosis. Molecular
patterns have recently become the therapeutic targets for inflammatory disease,
including blocking the interaction between molecular patterns and PRRs and
controlling the related signal transduction pathway. This review summarized the
research progress of some representative PAMPs and DAMPs as the molecular
pathological mechanism bridging periodontitis and atherosclerosis. We also discussed
possible ways to prevent serious cardiovascular events in patients with periodontitis and
atherosclerosis by targeting molecular patterns.
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1 INTRODUCTION

Cardiovascular disease (CVD), mainly coronary atherosclerotic heart disease, and is the number one
cause of premature death in humans (Roth et al., 2020). Chronic infection and the inflammatory
response caused by this infection are important risk factors for the formation of atherosclerosis (AS),
the primary pathology of CVD (Soehnlein and Libby, 2021). Innate immunity is the host’s first line of
defense against pathogenic microorganisms, it plays a vital role in the vascular inflammatory
response triggered by chronic infection (Thaiss et al., 2016). Different from adaptive immune
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response relies on antigen-specific T/B lymphocytes in vivo to
activate, proliferate, and differentiate into effector cells after
receiving antigen stimulation (Chavarria-Smith et al., 2018),
the activation of innate immunity depends on the interaction
between pattern-recognition receptors (PRRs) of host cells and
molecular patterns, such as pathogen-associated molecular
patterns (PAMPs), and damage-associated molecular patterns
(DAMPs) (Olive, 2012). The pathogen itself or its metabolites
together, as PAMPs, constitute a class of molecular patterns
involved in the activation of innate immunity. PAMPs are
relatively non-specific, highly conserved, pathogenic molecular
structures expressed in pathogens, and their products (Mogensen,
2009). DAMPs are a large number of related intracellular proteins
or nucleic acids released by necrotic cells at the site of necrosis.
DAMPs participate in the occurrence and development of acute
and chronic inflammation and are critical factors in the outbreak
of acute severe inflammation (Gong et al., 2020).

Periodontitis (PD) is an infectious inflammatory disease with
plaque biofilm as the initiating factor. It mainly destroys the
supporting tissues around the teeth (including gingiva,
periodontal ligament, alveolar bone, and cementum). The
microbial dysbiosis and the host immune response jointly
promote the progression of PD (Slots, 2017), in which PAMPs
and DAMPs are representatives of this process. Representative
PD-related PAMPs include lipopolysaccharide (LPS),
peptidoglycan (PGN), and DNA sequence containing
unmethylated CpG-motif (CpG DNA). LPS and PGN, which
are located on the surface of periodontal pathogenic bacteria, can
be released after the bacteria are cleared and lysed, accompanied
by the release of CpG DNA (Song et al., 2017). The release of PD-
related DAMPs, represented by neutrophil extracellular traps
(NETs), high mobility group box l (HMGB1) and alarmins
(S100A8, S100A9, and S100A12), mainly comes from the
ablation and apoptosis of periodontal tissue cells and the
activation and rupture of immune cells (Gu and Han, 2020).
PAMPs and DAMPs interact with the PRRs in the periodontal
tissues. With the persistent activation of the innate immune
system by PAMPs and DAMPs, inflammatory responses
continuously exist and lead to the destruction of the
periodontal tissue (Song et al., 2017; Gu and Han, 2020).

In periodontal tissues, PAMPs are recognized by PRRs and
initiate the innate immune response within a short period, such as
eliminating pathogens by macrophages and complement. After
PRRs recognize PAMPs, neutrophils, T lymphocytes,
macrophages, and plasma cells successively infiltrate
periodontal tissue; immune cells secrete IL-1β (interleukin-1β),
IL-6, TNF-α (tumor necrosis factor-α) or other cytokines which
mediate inflammation (Karki and Kanneganti, 2021), promote
osteoclast production, and cause periodontal tissue damage
(Chen et al., 2021). DAMPs released in PD were also
confirmed to capture bacteria and activate inflammation in PD
(Gu and Han, 2020).

PD is regarded as a significant independent risk factor for AS
(Holmlund et al., 2017; Sanz et al., 2020). Porphyromonas
gingivalis (P. gingivalis), one primary pathogen of PD (Slots,
2017), can adhere to and invade the arterial vessel wall after
entering the bloodstream. By inhibiting the proliferation of

endothelial cells, it promotes the adhesion and chemotaxis of
monocytes, and activates the inflammatory signaling pathway
(Hajishengallis, 2015), eventually leading to vascular endothelial
dysfunction (Higashi et al., 2008), aggravating vascular
inflammation, and promoting the formation of AS (Gibson
et al., 2004). Meanwhile, studies have confirmed that many of
these PAMPs and DAMPs related to PD are involved in the
progression of AS, and most of them have adverse effects. These
substances and the activated innate immunity bridge the gap
between PD and AS, and enable us further to understand the
relationship between oral diseases and systemic diseases
(Figure 1). These substances may also become new targets for
treating patients with AS who are aggravated by PD. This review
summarizes representative PD-derived PAMPs and DAMPs and
their receptors that are most closely related to AS and introduces
potential treatments.

2 REPRESENTATIVE
PERIODONTITIS-RELATED PAMPS AND
DAMPS AND THEIR ROLES IN
ATHEROSCLEROSIS

2.1 Representative Periodontitis-Related
PAMPs
2.1.1 Lipopolysaccharide
LPS is a unique component of the outer membrane of Gram-
negative bacteria, composed of lipid A, a short core
oligosaccharide and O-antigen. It is also called endotoxin due
to its ability to induce a robust inflammatory response. LPS is the
most representative virulence factor among periodontal
pathogens. Clinical studies have shown that LPS levels were
positively correlated with periodontal clinical parameters and
inflammatory factors before and after periodontal treatment (Lee
et al., 2008; Shaddox et al., 2013).

After the periodontal microbial homeostasis is disrupted, P.
gingivalis proliferates in large numbers, and excessive
proliferation and death cause the release of LPS (Zheng et al.,
2021). P. gingivalis LPS is recognized by the Toll-like receptor 4
(TLR4) of macrophages and activates the NF-κB and MAPK
signaling pathways, thereby inducing the release of inflammatory
cytokines (Nativel et al., 2017). These factors can promote the
expression of matrix metalloproteinases and osteoclast factors
and then destroy soft tissue and bone.

P. gingivalis LPS can induce macrophage foam cell formation.
It promotes the binding of macrophages to low-density
lipoproteins (LDL) and induces macrophages to modify native
LDL (Qi et al., 2003). P. gingivalis LPS promotes monocyte
chemotaxis and adhesion to vascular endothelial cells through
Akt and NF-κB signaling pathways (Wang et al., 2020). P.
gingivalis LPS can also promote the high expression of
angiotensin II and IL-6 in vascular endothelial cells and
accelerates endothelial dysfunction (Viafara-Garcia et al.,
2019). In animal models, P. gingivalis LPS increased the
secretion of TNF-α from macrophages and up-regulated the
expression of endothelial cell adhesion molecules, which
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aggravated the exacerbated effect of ligature-induced PD on AS
(Suh et al., 2019). However, the role of other periodontal
pathogenic LPS in AS, such as Treponema denticola (T.
denticola) and Tannerella forsythia (T. forsythia), is still
unknown.

From a broader perspective, PD related low-grade
endotoxemia (LGE) causes phenotypic and transcriptional
changes in myeloid cell populations that enhance their
response to pathogens, a process known as trained immunity
(Netea et al., 2020). LPS from periodontal pockets continue to
enter the peripheral blood at low levels, activating neutrophil

hyperresponsiveness (Vitkov et al., 2021) (The role of neutrophils
in this process will be discussed in detail later). Therefore,
periodontal pathogenic bacteria-derived LPS represented by P.
gingivalis LPS and its induced LGE may be the link between PD
and AS.

2.1.2 CpG DNA
CpG DNA is a type of DNA sequence with immune activation
function containing unmethylated CpG motif, including
artificially synthesized oligodeoxynucleotides containing CpG
(CpG ODN) and genomic DNA of bacteria, viruses, and

FIGURE 1 | Periodontitis mediates the formation of atherosclerosis by producing PAMPs and DAMPs. Periodontal pathogens produce PAMPs, including LPS,
PGN, and CpG DNA. Periodontal infection activates neutrophils to form NETs, which together with HMGB1 and alarmins released by damaged periodontal cells
constitute DAMPs. PAMPs and DAMPs activate excessive innate immunity by acting on TLRs and NLRs in arterial tissue, leading to foam cell formation, endothelial cell
and vascular smooth muscle cell dysfunction, and promoting the massive release of inflammatory factors, which are involved in the regulation of AS.
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invertebrates (Zhou and Deng, 2021). CpG DNA triggers
immunostimulatory activity through TLR9 (Ohto et al., 2015).
TLR9 is highly expressed in the gingival tissue of PD patients
(Narayan et al., 2018), suggesting that CpG DNA could be
actively involved in the progression of PD.

It was found in vitro that macrophages recognize CpG DNA
from periodontal pathogens through TLR9 and then highly
express IL-1β and TNF-α to induce osteoclastogenesis (Zou
et al., 2002). In addition, TLR9-related autophagy may also be
involved in the progression of PD (Wei et al., 2020). However,
there are also studies showing that CpG ODN sometimes may
positively affect PD. CpG ODNs can promote the proliferation
and differentiation of MC3T3 cells in the early stage and up-
regulate the expression levels of bone differentiation genes SP7
and OCN (Yu et al., 2020).

AS can associate with PD through CpGDNA. In ApoE−/- mice
infected by P. gingivalis, alveolar bone resorption and aortic
plaque increased significantly (Xuan et al., 2017). The genomic
DNA of P. gingivalis can be detected in the oral epithelium and
the aorta (Velsko et al., 2014). In polymicrobial infection-induced
periodontal disease, ApoE−/- mice had enlarged aortic plaques,
accumulation of macrophages around the arteries, increased
serum cholesterol and triglycerides, while genomic DNA of P.
gingivalis, T. denticola, and T. forsythia can be detected in the
aorta and liver (Rivera et al., 2013). Intravenous injection of P.
gingivalis in ApoE−/- mice can also aggravate AS, and the
ribosomal DNA of P. gingivalis can be detected in the aorta,
liver and heart (Li et al., 2002). However, P. gingivalisDNA in the
periodontal pocket may not be transferred to the heart valve area,
causing the aortic valve and mitral valve to degenerate (Radwan-
Oczko et al., 2014). Therefore, periodontal pathogens represented
by P. gingivalis might colonize the arterial wall through blood
circulation, and the CpG DNA released after bacterial cell lysis
may regulate the development of AS by activating the
corresponding TLR9 pathway.

However, the role of CpG DNA/ODN on AS is still
controversial. The genetic deletion of the TLR9 gene
exacerbated AS lesions in ApoE−/- mice, and the use of CpG
ODN 1668 can reduce this effect (Koulis et al., 2014). In other
words, CpG ODN and TLR9 may protect the aorta in specific
circumstances. Further studies demonstrated that TLR9 plays a
negative role in vascular injury (Hirata et al., 2013), and systemic
stimulation of TLR9 with high-dose CpG ODN will aggravate the
development of AS (Krogmann et al., 2016). There are differences
between CpG DNA released in PD and synthetic CpG ODN. The
difference in concentration and sequence may lead to changes in
the activation of the downstream inflammatory pathway of TLR9
in AS lesions. Therefore, it is necessary to screen PD-related CpG
DNA to clarify its role in AS in future studies.

2.1.3 Peptidoglycan
Peptidoglycan (PGN) is a common component of bacterial cell
walls. Transcriptional pathways for peptidoglycan synthesis are
significantly up-regulated in tongue and subgingival plaque in
patients with periodontitis (Yost et al., 2015; Belstrom et al.,
2021). PGN can be recognized by TLR2 on the cell membrane and
the endogenous NOD1, NOD2, and NLRP3. The expression of

NOD1 and NOD2 can be detected in human periodontal
ligament cells (hPDLC). Under the stimulation of PGN, the
production of IL-6 and IL-8 in hPDLC increased, and the NF-
κB and MAPK signaling pathways were activated (Jeon et al.,
2012). Injecting PGN into the gums of mice can induce
osteoclastogenesis, and TLR2, NOD1, and NOD2 are activated
(Kishimoto et al., 2012). N-acetylglucosamine can be recognized
by the glycolytic enzyme hexokinase in the cytoplasm and
subsequently activate the NLRP3 inflammasome, which may
be involved in the progression of PD (Wolf et al., 2016). In
summary, periodontal pathogens may activate excessive innate
immunity through PGN, an exogenous pathogen-associated
molecular pattern, and cause PD. The destruction of
periodontal tissue damages the barrier function of the oral
mucosa. The decisive invasion and migration capabilities of
periodontal pathogens make it enter the circulation and spread
the PGN in the cell wall to the cardiovascular system.

Although there are few studies on the relation between
periodontal PGN and AS, as a ubiquitous substance in
bacteria, PGN produced by lysis or ectopic colonization of
periodontal pathogens around blood vessels can cause chronic
inflammation. The long-term chronic inflammation of the
vascular microenvironment is obviously beneficial to the
formation of AS. Early studies found that PGN induced the
production of pro-inflammatory cytokines through TLR2 and
increased the vulnerability of AS plaques (Nijhuis et al., 2004).
While the vascular endothelial dysfunction appeared in rats
modeled by surgery and a high-cholesterol diet, the
concentration of serum PGN was significantly increased
(Tsunooka et al., 2005). It has been confirmed that TLR2 is
expressed in macrophages in AS lesions. PGN activated
monocytes to overexpress intercellular adhesion molecule-1
(ICAM-1) through the TLR2 and NF-κB pathways, promoting
monocyte adhesion and chemotaxis to vascular diseases (Nijhuis
et al., 2007; Xie et al., 2016). Using PGN to stimulate human
coronary artery endothelial cells that were knocked out TLR2
through CRISPR-Cas9 technology, the expression levels of
ICAM-1, IL-6, and IL-8 were significantly down-regulated
(Wang et al., 2018). PGN can also be recognized by PGN
recognition protein-1 (PGLYRP-1) in the innate immune
system. The level of circulating PGLYRP-1 is associated with
AS, coronary artery calcification, thickening of the abdominal
aorta, and acute coronary syndrome (Brownell et al., 2016; Han
et al., 2021). PGLYRP1 may promote the formation of AS plaques
by regulating the overexpression of adhesion molecules in
endothelial cells (Jin et al., 2021). PGN also triggers the up-
regulation of vascular cell adhesion molecule-1 (VCAM-1)
through the NOD1-RIP2-NF-κB axis, promotes the
recruitment of myeloid cells, and leads to endothelial
dysfunction (Gonzalez-Ramos et al., 2019).

2.2 Representative Periodontitis-Related
DAMPs
2.2.1 Neutrophil Extracellular Traps
Neutrophil extracellular traps (NETs) are an extracellular fibrous
network structure produced by neutrophils after being

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8561184

Zhu et al. Bridge Between Periodontitis and Atherosclerosis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


stimulated, mainly composed of chromatin and cellular proteins
(Brinkmann et al., 2004). The process of neutrophils forming
NETs is called NETosis, including suicidal NETosis and survival
vital NETosis, which is considered a cell death program different
from apoptosis and necrosis (Yipp and Kubes, 2013). NETs
recognize, trap, and restrict the spread of bacteria and other
pathogens and highly express antimicrobial peptides and other
antibacterial ingredients to delete pathogens ultimately
(Papayannopoulos, 2018).

Numerous clinical studies have confirmed that NETs are
closely related to the progression of PD. NETs expression in
the inflamed gingival tissue was higher than that in the healthy
control group (White P. C. et al., 2016). The expression of NETs
in the gingival tissue of patients with periodontitis was higher
than that of patients with gingivitis, indicating that the level of
NETs is related to the severity of periodontal inflammation
(Magan-Fernandez et al., 2019). The gingival biopsy samples
of patients with PD and the purulent exudate in the periodontal
pockets (Vitkov et al., 2009) found high expression of NETs,
showing a fibrous network structure. There are many bacteria in
the NETs and their mechanical entanglement, and they are
closely arranged on the surface of the epithelium. A case-
control study (Kaneko et al., 2018) found that the NETs level
was positively correlated with the average probing depth and
clinical attachment loss in patients with PD. NETs were detected
in supragingival plaque biofilms, and NETs-related protein
Myeloperoxidase (MPO) was found in saliva and biofilms,
which confirmed that oral bacteria isolated from plaque
biofilms could stimulate the formation of NETs (Hirschfeld
et al., 2015). Neutrophils in PD are recruited by fibrin through
myeloid integrin αmβ2-binding motif and activated to generate
NETs (Silva et al., 2021). Studies have found that P. gingivalis
(Jayaprakash et al., 2015) and Fusobacterium nucleatum (F.
nucleatum) (White et al., 2014) can stimulate neutrophils to
produce reactive oxygen species (ROS). Streptococcus sanguis
also increased the level of NETs marker citH3 and up-
regulated the level of MPO (Oveisi et al., 2019). In summary,
specific periodontal pathogens can stimulate neutrophils to
produce ROS and release NETs.

Multivariate logistic regression analysis showed that the
peripheral blood NET level was significantly positively
associated with moderate to severe PD (Kaneko et al., 2018).
Degradation of NETs in plasma is increased after periodontal
therapy in PD patients (Moonen et al., 2020). Periodontal
pathogens and excessive NETs produced during PD may
participate in the progression of AS after entering the
circulation. After entering the bloodstream, P. gingivalis binds
to erythrocytes to avoid ROS destruction, thereby further
activating the Rho GTPase signaling pathway, up-regulating
CD11b/CD18, and promoting the activation of neutrophils
(Borgeson et al., 2011; Damgaard et al., 2017). Periodontal
pathogen DNA can be detected in carotid plaque. T. forsythia
is significantly related to intraplaque hemorrhage and neutrophil
activation, reflected in the increased release of MPO, cell-free
DNA, and NETs (Range et al., 2014). The systemic inflammatory
state caused by PD promotes the adhesion of neutrophils and
endothelial cells by increasing oxidative stress parameters

(superoxide and mitochondrial membrane potential)
(Martinez-Herrera et al., 2018). However, studies are still
limited to the relationship between periodontal NETs and AS.
The differences between the histone composition and DNA
sequence of periodontal NETs and other systemic
inflammatory NETs, as well as the mechanism of periodontal
NETs in AS plaque formation, deserve more efforts to reveal both
in vivo and in vitro.

2.2.2 High Mobility Group Box 1
High mobility group Box 1 (HMGB1) is a non-histone
chromosome binding protein widely distributed in the nucleus
of various cells. It plays an important role in stabilizing the
structure of nucleosomes, regulating transcription factors, and
DNA replication repair (Vijayakumar et al., 2019). HMGB1 can
be released by necrotic or ruptured cells and activated immune
cells (Andersson and Tracey, 2011). High levels of HMGB1 can
be detected in the gingival crevicular fluid of patients with
moderate to severe chronic PD (Luo et al., 2011; Paknejad
et al., 2016), and it was positively correlated with periodontal
clinical parameters (including plaque index, bleeding index,
probing depth, and clinical attachment level) (Yu et al., 2019).
Human gingival epithelial cells can increase the secretion of
HMGB1 under the stimulation of TNF-α (Morimoto et al.,
2008). Similarly, IL-1β promoted the secretion of HMGB1 in
fibroblasts (Ito et al., 2012). Under the constant stimulation of
periodontal infection, tissue cells continuously secrete HMGB1,
which causes macrophages to be further activated and secrete
cytokines, and amplifying the destruction of inflammation. This
process can be inhibited by HMGB1 antibody (Yoshihara-Hirata
et al., 2018). Excessive HMGB1 secreted by periodontal cells in
PD or released by apoptosis can enter the circulation through
osmosis and transmit the damage signal to the artery.

In AS, HMGB1 plays an important role. The increase of
HMGB1 level directly leads to the mass production of
cytokines, including IFN-γ, TNF-α, IL-1β, and IL-6, which
promotes the formation of AS and reduces the stability of
plaque (Su et al., 2015). In the AS model of rabbits,
administration of HMGB1 and TNF-α can significantly
aggravate the inflammation of advanced plaques (Kim J.-S.
et al., 2016). In the ApoE−/- mouse AS model induced by the
Western diet, anti-HMGB1 antibodies were more than six times
higher than regular diet ApoE−/- mice and ApoE+/+ mice,
indicating that HMGB1 autoimmunity is involved in the
progression of AS (Pan et al., 2016). It was speculated that
HMGB1 produced by PD might be involved in systemic
diseases by acting on monocytes, macrophages and vascular
endothelial cells (Morimoto-Yamashita et al., 2012).
Bioinformatics analysis shows that HMGB1 is a potential
molecular mechanism of the association between PD and AS
(Ning et al., 2021). There have been reports that P. gingivalis
elevated HMGB1 levels after myocardial infarction in mice
(Srisuwantha et al., 2017). In addition, the circular RNA
PPP1CC of P. gingivali can regulate the apoptosis of vascular
smooth muscle cells through the HMGB1/TLR9/AIM2 axis (Liu
J. et al., 2021). The role of HMGB1 produced by PD in the AS
model remains to be discovered.
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2.2.3 Alarmins
S100 protein is a group of calcium-binding proteins. Its family
has more than 20 members and participates in the metabolism
of the cytoskeleton under physiological conditions (Vogl et al.,
2014). When cells are damaged or phagocytes are activated,
macrophages secrete S100A8, S100A9, and S100A12 (Foell
et al., 2007). These proteins combine with PRRs as
“alarmins”, activating immune cells and endothelial cells to
promote inflammation (Goyette and Geczy, 2011). The levels
of S100A8, S100A9, and S100A12 in saliva and gingival
crevicular fluid of patients with PD were significantly
increased (Kojima et al., 2000; Shin et al., 2019; Lira-Junior
et al., 2020; Jimenez et al., 2021). Microbial infection can cause
abnormal expression of S100 protein in gingival tissues and
destroy the epithelial barrier function (Nishii et al., 2013).
Immunohistochemistry and RNA sequencing showed that
S100A8 and S100A9 were highly expressed in the ligature-
induced PD (Maekawa et al., 2019). After mouse osteocyte-like
cells (MLO-Y4-A2) were treated with S100A9, the expression
of IL-6 and RANKL increased, and the p38/ERK/STAT3
signaling pathway was activated, indicating that alarmins
were involved in periodontal bone destruction (Takagi
et al., 2020). It is worth noting that the levels of S100A12
and C-reactive protein in the gingival crevicular fluid and
serum of patients with PD are elevated and positively
correlated with periodontal parameters (Pradeep et al.,
2014), suggesting that alarmins may be the link between PD
and AS.

The expression of S100A9 and SMemb protein (a phenotypic
marker of smooth muscle cell proliferation) increased in
aneurysm specimens from patients infected with P. gingivalis
(Hokamura et al., 2010). This phenotype has been verified in
mice. Studies have also found that P. gingivalis infection can up-
regulate the expression of S100A9 in human aortic smooth
muscle cells (hAOSMC), which makes hAOSMC change from
a contractile to proliferative phenotype (Inaba et al., 2009). These
may lead to a potential mechanism for PD to promote aortic
intimal hyperplasia. Therefore, PD can accelerate AS through
alarmins.

3 PERIODONTITIS-RELATED PAMPS AND
DAMPS RECOGNITION RECEPTORS EXIST
IN ATHEROSCLEROSIS
3.1 Toll-like Receptors
Toll-like receptors (TLRs) are a type of PRRs that exist on the
cell surface or endosome/lysosome membrane (Minton, 2019).
So far, 10 TLRs have been found in humans. TLRs are mainly
divided into two categories. TLR1, TLR2, TLR4, TLR5, TLR6,
and TLR10 significantly recognize lipids and proteins, while
TLR3, TLR7, TLR8, and TLR9 mainly recognize nucleic acids
(Fitzgerald and Kagan, 2020). TLR1, TLR2, TLR4, TLR7, and
TLR9 are highly expressed in the gingival tissue of patients
with PD (Becerik et al., 2011; Scheres et al., 2011; Duarte et al.,
2012; Ribeiro et al., 2012; Beklen et al., 2014; Chen et al., 2014).
Under the infection of periodontal pathogens (such as P.

gingivalis), LPS, flagella, and CpG DNA, etc., stimulate the
corresponding TLRs, activate excessive innate immunity, and
destroy periodontal tissue. These molecular patterns transfer
chronic inflammatory signals from the oral cavity to
cardiovascular tissues by releasing them into the blood or
ectopic bacterial colonization, driving the activation of
innate immunity in the vascular microenvironment and
participating in the progression of AS.

The high degree of conservation of TLRs determines that
TLRs closely related to PD are widely distributed in blood
vessels and surrounding immune cells. Macrophages play a
vital role in the pathology of AS. Under P. gingivalis
stimulation, macrophages recognized LPS and flagella
through TLR2 and TLR4, and CpG DNA through TLR9,
secreted more IL-1β, IL-6, TNF-α, and adhesion molecules,
and formed foam cells and participated in plaque formation
(Gibson and Genco, 2007; Brown et al., 2015; Crump and
Sahingur, 2016). At the same time, cholesterol crystals in
blood vessels will amplify the activation of TLR2 and TLR4
signaling pathways of monocytes stimulated by P. gingivalis,
and the mechanism may be related to the NLRP3
inflammasome (Kollgaard et al., 2017). Interestingly, mice
lacking TLR2 and TLR4 have significantly reduced alveolar
bone resorption compared with the control group under the
condition of periodontal red-complex infection, and the
serum oxidized low-density lipoprotein, nitric oxide, and
lipid fractions levels were not altered. The AS lesions of the
aortic arch in the experimental group also did not aggravate
(Chukkapalli et al., 2017). After TLR9-deficient mice were
stimulated with CpG DNA, the activation of NF-κB was
down-regulated compared with wild-type, and the
contractility of cardiomyocytes was increased
(Knuefermann et al., 2008). Activating TLR9 in endothelial
cells can promote neutrophil chemotaxis and vascular
inflammation (El Kebir et al., 2009).

3.2 NOD-like Receptors
NLRs are similar to TLRs in that they are both signal transduction
pattern recognition receptors. 23 NLR family members have been
found in humans, including NOD1, NOD2, and NLRP3, etc
(Zhen and Zhang, 2019). NOD1 and NOD2 are the first two
NLRs discovered. They contain an N-terminal caspase
recruitment domain and a C-terminal leucine-rich repeat
sequence (Kim Y. K. et al., 2016). In healthy gingival tissue,
NOD1 and NOD2 are more abundant than TLRs. Both P.
gingivalis and F. nucleatum infection can induce high
expression of NOD1 and NOD2 in periodontal tissues (Liu
et al., 2014; Alyami et al., 2019). After NOD1 and NOD2 are
activated, they recruit a series of downstream molecules and
activate NF-κB and MAPK pathways (Jeon et al., 2012). PD
aggravates vascular endothelial dysfunction through NOD1 and
NOD2. P. gingivalis can stimulate the activation of endothelial
cells and promote the up-regulation of E-selectin, NOD1, NOD2,
and TLR2. This change depends on the NF-κB/p38/MAPK
pathway. The use of small interfering RNA targeting NOD1
can suppress related signals (Wan et al., 2015). Compared
with cells treated with NOD1 and NOD2 ligand stimulants, P.
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gingivalis-infected endothelial cells showed rapid lysis of
receptor-interacting protein 1 (RIPK1) and RIPK2, suggesting
that tumor necrosis factor receptor-1 (TNF-R1)-induced cell
activation or death was involved in the invasion of arteries by
periodontal pathogens (Madrigal et al., 2012).

NOD-like receptor protein 3 (NLRP3) NLRP3 is an essential
member of the NOD-like receptor family. Its inflammasome
complex consists of NLRP3, apoptosis-associated speck-like
protein (ASC) containing a caspase recruitment domain
(CARD) and pro-cysteinyl aspartate specific proteinase-1 (pro-
caspase-1) composition. NLRP3 is encoded by autoinflammatory
syndrome 1 (CIAS1) and has an N-terminal pyrin domain (PYD),
a central nucleoside triphosphatase domain (NACTH domain),
and a C-terminal leucine-rich repeat (LRR). When NLRP3 senses
a danger signal, it interacts with the PYD of ASC. Then ASC
recruits pro-caspase-1 through the same CARD and then
aggregates it into NLRP3 inflammasomes. The activated
inflammasomes prompt ASC to cleave pro-caspase-1 into
active caspase-1, which promotes the maturation of IL-1β and
IL-18, and induces inflammation and cell death (Haneklaus and
O’Neill, 2015; Shao et al., 2015).

NLRP3 is a crucial mediator of periodontal infections involved
in AS. The latest clinical study showed that NLRP3 was positively
correlated with periodontal parameters, and periodontal
treatment can effectively reduce the level of NLRP3 in gingival
crevicular fluid (Shahbeik et al., 2021). The detection of high
levels of NLPR3, ASC and IL-1β in saliva reflected the severity of
periodontal inflammation (Isaza-Guzman et al., 2017). Further in
vivo (Yamaguchi et al., 2017) and in vitro (Lu et al., 2017; Lian
et al., 2018; Zhang et al., 2021) experiments proved that NLRP3
was involved in the regulation of periodontal inflammation. The
saliva and serum levels of NLRP3 in patients with PD were
elevated, suggesting that NLRP3 may be a mediator of
periodontal infection and systemic diseases (Isola et al., 2021).
In a clinical trial of 90 subjects, the level of NLRP3 in the serum of
patients with coronary heart disease was significantly higher than
that in the control group. It was positively correlated with the
levels of serum IL-1β and IL-18 (Satoh et al., 2014). A study of 22
patients with chronic PD showed that the relative expression
levels of ASC, NLRP3, and caspase-1 mRNA in peripheral blood
decreased after initial periodontal treatment (Higuchi et al.,
2020). It was suggested that periodontal treatment might
prevent AS by reversing the release of inflammasome from
periodontal tissue to the cardiovascular system. Compared
with KDP136 (gingipain null mutant) or KDP150 (FimA
defective mutant), wild-type (WT) ApoE−/- mice infected with
pg showed loss of alveolar bone and increased AS plaque area,
and periodontal macrophages secreted more IL -1β, IL-18, and
TNF-α. The expression of NLPR3 mRNA in the gingival tissue
and the aorta were increased (Yamaguchi et al., 2015). P.
gingivalis can also act synergistically with cholesterol crystals
to stimulate the NLRP3 inflammasome to promote the secretion
of AS-promoting cytokines by monocytes (Kollgaard et al., 2017).
However, a study showed that P. gingivalis LPS could stimulate
the increase of NLRP3 levels in endothelial cells instead of P.
gingivalis stimulation (Huck et al., 2015), which seems to
contradict in vivo studies. Therefore, the mechanism of

NLRP3 in periodontal inflammation-promoting AS remains to
be explored.

4 BLOCKINGPAMPSANDDAMPSHAS THE
POTENTIAL TO INHIBIT THE SYSTEMIC
EFFECTS CAUSED BY PERIODONTITIS
With the continuous progress of periodontal inflammation,
PAMPs and DAMPs can be released into the circulation,
promoting the development of systemic diseases such as AS,
rheumatoid arthritis, and inflammatory bowel disease, etc. As
mentioned above, periodontal treatment can decrease systemic
inflammation, which can be explained as the control of oral
infections reduces the microbial burden caused by the release of
PAMPs. The healing and reconstruction of damaged tissues cut
off the source of DAMPs release.

In order to antagonize infection and inflammation, there
have been attempts to find or synthesize inhibitors targeting
molecular patterns. For example, the ubiquitous 14-3-3 β/α-A
protein in zebrafish embryos specifically neutralizes PGN and
protects the early embryonic host from pathogenic attacks
(Wang et al., 2021). The artificially synthesized monoclonal
antibody 2E7 targeting on muramyl-L-alanyl-D-isoglutamine
(a highly conserved domain of PGN), suppressed the
development of autoimmune arthritis and experimental
autoimmune encephalomyelitis in mice by blocking NOD2-
related pathways (Huang et al., 2019). It is suggested that the
specific neutralization of PAMPs has potential value in
regulating inflammatory diseases.

Synthetic Anti-lipopolysaccharide Peptides (SALPs) as
effective inhibitors of PAMPs have been used to treat bacterial
infectious diseases. SALPs capture the negatively charged
phosphate and carboxylate in the LPS head group through the
positively charged N-terminal residue, and then the C-terminal
region interacts with the non-polar hydrophobic interaction of
the lipid A acyl chain portion (Correa et al., 2019). The binding
affinity of SALPs and LPS surpasses that of LPS-binding protein
(LBP), showing excellent antibacterial properties. SALPs have a
significant inhibitory effect on LPS-induced TNF-α secretion in
monocytes. SALPs can also neutralize LPS-induced shock in vivo
and have little impact on healthy organs (Gutsmann et al., 2010).
In the cecum ligation and puncture (CLP)-induced mice model,
SALPs can improve the contractile function of cardiomyocytes
and reduce cardiac dysfunction (Martin et al., 2015; Martin et al.,
2016). This indicated that SALPs have the potential to block the
activation of periodontal-related LPS on innate immunity in AS.

Specific molecular patterns neutralizer such as SALPs have
two disadvantages. First, there are many types of innate immune
activation receptors, each of which recognizes a specificmolecular
pattern. We cannot guarantee to know the exact molecular
pattern of each disease. There may be many models involved
in the inflammatory response of the same disease. Secondly, these
molecular patterns may be interrelated. Blocking only one of the
specific pathways may not effectively suppress the inflammatory
response. Both PAMPs and DAMPs include nucleic acids, such as
DNA fragments in NETs and CpG DNA. Deoxyribonuclease I
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(DNase I) is the first DNA hydrolase to be discovered. In
physiological conditions, DNase I contributes to the digestion
of food, apoptosis, and elimination of necrotic cells (Mannherz
et al., 1995). DNase I has been used as a common neutralizing
agent to disrupt NETs structure to prevent DAMPs from over-
activating innate immunity, and has preliminary applications
in cancer treatment (Cools-Lartigue et al., 2013; White P. et al.,
2016). In the periodontal destruction caused by plasminogen
deficiency, the use of DNase I to remove NETs recruited and
activated by excessive fibrin can significantly reduce alveolar
bone resorption (Silva et al., 2021). The level of plasma DNase I
of PD patients was significantly lower than healthy controls
(White P. et al., 2016), indicating that the use of DNase I may
contribute to the balance of nucleic acid metabolism in the
circulation. In socially defeated ApoE−/- mice, the aggravation
of arterial plaque area was wholly diminished by DNase I
treatment (Yamamoto et al., 2018). Therefore, DNase I may
block the pathway of PD acting on AS by hydrolyzing DNA
and its complexes. However, how to define the usage and
dosage in the course of treatment and its potential damage to
normal tissues remain to be considered.

Nucleic acids are generally negatively charged in their natural
state. NA-binding polymers (NABP) represented by PAMAM-
G3 are typically used in non-viral gene delivery. Recently, NABP,
as a positively charged nucleic acid scavenger, and has been used
in various inflammatory diseases to block the excessive activation
of innate immunity by molecular patterns (Lee et al., 2011).
Compared with the soluble polycations (like PAMAM-G3), the
improved NABP nanoparticles have better biological safety and
NA scavenging capacity, and demonstrates an excellent
therapeutic effect in rheumatoid arthritis (Liang et al., 2018;
Peng et al., 2019), sepsis (Dawulieti et al., 2020; Liu F. et al.,
2021), and inflammatory bowel disease (Shi et al., 2022).
Therefore, it can be feasible to regulate inflammation through
non-specific clearance of DAMPs and PAMPs. At present, the
research and development of such materials are still in their
infancy, and it is expected to be applied to PD and AS models in
the future.

5 CONCLUSION AND PERSPECTIVES

The chronic inflammatory state of PD is closely related to
cardiovascular disease. LPS, PGN, and CpG DNA released by
periodontal pathogen infection, NETs, HMGB1, and alarmins
cast by periodontal tissue destruction can enter the circulation
and participate in vasoconstriction, endothelial dysfunction and
the transformation of macrophage to foam cells. These molecule
patterns join in the development of AS and affect the occurrence
of CVD through TLR, NLR and other innate immune signaling
pathways. PD and cardiovascular disease are two high-prevalence
diseases in humans. Studying the mechanism of action between
the two has significant public health significance. In this review,
PAMPs and DAMPs are discussed as a complex mechanism of
PD affecting AS. This shows that chronic inflammation
represented by innate immune activation plays an important
role in connecting oral cavity and systemic diseases. Naturally, we
will consider whether eliminating molecule patterns will block
this process. Through specific and non-specific removal of
PAMPs or DAMPs, there have been preliminary applications
in the regulation of inflammation. Similar methods will have
application prospects in studying the relationship between PD
and AS in the future.
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