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Bone marrow microenvironment (BMM) has been proven to have benefits for both normal
hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the
pathological leukemia microenvironment reprograms bone marrow niche cells, especially
mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The
growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover,
chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here,
we summarize the detailed relationship between MSC and leukemia. MSCs can actively
and passively regulate the progression of myelogenous leukemia through cell-to-cell
contact, cytokine-receptor interaction, and exosome communication. These behaviors
benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we
describe the recent advances in therapy targeting MSC hoping to provide new
perspectives and therapeutic strategies for leukemia.

Keywords: mesenchymal stromal cells, leukemic stem cells, bone marrow microenvironment, hematopoietic stem
cell niche, leukemic progression

INTRODUCTION

HSC niche, including support cells and support cytokines, takes part in the process of HSC
generation, self-renewal, proliferation, and differentiation (Morrison and Scadden, 2014). The
external or self-microenvironment dynamically changes the niche components, leading to
proliferation or differentiation of HSCs, which result in the controllable generation of leukocytes
or erythrocytes for maintaining the internal biological homeostasis (Kumar and Geiger, 2017).
Physiologically, long-term hematopoietic stem cells exist in the stable endosteum microenvironment.
The microenvironment maintains a low-oxygen environment, and it is sustained by the physical
interactions and various cytokines that derived from support cells such as mesenchymal stem cells,
endothelial cells, and megakaryocytes. Then, the short-term hematopoietic stem cells mobilize the
perivascular microenvironment for further activation, resulting in the loss of homeostasis and the
generation of hematopoietic progenitor cells (Pinho and Frenette, 2019). All actions of HSCs are
strictly regulated by their physiological requirements. However, in some pathological conditions,
uncontrollable HSC niche and HSC changes mobilize hyperactivity of HSCs to differentiate to
plethoric leukocytes or erythrocytes, causing ineffective hematopoiesis for leukemia initiation
(Shlush and Feldman, 2021). With the advent of chemotherapy and immunotherapy, the 5-year
survival rate of leukemia has shown a significant increase. However, some patients still show drug
insensitivity or chemoresistance, which is the major barrier for complete leukemia cure. In fact, from
the perspective of the bone marrow microenvironment, it is difficult to completely cure leukemia
because of the protection of BMM. Therefore, disintegrating the leukemic stem cell (LSC)-hiding
bone marrow microenvironment can be used as a new therapeutic strategy.
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The endosteal microenvironment of HSCs has been widely
accepted by the public and lots of hematopoiesis-related cellular
and molecular components have been recently confirmed.
Mesenchymal stem/progenitor cells, osteoblasts, endothelial
cells, perivascular cells, megakaryocytes, immune cells,
Schwann cells, and so on all mainly attract HSCs and
maintain HSC self-renewal for hematopoietic homeostasis.
Besides, in response to external stress or self-proliferation
signaling, HSCs also remodel bone marrow microenvironment
(BMM) for its proliferation and differentiation, mainly through
directly cell-to-cell contact or cytokines secretion (Batsivari et al.,
2020). However, pathologically, leukemic stem cells also have
pathological LSC niche components similar to HSC niche. The
LSC niche also maintains the stemness of LSCs and promotes LSC
proliferation and escape from immune cells attack or drug
targeting (Mendez-Ferrer et al, 2020). More importantly,
increasing evidence proves heterogeneous BMM can influence
or even control leukemogenesis. For example, miR-126 secreted
by endothelial cells in BM supply quiescence and leukemia
growth of BCR-ABL" LSCs (Zhang et al., 2018) and activated
B-catenin in osteoblasts was sufficient to lead to acute myeloid
leukemia (Kode et al., 2014). Another recent article showed that
blood bacteria-induced up-regulated IL-6 leads to pre-leukemic
myeloid hyperproliferation in Tet2™~ HSCs, however, merely
Tet2 deficiency can hardly cause pre-leukemic phenotype (Meisel
et al., 2018), which suggests that dysregulated non-hematopoietic
cells and chromosomal mutative HSCs together instigate
malignant leukemia.

Mesenchymal stem cells, as adult pluripotent stem cells, can
ultimately ~differentiate into adipocytes, osteoblasts, and
chondrocytes to regulate physical growth and tissue injury
repair (Berger et al., 2016; Qu et al., 2016; Shu et al., 2018).
Due to its characteristics of histocompatibility and multi-
directional differentiation, MSC research has made great
progress in the fields of regenerative medicine, autoimmune
diseases, and immunoregulation, i.e., bone tissue regeneration
and graft-versus-host disease inhibition (Singer and Caplan,
2011; Frenette et al., 2013). On the other hand, it can act as
HSC niche cells to maintain hematopoietic homeostasis (Dong
et al., 2016). Bone marrow MSCs are heterogeneous, and various
MSC subtypes including Nestin®, Prx1”, SP7", Leptin receptor-
expressing and CXCL12-abundant reticular cells are involved in
HSCs’ homeostasis (Morrison and Scadden, 2014). MSCs
maintain and protect HSC self-renewal, proliferation, and
differentiation. Different progeny of MSCs associates HSCs
and, in general, most of them are known to secrete HSC-
supporting factors, such as C-X-C motif chemokine ligand 12
(CXCL12), angiopoietin, stem cell factor (SCF/Kit ligand), and
others (Asada et al., 2017). In fact, leukemic MSCs are also
essential for leukemia progression. Accumulating evidence
suggested that the altered BMM in general, and particularly in
mesenchymal stem cells (MSCs) and their progeny, plays a
pivotal role in the evolution and propagation of leukemia
(Kode et al., 2014; Schepers et al.,, 2015). Heterogeneous BMM
accelerates the leukemia progression with non-cell autonomous
manner, coordinates chromosomal aberrations of leukemic cells.
The crosstalk between LSCs and the associated BMM represents a
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powerful relationship that influences leukemia initiation,
progression, and response to therapy (Hanoun and Frenette,
2013; Shlush et al., 2014; Zhou et al.,, 2016).

Currently, the role of tumor microenvironment in neoplasm
initiation and malignant evolution has been increasingly
recognized. However, the contribution of bone marrow
mesenchymal stem cells to disease progression remains poorly
explored. This review puts emphasis on our current knowledge of
the involvement of LSCs and associated MSCs in processes
facilitating leukemia pathogenesis and progression. Moreover,
this review provides a hint of new therapeutic strategy targeting,
targeting not only gene-mutant HSCs but also disordered BMM
may rapidly and thoroughly cure different types of leukemia (Cao
et al., 2020; Borella et al., 2021).

LSCS FACILITATE TRANSFORMATION OF
MSCS INTO LSC-BENEFICIAL NICHE

BMM plays an irreplaceable role in physiological hematopoietic
stem cells niche and pathological leukemic stem cells niche. BM
niche cells (i.e., MSCs) and HSCs interact to regulate its resting
adhesion, proliferation, and differentiation. Mesenchymal stem
cells as the most important HSC niche cells have been shown to
principally maintain the stabilization of HSCs, meanwhile flexibly
regulate its proliferation and differentiation (Mendez-Ferrer
et al, 2008) through both direct cell-to-cell contact and
cytokine-receptor interactions. The BMM of HSCs and LSCs
have similar natures, since MSCs, osteoblasts, endothelial cells are
essential for both healthy HSCs and malignant LSCs, and the
spatial localization (Boyd et al., 2014) and molecular phenotype
of LSCs have no obvious differences from those of HSCs. In
leukemia, LSCs and HSCs form a competitive relationship in
BMM with the dominant and minor clones. Obviously, LSCs are
still leading advantages in proliferation, differentiation, and
propagating, lots of changes in the transcriptions and
chemokines make it easier to regulate the malignant
transformation and impair hematopoiesis (Medyouf et al.,
2014; Waclawiczek et al, 2020). Importantly, normal and
leukemic MSCs all harbor LSCs pathologically, including
promoting location, growth, expansion, and apoptosis
inhibition to promote leukemic process (Brenner et al., 2017).
Moreover, MSCs in leukemia show disorganized feature
regardless of leukemic type. Avanzini et al. identified a gene
aberrant mutation of MSCs in MPN is more frequent compared
to healthy MSCs, and patients with genetically aberrant MSCs
have higher myelopoiesis and spleen index (Avanzini et al., 2014).
Hence, the role of MSCs in leukemia should be transformed from
a supporter of LSCs into a promoter of leukemia alongside with
LSCs. The genetic phenotype of MSCs is rarely detected in
current clinical diagnosis, and the combination of MSCs and
HSCs gene sequencing will be more conducive to the diagnosis
and prognosis of leukemia.

It is necessary to clarify a more specific leukemia
microenvironment, how MSCs give LSCs advantages and how
LSCs actively change the MSC phenotypes are unclear now.
Next, we will elaborate on this process from the perspective of
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FIGURE 1 | MSCs are essential for leukemia initiation and progression. (A). The pathological LSCs drive MSCs to leukemic-permissible MSCs through physical
interactions, cytokines, chemokines, and exosomal secretion, and regulation of their osteogenesis ability. Moreover, leukemic MSCs inhibit the stemness and self-
renewal of normal HSCs, but physiological MSCs also promote the proliferation and anti-apoptosis ability of LSCs for their benefits. On the other hand, LSCs can also
denervate SNS and inhibit the release of Adrp, making their inhibition of MSCs ineffective. Furthermore, leukemic MSC can directly or indirectly inhibit T cell activity

and proliferate Tregs, but its function on B cells, etc. is not yet clear. Besides, more evidence reveals that genetically mutated MSCs are enough to motivate HSCs
leukemogenesis (the arrow means that the source cell promotes the proliferation or function of target cell, and the inhibitory symbol means that the source cell inhibits the
proliferation or function of target cell). (B-D). The supporting effect of MSCs on LSCs is mainly in three aspects, which is the maintenance of quiescent LSCs, the
protection of newborn LSCs, and LSCs chemoresistance. Some newly mutated LSCs need the protection of MSCs to avoid environmental stress and evade immune
surveillance. MSCs can also protect a part of quiescent LSCs to maintain the ability for long-term leukemogenesis, while the expansion of LSCs does not depend on
MSCs very much. When chemotherapy kills LSCs, MSCs can help LSCs chemoresistance and promote recurrence.
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both LSCs and MSCs (Figure 1). From the perspective of LSCs,
chromatin aberrations in LSCs autonomously adjust the primordial
BMM to adapt its leukemogenic effects. Moreover, LSCs actively
alter the properties of MSCs, which always makes MSCs beneficial
for LSC survival and proliferation, but the reprogramming of MSCs
in different leukemia subtypes is still variant. For example, CML LT-
HSCs (as well as LSCs) secrete MIP-1, IL-6, and G-CSF to decrease
the secretion of CXCL12, which is the essential chemokine for HSC
maintenance (Greenbaum et al, 2013), in MSCs for its own
competitive advantage (Zhang et al., 2012; Agarwal et al., 2019),
whereas CML LSCs hardly need CXCLI2 for its expansion.
However, in AML bone marrow context, AML-derived MSCs
express no significant change in CXCL12 (Geyh et al., 2016), but
CXCR4, the receptor of CXCLI12, is overactivated by AML cells

(Zeng et al., 2009). Hence LSCs-influenced MSCs could be different
depending on the context of LSCs, chronic, acute myeloid leukemia
or MDS LSCs remodel BMM into respective cultivating-conducive
environment. More importantly, in addition to the differences in
chemokine secretion between the two types of MSCs, the capacity of
MSCs differentiation is also changed in leukemia. It is known that
CML patients often develop excessive trabecular bone and bone
thickness, whereas patients with AML do the opposite (Krause et al.,
2013). Similarly, MSCs are also dynamically changed in different
leukemic subtypes. Schepers et al. found TPO and CCL3, in
conjunction with direct interactions between MSCs and BCR-
ABL + leukemic myeloid cells, derive the overproduction of
osteoblast ~ derivatives and myelofibrosis during MPN
development (Schepers et al, 2013), but bone marrow MSCs
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from pre-AML MDS and AML patients display apoptosis, deficient
proliferation rate, and impairment of osteogenic differentiation
(Geyh et al, 2013; Geyh et al, 2016; Li et al, 2020), increased
adipogenic potential with improved ability to support survival of
leukemia progenitor cells (Azadniv et al., 2020). Moreover, although
progressive AML LSCs hardly need the support from MSCs for its
expansion, early weak AML LSCs engraftment still need MSCs for its
survival and niche reconstruction (Xiao et al., 2018). However,
recently it was reported that MSCs are proliferative and over-
differentiated into pre-osteoblasts and osteogenic progenitor cells
in the AML transplant mouse model (Hanoun et al., 2014). Based on
recent research that BMM is spatiotemporally different with AML
infiltration (Duarte et al., 2018), it can be considered that MSCs in
AML are dynamically changing with AML infiltrated progression.
However, the dynamic regulation process of CML by MSCs has not
been reported yet.

On the other hand, large-scale whole exome sequencing had
not found obvious mutated MSCs in leukemia patients (von der
Heide et al., 2017), so leukemic MSCs are partly derived from
epigenetic modifications of normal MSCs in AML and MDS
patients. Those leukemic MSCs are aging, growth deficiency and
osteogenic differentiation (Geyh et al.,, 2013; Geyh et al., 2016).
The function-related gene sets, such as TBX15, PITX2, HOXBS,
are regulated by relevant specific hypermethylation signals (Geyh
et al,, 2016; Bandara et al.,, 2021). At the same time, multiple
studies have confirmed that multiple methylases strictly control
the cell stemness, senescence (Cakouros and Gronthos, 2020) and
differentiation functions (Ye et al., 2012) of MSCs (Sui et al.,
2020), and the loss of KDM4B mimics a leukemia-like
MSCs(Deng et al, 2021), suggesting that leukemia cells
epigenetic change MSCs for its BMM remodeling. Applicably,
CM-272, the inhibitor of DNMTs and G9a, alleviates multiple
myeloma (MM) and bone loss by removing hypermethylation of
osteogenic regulators (Garcia-Gomez et al., 2021). Another
hypomethylating drug azacitidine targets hypermethylated
MSCs for MDS remission (Poon et al,, 2019), and reversely
supports healthy hematopoiesis (Wenk et al., 2018). So specific
demethylating medicines can restore the growth and osteogenic
differentiation of MSCs and are potentially effectivity for the
treatment of AML and MDS. At the same time, low-expressed
METTL3 modulates chemoresistance in AML by promoting the
adipogenic differentiation of MSCs, which indicating chemo-
sensitization of epigenetic modification (Pan et al., 2021).

Functionally, single-cell transcriptome demonstrated that
LEPR + mesenchymal stem cells are the most important
leukemic support cell that is dysfunction in AML, and a series
of niche factors that induce down-regulation by AML were
identified, such as CXCL12, KITL, ANGPT1, and VCAMI1
(Baryawno et al., 2019). Another AML-preserved NESTIN +
MSCs subcluster was reported to enhance leukemic blast
bioenergetics by increasing OXPHOS and TCA cycle, and
antioxidant defenses for facilitating chemoresistance (Forte
et al., 2020). More amazingly, malignant hematopoietic cells
are more active in changing their niche than imagined. In
contrast to the classical Warburg effect, AML cells capture
mitochondria from super-oxidized MSCs by leukemia-derived
tunneling nanotubes to produce excess ATP, increase regrowing

MSCs Regulate Myeloid Leukemia Progression

potential and get a better survival (Moschoi et al., 2016; Marlein
etal., 2017). This mitochondrial transfer function is important for
AML cells to respond to killing resistance, oxidative stress
restriction, cellular respiratory function, and healthy
mitochondrial mass maintaining (Burt et al., 2019; Saito et al,,
2021) and can be terminated by CD38 antibody (Mistry et al.,
2021), but T-ALL cells reversely transfer its damaged
mitochondria into MSCs for ROS elimination and
chemoresistance (Wang et al,, 2018). Interestingly, the MSCs
in leukemia are functionally distinct from normal MSCs, the
confusion of leukemic MSCs could have cell-autonomous and
non-cell-autonomous detrimental effects to adjacent healthy
HSCs. Leukemia-related HSCs show insufficient hematopoiesis,
reduce homing, and impair growth when exposed to leukemic
MSCs (Geyh et al,, 2013; Geyh et al., 2016; Mead et al.,, 2017).
Therefore, restoring MSCs before HSC transplantation could
promote the therapy effect and reduce relapse.

KARYOTYPE ABERRATIONS IN MSCS ARE
SUFFICIENT TO INDUCE LEUKEMIA

From the respective of LSCs niche, because leukemia patients
who accompanied by karyotype aberrations in MSCs often
show a worse prognosis (Blau et al, 2011), accumulated
evidences prove that changes in non-hematopoietic niche
cells, rather than HSCs, can adequately induce leukemia. At
first, as is shown by Rupec et al., IkBa-deficient fetal liver in
mice is sufficient for MPN initiation (Rupec et al., 2005),
further more evidence points that HSC niche cells,
especially MSCs, are also the pathogenesis of leukemia
(Dong et al., 2016). Walkley et al. found that null RAR-y or
Rb developed myeloproliferative syndromes due to the
deficiency of RAR-y or Rb in bone marrow
microenvironment (Walkley et al., 2007a; Walkley et al,
2007b). Deficient Dicerl, an essential enzyme for
microRNA biogenesis in MSCs and osteoprogenitors, was
reported to impair osteogenesis and cause mitochondrial
damage and genotoxic stress in HSCs which could finally
evolve to leukemia (Raaijmakers et al., 2010; Zambetti et al.,
2016). We notice that these genes are related to cell stemness
and homeostasis, which prove that the maintenance of MSCs
self-renewal is essential for HSCs homeostasis. The long-term
loss of MSCs homeostasis leads to HSCs instability and
increased leukemia tendency; therefore, abnormal leukocyte
proliferative diseases caused by changes in MSCs should
receive more attention.

On the other hand, long-term inflammatory stimuli derived
from MSCs can also drive HSCs loss-of-homeostasis, excessive
myelopoiesis, and leukemia. Notch deficiency in BM MSCs and
endothelial cells activate the miR155/NF-kB/G-CSF/TNFa
inflammation pathway to develop a myeloproliferative disease
symptom such as hepatosplenomegaly, anemia, and
granulocytosis (Kim et al, 2008; Wang et al, 2014);
meanwhile, leukemogenic effects of fibrosis-related MSCs not
only decrease hematopoietic support but also secrete pro-
inflammatory s100a8/9 for HSCs-exhausted MPN and
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TABLE 1 | Multiple mutations in MSCs induce leukemogenesis.

MSCs Regulate Myeloid Leukemia Progression

Mice Model Mutant gene Labeling strategy Phenotype References

pRb™" Mx1-cre Rb Mesenchymal cells MPN Walkley et al. (2007b)

RARy ™ RARy BMM MPN Walkley et al. (2007a)

Mib™" MMTV-cre Notch Mesenchymal cells MPN Kim et al. (2008); Wang et al. (2014)
Mib™™ Mx1-cre

RBPJ"" Mx1-cre

Dicer”" Osx-GFP-Cre Dicer Sbds osteoprogenitors MDS Raaijmakers et al. (2010); Zambetti et al. (2016)
Sbds™" Osx-GFP-Cre

PTPN11"" Nestin-cre PTPN11 Mesenchymal cells MPN Dong et al. (2016)

TABLE 2 | Numerous cytokines and chemokines are involved in leukemia niche support.

Effector Origin Species Effect References

LSC supporting and normal HSC impairing

Jagged1
CXCL12, SCF, IGF-1

STC1, PDK1, GLUT1

SCF, Angiopoietin-1

Jagged1, Osteopontin

N-cadherin
N-cadherin,
IGFBP2,VEGFA LIF

Inflammatory environment and endosteal remodeling

CXCL2,TNF
TGF-p
NFKBIA
VCAM1
CCL3

IL-8, MMP9
G-CSF, IL-6,MIP-1p

CCL3,TPO
IkBa, TNFa, CXCLA1

IL-6, TGF-B, TNFa

MSC overexpress
MSC low-express

MSC overexpress
MSC low-express
MSC overexpress
MSC overexpress
MSC overexpress

LSC overexpress

LSC overexpress
MSC overexpress
MSC overexpress

MSC overexpress

MSC overexpress
Leukemic cell
overexpress
Leukemic cells
overexpress

MSC overexpress

MSC overexpress

AML patients

AML engrafted murine
model

AML patients

MDS patients

MDS patients

CML patients

MDS patients

MLL-AF9-driven murine
model

MDS and AML patients
MDS patients

AML patients

Ptpn11-activating mutation
murine model

CML patients and cell lines
BCR-ABL-driven murine
model

BCR-ABL-driven murine
model

BCR-ABL-driven murine
model

CML cell lines

Leukemic cells support
Residual HSC mobilization

impairing hematopoiesis

Insufficient hematopoietic support
Insufficient hematopoietic support

Cell adhesion and protecting CML cells
Enhance LSC expansion

Pro-inflammatory and anti-angiogenesis

Compromising their immunomodulatory capability
Inflamsmation attenuates hematopoiesis
VCAM1-VLA4 increase inflammatory factors and
protect leukemic cells

Mediating leukemogenic effect

Promoting CML progression and invasiveness
Decreasing CXCL12, support leukemic cell
engraftment

Endosteal osteoblasts expansion

Increasing inflammation and LSCs expansion

Increasing MSC stress

Geyh et al. (2016)

Huan et al. (2015); Kumar et al.
(2018)

Waclawiczek et al. (2020)
Geyh et al. (2013)

Geyh et al. (2013)

Zhang et al. (2013)

Medyouf et al. (2014)

Duarte et al. (2018)

Geyh et al. (2018)

Ping et al. (2019)

Schmidt et al. (2011); Jacamo
et al. (2014)

Dong et al. (2016)

Corrado et al. (2016)
Zhang et al. (2012)

Schepers et al. (2013)
Schepers et al. (2013); Agarwal

et al. (2021)
Jafarzadeh et al. (2018)

subsequent MDS initiation (Leimkuhler et al., 2021). PTPN11
activating mutations were always found in Noonan syndrome
patients, and it is known that PTPN11 activating mutation always
causes leukemia, such as JMML, AML, or ALL. In the past, it was
always thought that this was the result of PTPN11 activating
mutations in HSCs, but we recently found that activating
mutation of PTPN11 in MSCs, not HSCs, activates HSCs
through long-term pro-inflammatory signals from MSCs and
monocytes, which leads to excessive activation and proliferation
of HSCs and the eventual progression to MPN (Dong et al., 2016).
Another type of CD90°CD13°CD44 * proangiogenic
mesenchymal cancer stem cell was considered to have
potential tumorigenic ability and AML support ability, but
whether there was the presence of chromosomal aberration

had not been explored (Cao et al, 2020). Those above
illustrate a new model of leukemia that MSCs induce a
sufficient inflammatory environment that stimulates the
initiation of leukemia (Table 1).

ABNORMALITIES IN CYTOKINES,
CHEMOKINES AND SIGNALING
PATHWAYS OCCUR IN BOTH LSCS AND
MSCS

Firstly, the complex cytokines network is the main messenger of
communication between MSCs and LSCs. The binding of these
cytokines to their receptors mediates downstream signaling
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FIGURE 2 | Cytokines, chemokines and signaling pathways influence both LSCs and MSCs. Abundant cytokines and chemokines are released by both LSCs and
leukemic MSCs, which are mainly involved with the changes in inflammatory factors, proliferation and differentiation-associated cytokines, hematopoietic homeostasis-
related chemokines, etc. They involve changes in multiple signaling pathways, such as the newfound VCAM1-VLA4-PGF/NF-kB, Gas6-AXL/p-AKT/p-catenin, MIF-
PKCB/IL-8, etc. Meanwhile, WNT/beta-catenin, Notch/Jagged, and other pathways are also disordered in leukemic niche. The integrin, considered to be widely
expressed in both LSCs and MSCs, is involved in a series of classical pathways. The classic signaling pathway involved in cell proliferation and stemness such as MEK/
ERK, JAK/STASTS, PIBK/AKT, etc., are not described in the figure, but they induce many changes in both types of cells.
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cascades, which in turn lead to changes in cell behavior (Geyh
et al, 2013; Brenner et al., 2017). Table 2 details the
categorization of functionally similar cytokines, summarizes
these cytokines and important signaling proteins, and aims to
sort out a detailed communication network. The functions of
these cytokines are mainly related to two major categories: the
LSCs support and HSCs impairing, and the inflammatory
environment and bone remodeling. It is worth mentioning
that due to mutual crosstalk, their functions are variable. For
example, MSCs-derived N-cadherin not only impels LSCs
adhesion and expansion, but also protects LSCs from TKI
(Zhang et al, 2013; Medyouf et al, 2014). Meanwhile, a
number of inflammation-associated cytokines such as CCL3,
TNF, IL-6, IL-8, and the like have been identified to be widely
expressed in the crosstalk of MSCs and leukemic cells, and it has
been previously shown that the inflammatory BMM is
indispensable in leukemia formation (Meisel et al, 2018).
Therefore, inhibiting the inflammatory response in the BMM
may cut off the association between LSCs and BMM and may
increase the sensitivity of TKIL

Besides, as mentioned before that LSCs change leukemic MSCs
adhesion, proliferation, differentiation, senescence, and epigenetics
mainly through IL-6, CXCL12, TNF-a, angiopoietin, G-CSF, and so
on. Recently, BMPs, an essential group of cytokines for osteogenesis,
are also dysregulated in BMM, but the systematic role of BMPs in
regulating BMM and leukemia has not been clearly explored (Doron

et al, 2018; Zylbersztejn et al., 2018). Lots of signaling pathways
participate in MSCs™ transformation as an executor of cellular
function. Some signaling pathways like NOTCH, WNT, and
TGF-P are essential for MSC physiological function, but LSCs
could also change those signaling pathways to remodel MSC
function into pathophysiological LSCs-supportive conditions.
Both co-cultured leukemia cells and MSCs-activated PI3K/ILK/
AKT, JAK/STAT3, MEK/ERK, and Notch/Hes signaling
pathways support reciprocal survival and anti-apoptosis effects
(Tabe et al, 2007). Moreover, the inflammatory signals released
by LSCs activate MSCs and then maintain LSCs stemness and
proliferation through feedback loops. LSCs were found to
influence MSCs through MIF-PKCPB/IL-8 and VCAMI-VLA4-
NF-«kB/PIGF to program pro-inflammatory MSCs and hijack
them for their own benefit (Schmidt et al, 2011; Abdul-Aziz
et al, 2017). In response to the inflammation and angiogenesis
environment of LSCs, Gas6 secreted from MSCs activates AXL/
p-AKT/p-catenin to increase the self-renewal capacity of LSCs (Jin
et al,, 2017). Recent article found IL1p/COX2/PGE2/B-catenin/ARC
reciprocal secretory loops promote the stability of the leukemia
microenvironment and chemoresistance (Carter et al, 2019).
Summarily, the crosstalk between MSCs and LSCs is complex
multistage reactions. The cytokines and chemokines secreted by
MSCs and LSCs directly interfere with their intracellular signaling
pathways, then both cells regulate their model of proliferation and
differentiation, and finally promote inflammatory factors release and
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angiogenesis to ensure the homeostasis and evolution of leukemia
(Figure 2).

Interestingly, resistance and relapse caused by MSCs-
protected LSCs in TKI have been widely recognized. Recent
report found CXCR4 up-regulation by imatinib induces
chronic myelogenous leukemia cell migration to bone marrow
stroma and promotes survival of quiescent CML cells (Jin et al.,
2008), while MSCs-derived Gas6 and N-cadherin stabilize or
increase {3-catenin levels in CML stem cells with or without TKIs
and enhance maintenance of CML LSCs with anti-apoptosis and
repopulating capacity (Zhang et al, 2013; Jin et al, 2017);
inhibition of WNT/B-catenin signaling of MSCs prevents the
development of MDS (Stoddart et al., 2017). Besides, combined
JAK1/2 and Bcl2 inhibitors are another method to dismantle the
protection of MSCs to LSCs (Karjalainen et al., 2017).

EXOSOMES LINK LSCS AND MSCS AS
MAJOR NON-CELL-TO-CELL
CONTACT WAY

To make the higher efficiency in the entire leukemic endosteum
microenvironment, exosomes are always utilized for distant

communication between LSCs and leukemic BMM. Exosomes
are small vesicles of 30-100 nm in diameter that are secreted in
both normal and malignant cells, traffic mRNAs, microRNAs or
small exosome proteins to affect the recipient cells or distant
tissues (Kourembanas, 2015; Paggetti et al., 2015). Kourembana S
thoroughly summarized the progression of exosomes production
and secretion. More importantly, in multiple clinical trials and
animal models, exosomes from MSCs significantly alleviate the
symptoms of pulmonary hypertension, right ventricular
hypertrophy, and bronchopulmonary dysplasia, it points out
the immunomodulatory and anti-inflammation function of
exosomes from MSCs (Kourembanas, 2015). Besides, HSCs
and MSCs have physiological exosome-based communication
in bone marrow, but bidirectional exosome changes vary
under disease conditions as with cytokines. Particularly, the
exosomes secreted by leukemia cells are largely taken up by
MSCs and endothelial cells (Kumar et al., 2018); and even in
the case of distant leukemia cells, MSCs are still greatly affected
(Huan et al., 2015), then this process in turn affects the synthesis
and secretion of MSC exosomes (Viola et al., 2016). In fact, as
previously mentioned, exosomes influence LSCs and MSCs
function such as cytokines secretion, proliferation (Roccaro
et al, 2013), osteogenesis (Kumar et al, 2018), adhesion
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migration (Corrado et al, 2014; Corrado et al, 2016),
chemoresistance (Viola et al, 2016) and even physiological
hematopoiesis impairment (Huan et al, 2015). Specifically,
leukemic ~ exosomes initiatively = deregulated = normal
hematopoiesis through disturbing CXCL12, SCF, KITL, IL-8,
MMP9, and so on (Huan et al., 2015; Corrado et al., 2016;
Kumar et al, 2018). MicroRNAs from MSC exosomes even
induce DNA damage and mutagenesis of HSCs for MDS
initiation (Meunier et al., 2020). Moreover, exosomes from
MSCs even contain miR-155, a well-established microRNA
that regulates hematopoietic malignancy (Viola et al., 2016).
Strikingly, exosomes may be a major interference of
communication between LSCs and MSCs, because it has been
reported that exosomes from LSC sources induce nitric oxide
elevation (Jafarzadeh et al., 2018), endoplasmic reticulum stress,
unfolded protein response (Doron et al, 2018), and TGF-p/
CXCL12/CXCR4 axis in MSCs to make an inflammatory
environment; and those have been reported to change MSCs
into cancer-associated fibroblasts in CLL and B-ALL (Paggetti
et al., 2015; Pan et al,, 2020). Therefore, exosome is another
important way for LSC-MSC communication (Figure 3). Perhaps
inhibiting or cutting off the formation of abnormal exosomes or
creating vehicles of exosomes-associated drug delivery system can
make a more effective treatment for leukemia, but there is still a
long way to go.

MSCS SUPPORT SURVIVAL AND
PROLIFERATION OF LSCS

Various mesenchymal stem cells seem to support
leukemogenesis, differentiated  osteoblasts  and
adipocytes support leukemia progression (Brenner et al,
2017; Shafat et al., 2017). Changes in the BMM seem to be
highly specific for oncogenic events in leukemia cells (Krause
and Scadden, 2015). No matter how many changes in the
subtypes of MSC, their common characteristics is secreting
abundant SCF, CXCL12, VCAMI, and so on to maintain
HSCs (Frenette et al., 2013); therefore, these chemokines can
be the most important ones of the criteria for judging whether it
is a leukemic niche-positive MSC. Leukemic MSCs undergo
inflammation and can support a variety of malignant
hematopoietic disorders (Ping et al, 2019). For instance,
MSCs can enforce LSC survival and adhesion, in part,
through the secretion of various inflammatory mediators
including TNFa, CXCL1, CCL2, IL-8, and CD44 adhesion
molecule (Quere et al., 2011; Agarwal et al., 2021). Pathways
including cell-to-cell conjunction, extracellular matrix (ECM)
molecules, extracellular matrix remodeling, and cytokine-
receptor interactions are involved in MDS MSC-LSC,
benefiting LSCs’ homing, harboring, and proliferation
(Medyouf et al., 2014; Kouzi et al., 2020). MSCs have been
reported to support AML cell survival, BM homing, and
promote chemoresistance. Further, AML-induced osteogenic
differentiation in MSCs supports leukemia growth (Nwajei
and Konopleva, 2013; Battula et al., 2017). Moreover, the
MSCs also support the long-term proliferation of the AML

even
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cells with increased phosphorylation of mTOR and its
downstream targets (Brenner et al., 2017). On the other
hand, evidence indicates that malignant cells actively shape
their microenvironment to reinforce disease progression at
the expense of hematopoiesis (Schepers et al., 2015; Hoggatt
et al, 2016). The status (such as the proliferation and
differentiation, self-renewal, LSC harbor, hematopoietic
support) of MSCs is different in different types of leukemia,
along with the change of HSC-supported CXCLI12,
inflammatory TNFa, NF-kB signaling, proliferated WNT-f-
catenin signaling, and so on. Undoubtedly, the widespread
presence of MSCs expands the scope of its hematopoietic
environment support. MSCs co-localize with HSCs and LSCs
in the BM niche and influence their fate decision through
mutual crosstalk. The influence of MSC on the
leukemogenesis could be attributed, in part, to their immune
modulation behavior and tendency for tumor prone.

MSC CHANGES IN THE ENTIRE BONE
MARROW MICROENVIRONMENT AS THE
MEDIATOR

In fact, BMM is a complex network for HSCs and HSCs support,
multiple cells and tissues are directly or indirectly linked to
influence HSCs and LSCs homeostasis. For example,
sympathetic nerves, which are intertwined with small arterial
vessels, provide geographic location for MSCs and secrete Adrf3
to regulate CXCL12 secretion of MSCs under physiological
conditions (Agarwala and Tamplin, 2018). However, MLL-AF9
leukemic cells denervate sympathetic nerve fibers to release MSC
proliferation inhibition, which enforce MSCs to proliferate into
osteogenic progenitor cells through AdrB2 (Hanoun et al., 2014).
Surprisingly, JAK2 V617F mutant MPN produces excessive
inflammatory IL-1f that damages both neural and CXCL12-
abundant Nestin + MSCs (Arranz et al., 2014), and adrenaline
is proved to be a key hormone regulating LSCs-SNS-MSCs axis.

MSCs are widely considered to be immunosuppressors
(Maccario et al.,, 2005; Shi et al., 2010). All MSCs, which are
widely present in the body, can undergo immune and
inflammatory regulation. It is generally believed that MSC
rapidly responds to homeostasis in the body. Excessive IFN
and the interleukin family induce the secretion of IFN, IDO,
and iNOS in MSCs, thereby inhibit the function of T cells, NK
cells, and DCs maturation. Meanwhile, it promotes
immunosuppressive Tregs proliferation (Singer and Caplan,
2011; Vasold et al, 2015). In addition, many accessory cells,
such as T cells, B cells, and DCs are also involved in the
hematopoiesis (Frenette et al., 2013). The dysfunction of
T cells and the proliferation of Tregs are well-known in high-
risk MDS and CML patients, and they are strongly associated
with changes in MSCs (Ganan-Gomez et al.,, 2015; Briick et al.,
2018). For example, under physiological conditions, MSCs are
thought to inhibit the maturation of DC cells (Jiang et al., 2005),
but Zhao ZG et al. found that CML MSCs can activate regulatory
DCs, thereby inhibiting T cell function or promoting Tregs
proliferation, and indirectly participating in immune escape
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(Zhao et al, 2012). Recently, it has been reported that
inflammatory factors TNF-a and TEN-y can promote MSCs to
produce a large amount of PD-L1 and PD-L2, which bind to the
PL-1 of T cells and inhibit the activation of T cells to promote
immune escape (Davies et al., 2017), but it has not yet begun to
use the immune checkpoint blockade in leukemia. However, in
fact, there is no deep understanding of the specific
immunosuppressive mechanism of MSCs in leukemia, thus,
more evidence is needed.

THERAPEUTIC TARGETING OF MSCS IN
MYELOID LEUKEMIA

MSCs have strong hematopoietic support ability, wide sources, and
low immunogenicity. So, the first participation of MSC in leukemic
clinical trials is bone marrow transplantation. MSCs are always used to
infuse with HSC for better hematopoietic recovery, avoiding and
ameliorating graft versus host disease (Zhao and Liu, 2016). MSCs can
promote HSC colonization and hematopoietic homeostasis. However,
since LSCs and HSCs share the same bone
microenvironment, minimal resident LSCs are more likely to
reprogram donor MSCs for its expansion and leukemia relapse
(Jin et al., 2008; Agarwal et al., 2019).

On the other hand, LSCs build its microenvironment
through both physical adhesion and cytokine-receptor
interaction. Hence most of therapeutic targets of MSCs are
used to exert or enhance the efficacy of chemotherapy drugs. In
general, although numerous medicines are still under research,
there are currently four main medicine types that entering
clinical ~ trials, namely chemo-sensitizing medicines,
chemotherapy synergistic medicines, adhesion inhibitors, and
bone homeostasis medicines.

Among them, CXCL12/CXCR4 inhibitors as the first chemo-
sensitizing drugs are the earliest ones that entered clinical trials
(Ladikou et al., 2020). Since LSCs still need MSC-derived
CXCL12 to maintain its self-renewal and chemotherapy
resistance (Agarwal et al, 2019), blocking CXCL12/CXCR4
axis can inhibit the protective effect of MSC on LSCs, and
increase the sensitivity of chemotherapy to LSC. Lots of
CXCR4 antagonist, such as plerixafor (Uy et al, 2012;
Borthakur et al., 2020), LY2510924 (Boddu et al., 2018), BL-
8040 (Borthakur et al., 2021), POL6326 (Chen et al., 2010), etc.
have been applied in clinical trials in AML patients recently. At
the same time, plerixafor also can synergize with
chemotherapeutic drugs to mobilize LSC for myeloablation
and subsequent allografting (Michelis et al., 2019).

Besides, chemotherapy synergistic drugs act by synergistically
inhibiting the function of LSCs and MSCs, such as inhibitors of
the WNT/B-catenin signaling pathway (Zhou et al., 2017; Jiang
et al, 2018). Canonical WNT/B-catenin signaling pathway is
considered to be critical for the stemness of LSCs and MSCs
(Stoddart et al., 2016; Carter et al., 2019). These medicines
simultaneously target myeloid leukemia cells and MSCs to
exert a synergistic killing effect. At present, a variety of
inhibitors of the WNT/B-catenin signaling pathway also have
entered clinical trials, such as CWP232291 (Lee et al., 2020).

marrow
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Since MSCs physically contact LSCs for its protection, inhibiting
the adhesion of LSCs to MSCs is also an effective method to prevent
LSC homing and increase chemosensitivity. At present, the main
adhesive targets are CD44 (Gutjahr et al, 2021; Yu et al, 2021),
E-selectin (DeAngelo et al., 2018) and CLA-4 (Nair-Gupta et al., 2020;
Gutjahr et al., 2021), which have been confirmed to protect LSCs
through direct adhesion of MSC-LSC. The anti-CD44 antibody
(ARH460-16-2) and the E-selectin antagonist (Uproleselan) have
entered Phase I/II clinical trials (Vey et al, 2016; DeAngelo et al,
2018), but the study of VLA-4 is also in progress.

Finally, the bone homeostasis medicines that are designed to
enforce MSC osteo-differentiation remodel leukemia BMM and
induce apoptosis of leukemia cells. Those medicines expel LSCs
from its MSC-enriched microenvironment and suffer
environmental stress. Proteasome drugs are mainly used in
leukemia for bone remodeling. For now, Carfilzomib (Berdeja
et al., 2015) and Ixazomib (Advani et al., 2019) have entered
phase I/II clinical trial. They can promote osteoblast
differentiation of MSCs and induce apoptosis of leukemia cells.

Overall, the therapeutic targets of MSCs are divided into
chemo-sensitizing and broad-spectrum chemotherapeutics for
both MSCs and LSCs, and lots of treatment strategies are in
clinical trials. But it is worth noting that although leukemia cells
use BMM molecules for its benefits, those molecules are also
regulators of physiological HSC self-renewal and mobilization.
Therefore, thoroughly removing the protection of MSCs to LSCs
while minimizing its impact on physiological HSCs will be the
best therapeutic solution.

DISCUSSION

In this article, we mainly explored the role of MSCs in malignant
myeloid leukemia and explained the systemic changes of MSCs in
myeloid leukemia from various aspects. We summarized that
regardless of myeloid leukemia subtype, MSCs sustain malignant
hematopoietic support to LSCs. This support is widely reinforced
in the LSC maintenance and protection of LSCs from stress,
including the establishment of the leukemic BMM niche, residual
LSCs harbor, and relative quiescent long-term LSCs maintenance.
However, MSCs may not be necessary during the expansion of
LSCs, which mainly depends on strong LSCs malignant
proliferation ability. Therefore, combining the inhibition of
LSCs expansion and the dissolution of the MSCs-LSCs niche
is an effective treatment for myeloid leukemia. We also briefly
discussed that the exosomes as a new cell-to-cell communication
method in LSCs-MSCs niche interaction with leukemia
development. Besides, the normal hematopoietic and leukemic
bone marrow microenvironments are highly complex entities.
Not only mutations in HSCs have been found in leukemia
patients, mutations in mere MSCs also can completely induce
leukemia in mice models, which has greatly improved the role of
MSCs in leukemogenesis. However, the current research on the
role of MSCs in leukemia is still very shallow with many unsolved
mysteries, and it will take a long time for clinical application.
Clearly, MSCs should be viewed as a double-edged weapon,
hence, further research is recommended to thoroughly
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understand the complex interactions between LSCs and the
surrounding microenvironment.

Recent and current studies have highlighted the niche role in
leukemia progression, but the detailed mechanism is still
unknown. Besides, how the BMM influences treatment results
or if it contains any potential target for treatment is needed to be
explored. Further studies need to address the following directions:
1. The easiest place to apply MSCs is the diagnostic grade and
prognosis of leukemia. Kim et al. suggested that changes in
microenvironment especially MSCs can be used as a criterion
for diagnosis, treatment, and prognosis of AML (Kim et al., 2015;
Kornblau et al., 2018); however, what specific markers can be
used as a diagnosis basis for clinic is still challenged. Because of
the ability of MSCs for leukemogenesis, patients with abnormal
myeloid hyperplasia also need to detect chromosomal mutations
in MSCs. 2. At present, it only reveals the direct influential
reaction of MSCs and LSCs interaction, and only stays at the
surface stage without deep exploration. More in-depth molecular
mechanisms, immune suppression, immune evasion, and the
mechanism of chemo-resistant LSCs harbor, as well as the
detailed mode of action of exosomes, remain largely unknown
and still require significant efforts. When these problems are
correctly recognized, the true pathological mechanism of
leukemia and leukemic MSCs can be understood, and a truly
effective solution can be made. 3. The most important thing is
that it can be used for the treatment of leukemia. At present, it is
difficult to completely cure leukemia with single leukemia
treatment measure due to the frequent chemo-resistance and
recurrence. Because of the great difference of leukemic MSCs
compared to normal MSCs, it is obvious that the targeted
leukemic MSCs synergistic chemotherapy drug can be used
more effectively and prevents drug resistance and recurrence.
For example, it has been reported that Pml is not only essential for
LSCs, but also important for MSCs to maintain leukemia process
(Guarnerio et al.,, 2018). Decreasing the expression of Pml in
MSCs could inhibit LSCs proliferation, and this may become an
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