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Iron deficiency anemia can be treated with oral or intravenous Fe supplementation. Such
supplementation has considerable effects on the human microbiome, and on
opportunistic pathogenic micro-organisms. Molecular understanding of the control and
regulation of Fe availability at the host-microbe interface is crucial to interpreting the side
effects of Fe supplementation. Here, we provide a concise overview of the regulation of Fe
by the opportunistic pathogen Staphylococcus aureus. Ferric uptake regulator (Fur) plays
a central role in controlling Fe uptake, utilization and storage in order to maintain a required
value. The micro-organism has a strong preference for heme iron as an Fe source, which is
enabled by the Iron-regulated surface determinant (Isd) system. The strategies it employs
to overcome Fe restriction imposed by the host include: hijacking host proteins, replacing
metal cofactors, and replacing functions by non-metal dependent enzymes. We propose
that integrated omics approaches, which include metalloproteomics, are necessary to
provide a comprehensive understanding of the metal tug of war at the host-microbe
interface down to the molecular level.

Keywords: Staphylococcus aureus, MRSA, iron homeostasis, nutritional immunity, iron deficiency anemia, ferric
uptake regulator, iron-regulated surface determinant system, heme

INTRODUCTION

Iron deficiency is a major health concern worldwide, resulting in over one billion cases of iron-
deficiency anemia (Gardner and Kassebaum 2020; Pasricha et al., 2021). Currently, the first-line
treatment for iron deficiency anemia is the use of oral iron supplements. However, many side effects
have been reported following their use: e.g., 30-70% of the patients report gastrointestinal problems
(DeLoughery 2019). The supplemented iron is only partially absorbed by the human body, resulting
in a significantly increased amount of iron available to the human gut microbiome (DeLoughery
2019; Finlayson-Trick et al., 2020). The microbiome of an individual plays an important role in
human health, and metal compounds are known to affect the survival and reproduction of bacteria
(Sheldon and Skaar 2019). Recognition of these side effects and the discovery that intravenously
administered iron causes only minor adverse effects, after having been (incorrectly) considered more
dangerous for decades, has sparked the use of intravenous Fe supplementation (Auerbach, Gafter-
Gvili, and Macdougall 2020; Schaefer et al, 2020). However, following intravenous iron
administration, blood borne pathogens will be exposed to excess iron. One of these pathogens,
responsible for a wide variety of clinical diseases, is Staphylococcus aureus of which the methicillin
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resistant (MRSA) strain represents a global human health
challenge (David and Daum 2010; DeLeo et al., 2010; Ganz
et al., 2020).

The effect of supplemented iron on S. aureus proliferation has
been investigated in a few patient studies only, where bacterial
growth assays were performed on serum samples taken from the
subjects following iron supplementation. In this way, Cross et al.
(2015) found supplemented oral iron to significantly increase
transferrin saturation (TSAT) in the serum samples. However,
while gram-negative bacteria, including E. coli, and the gram-
positive Staphylococcus epidermis, showed elevated growth rates,
S. aureus appeared unaffected (Cross et al., 2015). The authors
suggested this to be caused by a preference of S. aureus for heme
iron over transferrin-bound iron (Cross et al., 2015), which is
consistent with other studies (Barton Pai et al., 2006; Suffredini
et al, 2017; Skaar et al., 2004). In fact, in hemodialysis patients,
which have significantly lower transferrin levels, intravenous iron
sucrose administration was found to correlate with increased
non-transferrin-bound iron (NTBI) levels in the patients’ serum.
Significantly increased S. aureus growth was observed on the
serum samples of these patients, compared to the NTBI-negative
subjects (Barton Pai et al., 2006). This indicates that the molecular
form of iron in the blood influences its uptake by S. aureus, which
seems to prefer NTBI and heme iron, but is less responsive to
transferrin-bound iron.

While multiple reviews have recently been published on the
interaction of supplemented iron and enteric pathogens on a
molecular level (Yilmaz and Li 2018; Finlayson-Trick et al., 2020;
Qi et al, 2020), investigations focusing on the impact of
supplemented intravenous iron on blood borne pathogens
such as S. aureus are lacking. Therefore, in this mini-review,
we aim to give an overview of recent insights into iron and S.
aureus in the context of excess iron and iron-limiting conditions
imposed by the host (nutritional immunity) during S. aureus
infections. Here, we will first look in detail at the regulation
systems S. aureus uses to control uptake of both free and heme
iron, and to regulate the intracellular Fe levels, and then describe
how the pathogen is able to survive under iron starvation
conditions.

REGULATION OF IRON HOMEOSTASIS IN
S. AUREUS AT THE MICROBE-HOST
INTERFACE

Control Systems

In engineering, control systems regulate the operation of devices
and their processes using control loops. For a functioning control
loop, you need to measure a process value which can be either
below or above a target set point. The device or process then
needs to be adjusted to attain the desired process value. In a
similar manner, bacteria have evolved to control the intracellular
concentrations of nutrients and metabolites, including iron, to
pre-set conditions required for growth and/or maintenance. For
this process, called homeostasis, bacteria produce sensors that
measure the amount of intracellular iron, and a control system (or
systems) that can change the expression of proteins and the
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functionality of enzymes in order to reach the target value. This
control occurs at: transcriptional (DNA— mRNA), post-
transcriptional  (stabilizing or degradation of mRNA),
translational (mRNA— protein) or post-translational level
(protein degradation, modification, and allosteric interaction).
These four levels allow very precise tuning and distribution of
iron, depending on necessity and environmental conditions.
Precise tuning is important because Fe is essential for life,
while at the same time Fe>* can generate toxic reactive oxygen
species (ROS) with O,, and Fe** is insoluble under neutral
aqueous conditions.

Regulation of Free Iron

In Staphylococcus aureus, Fur (ferric uptake regulator) is the
major control system for iron (Figure 1). The Fur protein is
homodimeric, with each monomer consisting of an N-terminal
DNA binding domain and a C-terminal dimerization domain
(Price and Boyd 2020). Between the two domains is a metal ion
binding site, which was recently shown to bind a [2Fe-2S] cluster
in E. coli (Fontenot et al., 2020). S. aureus Fur has been described
as binding two separate Fe*" ions in the hinge regions between the
N- and C-terminal domains. E. coli and S. aureus Fur share 30%
sequence identity and 49% sequence similarity, which includes
three conserved Cysteines (Supplementary Material). The
precise nature of the Fe-bound form of S. aureus Fur remains
to be established. Upon dimerization, the DNA binding part of
Fe-bound Fur is a transcriptional repressor of a range of genes
related to iron homeostasis. It functions by binding to a so-called
Fur-box upstream of the coding genes. These genes involve Fe
transporters and many other genes, as discussed below. Some are
established virulence factors, which means they are involved in
disease processes. Related proteins, called Fur family proteins,
with affinity to other metal jons or compounds have been
discovered, such as Zur (zinc uptake regulator) for Zn*" and
PerR (peroxide operon regulator) which is a metal-dependent
regulator for hydrogen peroxide. The Fe** and Mn®" dependence
of PerR highlights crosslinks between the different control
systems (Horsburgh, Ingham, and Foster 2001).

Ferrous iron uptake by transporter FeoB is still poorly
characterized, although recently inhibitors have been identified
that may have important medical implications as novel
antibiotics against MRSA and other multidrug resistant Gram-
positive bacteria (Shin et al., 2021). Fur and PerR differentially
regulate the S. aureus ferritin gene (FtnA), which encodes the Fe-
storage protein ferritin (Morrissey et al., 2004). Ferritin can take
up circa 4,000 Fe atoms in the form of a ferrihydrite mineral
nanoparticle inside a 24-meric protein sphere (Honarmand
Ebrahimi, Hagedoorn, and Hagen 2015). Iron storage by
ferritin involves oxidation of Fe’* to Fe’* and concerted
incorporation into a growing ferrihydrite mineral core. Upon
reduction, by a mechanism that has not yet been established, Fe
can also be released from ferritin as Fe**.

Another Fur controlled Fe uptake system is the FepABC (Fe
dependent peroxidase) transporter. The transporter has not been
well characterized, but it has been implicated in Fe and possibly
heme uptake. The transporter consists of FepA, a predicted
membrane anchored lipoprotein that may act as an Fe
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FIGURE 1 | Regulation of Fe by Staphylococcus aureus at the host-microbe interface. FeoB, ferrous Fe transporter; FepABC, Fe dependent peroxidase
transporter; FtnA, ferritin; Fur, ferric uptake regulator; HrtAB, heme regulator transporter efflux pump; HssR, heme sensing two-component regulator regulatory protein;
HssS, heme sensing two-component regulator sensor protein; HtsABC, heme transport system involved in Fe-SA uptake; IsdABCDEFGHI, iron-regulated surface
determinant system; SA, Staphyloferrin A; SB, Staphyloferrin B; Sbnl, L-serine kinase and heme responsive regulator of SB biosynthesis. Human (host) proteins are

(compound) binding protein, peroxidase FepB, and integral
membrane protein FepC (Biswas et al., 2009). FepB can bind
heme and protoporphyrin IX (heme without Fe) and has a low
peroxidase activity (Turlin et al., 2013). FepB is a substrate of the
Twin-Arginine Translocation pathway, which allows membrane
translocation of fully folded cofactor bound proteins (Biswas
et al., 2009). Heterologous expression of the S. aureus FepAB in
E. coli allowed heme utilization in this organism (Turlin et al,,
2013).

Siderophores are small, extracellular, peptide-derived
compounds with a high affinity for Fe’*. S. aureus produces
two siderophores: Staphyloferrin A (SA) and Staphyloferrin B
(SB). SA is produced using the gene cluster sfa, and SB is
produced using the sbn gene cluster (Marchetti et al., 2020).
The gene clusters are both transcriptionally repressed by Fur.
Recently, a heme sensitive regulator of siderophore production
was identified: Sbnl (Laakso et al., 2016; Verstraete et al., 2019).
The gene product of Sbnl is an enzyme producing a precursor to
the siderophore. Furthermore, the protein can bind DNA and
upon dimerization contains a heme binding domain. Heme
transfer from IsdI to Snbl has been suggested to help control
the production of siderophores, thereby shifting focus to heme
utilization rather than free iron uptake. Fe> bound SA is taken up
using the ABC transporter HtsABC (heme transport system).
Despite the name, it is unclear if the Hts transporter is involved in

heme uptake, and if so by which mechanism (Price and Boyd
2020). Hts transcription is regulated by Fur. SB is taken up by the
ABC transporter SirABC (Grigg et al., 2010a).

Siderophores play a very important role in Staphylococcus
biofilm formation to ensure Fe availability (Johnson et al., 2005;
Oliveira et al., 2021). Fe chelators that compete with siderophores
can disturb biofilm formation and may therefore be of medical
importance (Richter et al., 2017; Coraca-Huber et al., 2018).

Regulation of Heme Iron

Heme obtained from red blood cells is a major source of iron for
Staphylococcus aureus during infections (Skaar et al., 2004). There
is evidence that S. aureus has evolved a specificity towards human
hemoglobin versus other mammalian orthologs that is unique
among pathogenic bacteria (Pishchany et al., 2010). However, a
high level of intracellular heme is dangerous due to its potential to
form reactive oxygen species (ROS). S. aureus uses the two-
component regulator HssRS (Figure 1) (Heme sensing two-
component system) to control the intracellular level of free
heme (Price and Boyd 2020; Stauff, Torres, and Skaar 2007;
Stauff and Skaar 2009). HssS is a transmembrane protein, which
responds to the heme level by an unknown mechanism. Upon
activation, HssS acts as a histine kinase to phosphorylate the
histidine of HssR, thereby activating the protein as a
transcriptional activator of the heme efflux transporter HrtAB
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(Heme regulator transporter efflux pump). Whether the precise
compound that is expelled by HrtAB is heme or a heme
metabolite is unknown (Price and Boyd 2020). Additional
targets of HssR have not been identified to date.

The cell wall of S. aureus contains a unique system to acquire
heme, which is called Isd (Iron-regulated surface determinant
system) (Skaar and Schneewind 2004; Grigg et al, 2010b;
Mazmanian et al, 2003). Similar systems are present in other
Gram-positive  pathogenic ~ bacteria, such as  Listeria
monocystogenes and Clostridium tetani. This system takes up
heme from human (host) hemoproteins. The Isd system involves
nine different proteins, of which four are bound to the cell wall: IsdA,
IsdB, IsdC, and IsdH. Two proteins, IsdE and IsdF, constitute an
ABC-transporter for the heme cofactor. IsdD is a transmembrane
protein of unknown function. And the final two proteins, Isdl and
IsdG, are soluble intracellular heme degrading enzymes. The outer
cell wall proteins IsdB and IsdH bind free heme, methemoglobin and
hemoglobin-haptoglobin complexes from the host. The cell wall
proteins IsdC and IsdA are involved in heme transport through the
15-30 nm thick cell wall to the ligand binding component of the
ABC-transporter IsdE. After translocation of the heme to the
cytoplasm, the cofactor is degraded by the heme degrading
enzymes Isdl and IsdG. These enzymes are distantly related to
well-characterized heme oxygenases and have been found to release
Fe from the cofactor, yet the precise reaction mechanism remains to
be solved (Grigg et al., 2010b). Fur regulates the expression of the
genes for IsdA, IsdB, IsdC and IsdH. The gene for the enzyme
sortase B (SrtB) is part of the same transcriptional unit as IsdC, and
therefore also regulated by Fur. Sortase B is involved in the cell wall
anchoring of the Isd components.

OVERCOMING REDUCED IRON

AVAILABILITY
Strategies
Upon infection, the host starts the immune response.

Macrophages are activated by interaction with S. aureus via
Toll-like receptors (TLRs) (Pidwill et al, 2021). This starts
signal transduction cascades which include mechanisms to
limit the availability of iron in blood (Pandur et al., 2021).
Central in the regulation of these processes is the hormone
hepcidin. Hepcidin interacts with the host Fe efflux protein
ferroportin, thereby limiting Fe export from macrophages
(Theurl et al., 2008). Interestingly the same exposed S. aureus
lipoproteins that support Fe acquisition, for example, via the Isd
system, are also recognized by the TLRs, thereby evoking
inflammation responses in the host (Schmaler et al, 2009;
Sheldon and Heinrichs 2012). One of the cellular host
responses involved is the endocytosis and degradation of
erythrocytes by the macrophages in a process called
erythrophagocytosis (Knutson et al., 2005). The Fe retained by
the host cells is also put to good use, as Fe*" enabled production of
ROS is used to kill bacteria taken up by these cells (Rosen et al.,
1995; Haschka, Hoffmann, and Weiss 2021). Interestingly. ROS
also induce antibiotic resistance in S. aureus, indicating a negative
side-effect of our innate immune response (Rowe et al., 2020).

Iron and Staphylococcus aureus

In the context of sepsis, S. aureus is capable of lysing erythrocytes
by secreting hemolytic toxins to free hemoglobin and obtain it
through the Isd system (Torres et al,, 2010). The S. aureus heme-
oxygenases IsdG and IsdI have been shown to be important for full
virulence with heme as the primary iron source (Reniere and Skaar
2008). Host heme oxygenase 1 (HO1) catalyzes the rate-limiting step
in heme degradation, producing biliverdin, Fe** and CO (carbon
monoxide) (Singh et al., 2018). CO can act as a messenger in various
protective cascades. Links between HO1 and protective effects on S.
aureus infection have been shown (MacGarvey et al., 2012; Gahlot
et al.,, 2017).

The host restricts the availability of iron in its different forms
further by producing the hemoglobin binding protein
haptoglobin, the heme binding protein hemopexin, the free
Fe’* binding proteins transferrin and lactoferrin, and the free
Fe** binding protein calprotectin (Nakashige et al, 2015;
Marchetti et al,, 2020). Haptoglobin binding to hemoglobin
inhibits uptake of heme by the Isd system of S. aureus,
although the protein still binds to IsdH (Mikkelsen, Runager,
and Andersen 2020). Calprotectin (CP) was originally identified
to be involved in Mn*" limitation by the host, but was more
recently found to bind Fe*" efficiently in the presence of Ca**
(Nakashige et al, 2015). It has been demonstrated that CP
induces Fe starvation in S. aureus cultures (Obisesan, Zygiel,
and Nolan 2021; Zygiel et al., 2021). The ability of S. aureus to
efficiently incorporate heme affords protection against CP
induced Fe starvation (Zygiel et al, 2021). In the preceding
sections we have described the mechanisms through which S.
aureus controls intracellular Fe levels in response to iron sources
in the human host. However, these control systems may be
insufficient when Fe availability is strongly reduced.
Pathogenic bacteria such as S. aureus have evolved several
strategies to tackle the metal restrictions imposed through
nutritional immunity: 1) hijacking host proteins, 2) replacing
metal cofactors, and 3) replacing functions by non-metal
dependent enzymes. We will discuss examples of each
strategy below.

Hijacking Host Proteins

S. aureus cannot use hemopexin as a heme source using the Isd
system. However, it has been reported to take up iron from host
transferrin using a transferrin receptor. The nature of the
transferrin receptor of S. aureus is convoluted in literature.
This cell-wall associated protein was first identified as a
functional glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (Modun, Morrissey, and Williams 2000). However,
this was shown to be incorrect, and the protein was identified as
staphylococcal transferrin-binding protein StbA (Taylor and
Heinrichs 2002). Later, it was shown that StbA is the same
protein as IsdA, part of the Isd system for heme uptake
described above (Clarke, Wiltshire, and Foster 2004; Maresso
and Schneewind 2006). The ongoing tug of war for Fe between
host transferrin and bacterial transferrin receptors has caused
rapid evolutionary development of the involved proteins (Barber
and Elde 2014). The presence of a transferrin receptor indicates
that S. aureus can take up Fe from transferrin, at least to some
extent, although the major Fe source from the host is heme.
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Replacing Metal Cofactors
A well-established example of replacing metal cofactors by S. aureus

are the Mn-dependent superoxide dismutases (SODs). Neutrophils,
and other host immune cells, can induce oxidative bursts as a
defensive strategy against S. aureus (Rigby and DeLeo 2012). This
process generates high levels of damaging ROS, including
superoxide (Forrester et al, 2018; Jakubczyk et al, 2020). The
expression of SODs is one way in which S. aureus can combat
ROS. S. aureus has two superoxide dismutases, SodA and SodM.
SodA can incorporate only Mn as metal cofactor while SodM can
use either Fe or Mn depending on the conditions (Garcia et al,
2017). As part of the host immune response, the neutrophil protein
CP sequesters trace metals, including Mn. The action of CP disturbs
the correct metalation of SodA (Kehl-Fie et al., 2013). However, S.
aureus encodes an additional Mn-dependent SOD, SodM, which
can substitute its metal cofactor for Fe under Mn-limiting conditions
(Garcia et al,, 2017; Treffon et al., 2020). In this way, S. aureus can
retain sufficient SOD activity despite CP activity and maintain
virulence. Small non-coding regulatory RNA molecule RsaC (co-
transcribed with Mn transporter MntABC) represses the translation
of the SodA coding mRNA under Mn limiting conditions. So, if
there is a shortage of Mn (Mn uptake by MntABC needed), the Mn
SOD is suppressed in favor of the Fe containing SOD. A clinically
relevant example of a highly oxidative stressful environment with
strong CP presence are the airways of cystic fibrosis patients, where
S. aureus can cause persistent infections for years. Investigation of
gene expression demonstrated significantly elevated SodM
expression levels in clinical isolates compared to laboratory
strains (Treffon et al., 2020).

Replacing Functions by Non-metal

Dependent Enzymes

An alternative strategy of S. aureus to respond to nutritional
immunity is to use a protein variant that lacks a metal cofactor
altogether. The consumption of glucose through glycolysis is a
process fundamental to many life forms. For bacteria, some of
the enzymes involved are Mn-dependent. Yet even under Mn-
limited conditions, S. aureus was shown to prefer glucose as
main carbon source despite its burden on cellular Mn demand
(Radin et al, 2019b). It has recently been demonstrated that S.
aureus can express a Mn-independent variant of phosphoglycerate
mutase to maintain glucose consumption under Mn-stress (Radin
et al,, 2019a). The discovery of metal-independent variants is not
unique to S. aureus and may indicate a broader pattern among
bacteria.
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