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Background: Cutaneous melanoma (CM) is a type of skin cancer with a high fatality rate,
and its pathogenesis has not yet been fully elucidated.

Methods:We obtained the gene expression datasets of CM through the Gene Expression
Omnibus (GEO) database. Subsequently, robust rank aggregation (RRA) method was
used to identify differentially expressed genes (DEGs) between CM cases and normal skin
controls. Gene functional annotation was performed to explore the potential function of the
DEGs. We built the protein–protein interaction (PPI) network by the Interactive Gene
database retrieval tool (STRING) and selected hub modules by Molecular Complexity
Detection (MCODE). We furthered and validated our results using the TCGA-GTEX
dataset. Finally, potential small molecule drugs were predicted by CMap database and
verified by molecular docking method.

Results: A total of 135 DEGs were obtained by RRA synthesis analysis. GMPR, EMP3,
SLC45A2, PDZD2, NPY1R, DLG5 and ADH1B were screened as potential targets for CM.
Furazolidone was screened as a potential small molecule drug for the treatment of CM, and
its mechanism may be related to the inhibition of CM cell proliferation by acting on GMPR.

Conclusion: We identified seven prognostic therapeutic targets associated with CM and
furazolidone could be used as a potential drug for CM treatment, providing new prognostic
markers, potential therapeutic targets and small molecule drugs for the treatment and
prevention of CM.
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INTRODUCTION

Global statistics in 2020 showed that CM accounted for 1.7% of global cancer. Melanoma is the fifth
most common cancer diagnosis in the United States by 2021, accounting for 5.6% of all cancer
diagnoses. (Saginala et al., 2021). It is widely known, genetic changes facilitate early diagnosis and
individualized treatment in patients with melanoma. In the past few years, microarray technology
has been widely used in the analysis of gene expression profiles in the skin tissues of melanoma
patients or experimental animals. Identifying gene-specific expression patterns makes it possible for
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people to discover the key gene changes in melanoma tissues and
cells, which helps to understand the pathogenic mechanism of the
disease or evaluate the treatment. However, there are some
inconsistencies in these microarray studies, such as different
laboratory conditions, racial differences in clinical samples,
and differences in chip platforms. Therefore, it is of great
significance to find an effective method to evaluate the results
of different gene expression profiles.

RRA is a method that uses probability models to integrate
ranked lists which has four key features: strong robustness to
noise, ability to deal with incomplete ranking, giving significant
scores to each element in the result ranking, and high
computational efficiency (Kolde et al., 2012). Some studies
have used it to integrate multiple sets of gene chip data lists,
and achieved good results (Jia and Zhai, 2019). To our knowledge,
previous CM studies did not use the RRA method to identify
differentially expressed genes (DEGs), which facilitated this
study. Therefore, we adopted a comprehensive bioinformatics
approach to conduct a meta-analysis of gene expression between
CM tissue and normal skin controls. In addition, according to the
results of this analysis, gene enrichment and pathway annotation
analysis were also carried out. In addition, based on the results of
this analysis, the prediction of small molecule drugs to treat CM
was also carried out, and the molecular docking method was used
to verify and study the possible mechanism of action. The flow
chart of this research is displayed in Figure 1.

MATERIALS AND METHODS

Microarray Datasets of Cutaneous
melanoma
The expression profiles of CM were retrieved from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/). The search strategy [“Cutaneous melanoma” (MeSH
Terms) OR Cutaneous melanoma (All Fields)] and [“Homo
sapiens” (Organism) and “Expression profiling by array”
(Filter)] was adopted.

Datasets Analyses
The expression microarray datasets were all standardized by
quantiles. A linear model was used to assess differential
expression between CM cases and normal skin controls using
R package named “limma.” The |log2 fold change (FC)| > 1 and
p-value < 0.05 were regarded as the cut-off criteria to determine
DEGs (Liu et al., 2021).

Robust Rank Aggregation Analysis
We integrated all the obtained up-regulated and down-regulated
gene lists of each dataset using the “Robust Rank Aggregation” R
package. Genes with p-value <0.05 and the fold change >1 were
considered as significant genes. The adjusted p-value in the RRA
tool indicate the possibility of ranking high of each gene in the
final gene list.

Functional and Pathway Enrichment
Analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of the significant genes in
RRA analysis were performed via The Database for Annotation,
Visualization, and Integrated Discovery (DAVID 6.8, https://david.
ncifcrf.gov/). p-value <0.05 was regarded as the cut-off criteria.

Protein–Protein Interaction Network
Establishment and Module Analysis
We uploaded the genes screened by the RRA method to the
STRING database to obtain the interaction relationship
information between genes, and the cutoff value was set to 0.4
to explore the interaction relationship between genes. Then, the
interaction information was imported into Cytoscape, and a
protein–protein interaction (PPI) network diagram was
constructed, and sorted according to the degree value
(Shannon et al., 2003). Modular analysis using Molecular
Complex Detection (MCODE) plugin in Cytoscape with
threshold nodes numbers >3, k-score = 2 and MCODE scores
>3 (Bader and Hogue, 2003).

FIGURE 1 | Flow chart of the present study.
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FIGURE 2 | Identification of DEGs in GEO database. (A–C) Volcano plot of the DEGs in GSE15605, GSE46517 and GSE114445. Red and green indicate
upregulated and downregulated genes (p < 0.05, LogFC ≥1 or ≤ −1), respectively. (D) Heatmap of the top 25 up- and down-regulated genes in the RRA analysis. The
abscissa is the geo ID, and the ordinate is the gene name. Red represents logFC>0, blue represents logFC<0, and the values in the box represent the logFC values.
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Key Genes Validation Study
We use the CM RNA-seq dataset (461 CM cases) in the cancer
genome atlas (TCGA) TCGA (https://portal.gdc.cancer.gov/) and
558 normal skin tissues RNA-seq dataset in GTEx (https://
xenabrowser.net/datapages/) to verify the expression level of the
selected key gene. Genes with p-value <0.05 were considered to be
significant.

We utilized the CM dataset in TCGA to verify whether the DEGs
analyzed by RRA had clinical prognostic significance. Through
univariate Cox regression analysis, the Hazard Ratio (HR) value
was calculated to judge the clinical prognostic significance of the
variable, and the “Survminer” package was used to obtain the
median value of the risk score, and the median value was used
as the cut-off point to divide CM patients into high-risk groups and
low-risk group, and Kaplan-Meier curve analysis was used to
compare the survival time of the low-risk and high-risk groups.
In addition, survival score and survival status curves and heatmaps
were used to illustrate the distribution of CM patients in the two
groups (high-risk and low-risk). We also performed ROC curve
analysis to assess the predictive value of the results (the size of the
area under the ROC curve was used to describe the predictive value).
The above analysis was considered statistically significant at p< 0.05.

Identification of Candidate Small Molecules
CMap is a program for predicting potential drugs that may
induce biological states encoded by specific gene expression
signatures (Lamb, 2007). We divided the finally screened

differential genes into up-regulated and down-regulated
groups, and imported them into CMap database, in order to
explore small molecule drugs that might treat CM. A negative
mean score indicates that the drug reverses the desired biological
property and has potential therapeutic value (p < 0.05 for
statistical significance).

Molecular Docking Verification
We performed molecular docking verification between the small
molecule drugs predicted in CMap and the potential target
proteins of CM, and judged the reliability of drug treatment of
CM by the size of the binding energy. The mol2 file format
structures of the compounds were obtained from the PubChem
database, and the crystal structures of the core targets were
collected from the RCSB Protein Data Bank (PDB, http://
www.rcsb.org/). First, target proteins were dehydrated and
ligand-removed using PyMOL 2.3.2 software and stored in
PDB format. The processed target protein was then imported
into AutoDock Tools 1.5.6 software for hydrogenation, charge
calculation and stored in PDBQT format. Mol2 files of small
molecule drugs were imported into AutoDock Tools 1.5.6
software, total charge was detected, charge was assigned,
flexible rotatable bonds were viewed and saved in PDBQT
format. Grid box data for the protein of interest was obtained.
Finally, run Autodock Vina 1.1.2 for molecular docking.
Molecular docking results were visualized using PyMOL 2.3.2
software (Gaudreault et al., 2015).

FIGURE 3 | Protein–protein interaction (PPI) network establishment and module analysis of the 135 DEGs. (A) PPI network with 75 nodes and 118 edges. (B–E)
Four modules were identified by MCODE arithmetic.
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RESULTS

Identification of Differentially Expressed
Genes in Cutaneous Melanoma
In accordance with our search strategy, we downloaded and
analyzed three microarray datasets from the Gene Expression
Omnibus (GEO) database, including GSE46517, GSE114445,
and GSE15605. GSE46517 was platform-based on GPL96 and
contained a total of 39 samples, including 31 primary
melanoma samples and 8 normal skin samples. GSE114445 was
based on the GPL570 platform, and a total of 22 samples were
collected, including 16 primary melanoma sample and six normal
skin samples. GSE15605 was based on the GPL570 platform and
included a total of 62 samples, including 46 primary melanoma
samples and 16 normal skin samples. Primary melanoma sample
and normal skin sample from the three datasets were included in
this study. The results are shown in Supplementary Table S1. The
volcano plots of the three microarrays are shown in Figures 2A–C.
A total of 135 DEGs (70 up-regulated and 65 down-regulated) were
obtained through RRA integrated Analysis (Supplementary Table
S1). The heatmap of the top 25 up and down-regulated genes is
shown in Figure 2D.

Functional and Network Analysis of
Differentially Expressed Genes
GO functional enrichment analysis outcomes revealed that the
most significant enrichment was positive regulation of cell

proliferation, extracellular region and protein binding
respectively among biological process (BP), cellular component
(CC) and molecular function (MF). KEGG pathway enrichment
analysis showed that pathways in cancer and transcriptional
misregulation in cancer were significantly enriched, as shown
in Supplementary Table S1.

By analyzing 135 DEGs, we got a network interaction graph
with 75 nodes and 118 edges, where nodes represented genes,
edges represented connections between two genes, and degree
value represented the strength of association between genes. More
precisely, the top 10 hub genes of DEGs were TYR, PMEL,
RAB27A, MYO5A, MLANA, SOX10, SLC45A2, MLPH,
GPR143 and PLP1 (Figure 3A). Four modules were identified
by MCODE arithmetic (Figures 3B–E).

The Validation of Key Genes
The univariate cox regression analysis was used to calculate the
Hazard Ratio (HR) of the top 25 up and down-regulated genes for
CM patients. The results showed that among these top genes, the
expression levels of GMPR, MLPH, EMP3, SLC45A2 TYR,
PAIP2B, GIPC2, PDZD2, NPY1R, DLG5, ADH1B, BARD1
and CERS6 was closely related to the survival time of CM
patients, with statistically significant differences (p < 0.05). HR
values of less than one can be translated as PAIP2B, GIPC2,
PDZD2, NPY1R, DLG5, ADH1B, BARD1 and CERS6
representing low-risk factors, while GMPR, MLPH, EMP3,
SLC45A2 and TYR were high-risk factors (Figure 4). The
genes screened by univariate cox regression analysis were used
to draw survival curves from Kaplan-Meier estimations, and 8
genes (GMPR, EMP3, SLC45A2, PDZD2, NPY1R, DLG5,
ADH1B, CERS6) finally met the requirements according to
statistically significant differences (p < 0.05). (Figures 5, 6).
(Supplementary Table S1).

The expression of 8 hub genes associated with survival time
in CM and normal tissues was analyzed in the TCGA- GTEx
gene expression dataset and the validation results showed that
a total of seven genes showed consistent expression trends in
TCGA and GEO datasets, except for CERS6 (CERS6 was up-
regulated in CM samples of TCGA dataset and down-regulated
in CM samples of GEO dataset) (Figure 7).

ROC curve analysis was performed on seven Hub Genes
using the package pROC. AUC >0.9 was taken as the cutoff
value, and it was found that the AUC values of these seven
genes were all greater than 0.9. The expression levels of these
genes have high accuracy in distinguishing normal skin tissue
from CM tissue, and could be regarded as potential “tumor
biomarkers” for diagnosing CM (Figure 8). Moreover, the
distribution of risk scores, survival status, and expression
levels of three oncogenes and four tumor suppressor genes
are shown in Figure 9.

Small Molecule Drugs Screening
CMap network was used to analyze 7 DEGs into two groups (3
in up-regulated group and four in downregulated group)
(Supplementary Table S1). After the signature query, the
10 compounds with the highest negative enrichment score
(furazolidone, ciclosporin, bisoprolol, rifampicin,

FIGURE 4 | Univariate Cox regression analysis showing the hazard
ratios (HRs) with 95% confidence intervals (CIs) and p values for 13 DEGs.
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pralidoxime, cinchonine, mevalolactone, nifenazone,
doxycycline and chenodeoxycholic acid) were identified as
potential therapeutic agents for CM (Table 1). The chemical
structures of these ten compounds are shown in Figure 10.

Molecular Docking Verification
Using AutoDock Vina 1.1.2 software, the screened small
molecule drugs were docked with six core targets (GMPR,
EMP3, SLC45A2, NPY1R, DLG5, ADH1B). The crystal

FIGURE 5 | Kaplan Meier survival curve of the 13 DEGs in the RRA analysis. The GMPR, MLPH, EMP3, SLC45A2 and TYR are up-regulated in GEO dataset. The
PAIP2B, GIPC2, PDZD2, NPY1R, DLG5, ADH1B, BARD1 and CERS6 are down-regulated in GEO dataset.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8586336

Liu et al. Prognostic Signature in Cutaneous Melanoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


structure of PDZD2 was not obtained, so it could not be docked.
A binding energy less than 0 indicates spontaneous binding of
the ligand and receptor. The lower the binding energy, the more
stable the binding conformation and the greater the likelihood
of action (Gao et al., 2016).

As can be seen from Figure 11, the minimum binding
energy between the ligand and the receptor is mostly less
than −7.0 kcal·mol-1, indicating that the target protein has a
good affinity with the active ingredient, and small molecule
drugs are likely to act on these targets. Small molecule drug
docking targets with the lowest binding energy were selected
for docking visualization (Figure 12). The dotted lines in the

figure are hydrogen bonds. For example, furazolidone exerts its
biological efficacy most likely by binding to GMPR and
forming hydrogen bonds with the five amino acids GLY221,
SER183, GLY242, GLY243 and MET269 near the active site.

DISCUSSION

CM is a tumor formed by malignant transformation of skin
melanocytes. It has the characteristics of high degree of
malignancy, strong invasiveness, and can affect all ages. If
not actively treated, it is easy to spread and metastasize

FIGURE 6 | Venn diagram of 25 upregulated and downregulated DEGs and TCGA datasets. (A) three upregulated genes (oncogenes) were identified. (B) five
downregulated genes (tumor suppressor genes) were identified.

FIGURE 7 | Boxplot of the three screened up-regulated genes (GMPR, EMP3, SLC45A2) and five down-regulated genes (PDZD2, NPY1R, DLG5, ADH1B,
CERS6) in TCGA-GTEx dataset. (****p < 0.0001).
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through the dermis. Therefore, CM patients have poor
prognosis and high mortality (Böhme and Bosserhoff,
2016). Although a series of treatment methods such as
radiotherapy, chemotherapy, immunotherapy, and targeted
therapy have been used to improve the survival rate of
patients, problems such as drug resistance, low drug
sensitivity and poor prognosis have to be paid attention to
(Domingues et al., 2018; Lebbé et al., 2019; Pelster and
Amaria, 2019). Therefore, it is urgent to identify more
therapeutic targets, prognostic biomarkers, and potential
drugs that can treat CM.

We performed an integrated analysis of the 3 CM DEGs using
the RRA method. A total of 135 differential genes were identified,
including 65 downregulated and 70 upregulated. GO analysis
indicated that the DEGs were associated with melanin
biosynthetic process, melanosome and RAGE receptor binding.
KEGG analysis showed that these DEGs were primarily enriched
in Pathways in cancer. These results are consistent with the
existing research results of CM, reflecting the close correlation
between the DEGs and CM.

PPI analysis shows that Tyrosinase (TYR) is the most
associated and core gene in DEGs. TYR is a copper-

FIGURE 8 | ROC curve analysis and AUC analysis were implemented to evaluate the capacity of seven genes to distinguish CM tissue from normal tissue in TCGA-
GTEx dataset. (A) ROC curves analysis of three screened up-regulated genes (GMPR, EMP3, SLC45A2). (B) ROC curves analysis of four screened down-regulated
genes (PDZD2, NPY1R, DLG5, ADH1B).

FIGURE 9 | The risk scores for all patients in TCGA cohort are plotted and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical black line).
Expression profiles of the DEGs of patients in TCGA cohort, with red indicating higher expression and light blue indicating lower expression. (A) three screened up-
regulated genes (GMPR, EMP3, SLC45A2). (B) four down-regulated genes (PDZD2, NPY1R, DLG5, ADH1B).
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containing oxidase that regulates melanin synthesis (Chang,
2009). Appropriate expression of tyrosinase is beneficial to
human beings, as it is a key biochemical catalyst for
biosynthesis of natural melanin to protect skin from
photocarcinogenesis. Overexpression of tyrosinase can
induce melanoma, and TYR can mediate melanoma cell

apoptosis under the regulation of transcription factor
MITF (Steingrímsson et al., 2004; Shirasugi et al., 2010;
Lee et al., 2015; Liu et al., 2020).

Seven genes (GMPR, EMP3, SLC45A2, NPY1R, DLG5,
PDZD2 and ADH1B) were finally screened out by combined
analysis of GEO and TCGA databases. Cox regression
analysis showed that these genes were independent
prognostic indicators of CM patients. Among them, only
PDZD2, NPY1R and ADH1B have not been reported in
melanoma studies, and EMP3 has only been reported in
uveal melanoma (Kaochar et al., 2018).

PDZD2 (PDZ domain containing 2) is a multi-PDZ protein
expressed in many tissues (Yeung et al., 2003). We found that
PDZD2 was poorly expressed in cutaneous melanoma.
Previous studies have suggested that PDZD2 is an
oncogene, which is over-expressed in the cell lines of
osteosarcoma, human primary prostate tumor and prostate
tumor (He et al., 2019). Recently, it has been shown that
human secreted PDZD2 (sPDZD2) has anti-tumor
properties, and it is also down-regulated in lung

FIGURE 10 | Chemical structure depiction of the top ten most significant drugs. (A) Furazolidone (B) Ciclosporin (C) Bisoprolol (D) Rifampicin (E) Pralidoxime (F)
Cinchonine (G) Mevalolactone (H) Nifenazone (I) doxycycline (J) chenodeoxycholic acid.

FIGURE 11 | Heat map of the lowest binding energy for molecular docking.

TABLE 1 | Results of Cmap analysis.

Rank Cmap name Mean N Enrichment p-value

1 Furazolidone −0.614 4 −0.841 0.00117
2 ciclosporin −0.418 6 −0.673 0.00332
3 bisoprolol −0.294 4 −0.784 0.00438
4 rifampicin −0.294 4 −0.759 0.00688
5 pralidoxime −0.403 4 −0.757 0.00712
6 cinchonine −0.241 4 −0.75 0.00778
7 mevalolactone −0.543 3 −0.836 0.00871
8 nifenazone −0.488 5 −0.659 0.01103
9 doxycycline −0.356 5 −0.646 0.01376
10 chenodeoxycholic acid −0.545 4 −0.712 0.01387
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FIGURE 12 | Docking diagram of small molecule drugs with targets. (A) Furazolidone-GMPR (B) Ciclosporin-SLC45A2 (C) bisoprolol-ADH1B (D) rifampicin-
GMPR (E) pralidoxime-NPY1R (F) cinchonine-NPY1R (G)mevalolactone-GMPR (H) nifenazone-SLC45A2 (I) doxycycline-NPY1R (J) chenodeoxycholic acid-ADH1B.
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adenocarcinoma (Cui et al., 2020). Spdzd2 induces the aging of
prostate cancer cells through mutation or transcriptional
activation of wild-type p53, and makes cancer cells more
sensitive to apoptosis through genotoxic stress (Tam et al.,
2006). SPDZD2 plays an antiproliferative role in human
cancer cells by affecting cell cycle arrest in S phase (Tam
et al., 2008). The difference of PDZD2 expression in different
tumor tissues may be related to tissue specificity.

NPY is an important regulator of tumor progression of
nerve or endocrine related cancers. The role of NPY may be
mediated by many NPY receptor subtypes. Many evidences
show that the expression of NPY1R gene is up-regulated in
various types of nerve or endocrine related cancers (including
breast cancer, prostate cancer, adrenal tumor, renal cell cancer
and ovarian cancer, etc.), (Kitlinska et al., 2005; Ruscica et al.,
2006; Körner et al., 2008; Lv et al., 2016). Activation of Y1R
and Y2R by NPY leads to tumor cell proliferation,
angiogenesis and metastasis (Liu et al., 2015). In non-
neuroendocrine related tumors such as in hepatocellular
carcinoma cells, npy1r inhibit cell proliferation by
activating mitogen-activated protein kinase signal pathway,
promoting tumor growth and increasing tumorigenicity of
cells (Lv et al., 2016).

ADH1B, a member of the alcohol dehydrogenase (ADH)
family, is involved in the metabolism of acetaldehyde, a
carcinogen (Seitz and Stickel, 2010; Galinsky et al., 2016).
ADH1B (no. 1) has been inhibited in almost all cancer types,
and the ability of ADH1B to inhibit cancer cells has been
confirmed in vitro experiments (Li et al., 2017). ADH1B is
involved in the metabolism of several anti-tumor drugs,
including ifosfamide and cyclophosphamide (Polimanti
et al., 2016). Differential expression of ADH1B in ovarian
cancer can make cells secrete MMP-7 CD-26 and cathepsin to
promote cancer progression (Gharpure et al., 2018).

New use of old drugs has become an important strategy for
the development of anti-tumor drugs, which has the
advantages of saving development time, cost and improving
drug safety. According to CMap database analysis,
furazolidone (ranked first), ciclosporin and bisoprolol can
be used to treat CM.

Furazolidone (FZD) is a kind of synthetic nitrofuran
derivative, which can sterilize or inhibit gram-positive and
gram-negative bacteria (Karamanakos, 2013). FZD has also
been shown to have antitumor activity in various other
cancers (Jiang et al., 2013). FZD has significant antitumor
activity against acute myeloid leukemia (AML) (Enzenauer
et al., 1990). FZD promotes the apoptosis of AML cells and
induces the differentiation of myeloid cells by stabilizing the
tumor suppressor protein p53 (Tang et al., 2006). Another
paper also showed that FZD has inhibitory activity on
hepatoma cells. FZD induces oxidative DNA damage by
increasing reactive oxygen species (ROS), thereby inducing
HCC cell cycle arrest. Targeting nuclear factor -κB (NFκB)
signaling pathway may serve as a predictor of immunotherapy
response in melanoma patients (Poźniak et al., 2019). FZD can
inhibit NF-κB signaling pathway and induce apoptosis of
small cell lung cancer cells (Yu et al., 2020). NF-κB is a

melanoma pathogenic factor (Pozniak et al.), which can
regulate the transcription of genes involved in cell survival,
and inhibition of NF-κB activation has been considered as a
strategy for the treatment of melanoma. Therefore, FDZ may
also treat melanoma by inhibiting the activation of NF-κB.

At the same time, through molecular connection, it was
found that FZD was most likely to treat CM by acting on
guanosine monophosphate reductase (GMPR). In this study,
GMPR is considered to be an oncogene, and some studies have
found that GMPR is a new melanoma invasion inhibitor. This
seemingly contradictory conclusion happened simultaneously
in MITF characterized as both a melanoma oncogene (McGill
et al., 2002; Wellbrock et al., 2008) and an invasion suppressor
(Carreira et al., 2006; Arozarena et al., 2011; Cheli et al., 2011;
Javelaud et al., 2011; Cheli et al., 2012), which may be a kind of
“Rheostat model” (Wawrzyniak et al., 2013). GMPR is the
downstream target of MITF (Bianchi-Smiraglia et al., 2017).
MITF can promote proliferation at low and medium levels
and differentiation at high levels, and such dynamic changes
are related to the dynamic changes of tumor
microenvironment after tumor cell metastasis and
epigenetic changes related to melanoma metastasis caused
by tumor microenvironment changes after tumor cell
metastasis (Carreira et al., 2006). Therefore, FZD may
achieve its therapeutic purpose by acting on GMPR to
inhibit CM cell proliferation rather than invasion.

In summary, RRA method was used in this study to
systematically analyze three groups of CM gene chip data,
and then the TCGA data set was combined to verify and
screen, and finally the key DEGs, such as GMPR, EMP3,
SLC45A2, NPY1R, DLG5, PDZD2 and ADH1B, were
screened out. In this study, furazolidone was predicted and
validated as a potential small-molecule drug for the treatment
of CM, providing reference for the selection of CM markers,
therapeutic targets and therapeutic drugs. In future studies,
we will need to verify the target genes and small molecule
drugs we have found through experiments.
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