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Plasmalogens and Platelet-Activating Factor (PAF) are both bioactive ether phospholipids.
Whereas plasmalogens are recognized for their important antioxidant function and
modulatory role in cell membrane structure and dynamics, PAF is a potent pro-
inflammatory lipid mediator known to have messenger functions in cell signaling and
inflammatory response. The relationship between these two types of lipids has been rarely
studied in terms of their metabolic interconversion and reciprocal modulation of the pro-
inflammation/anti-inflammation balance. The vinyl-ether bonded plasmalogen lipid can be
the lipid sources for the precursor of the biosynthesis of ether-bonded PAF. In this opinion
paper, we suggest a potential role of plasmalogenic analogs of PAF as modulators and
PAF antagonists (anti-PAF). We discuss that the metabolic interconversion of these two
lipid kinds may be explored towards the development of efficient preventive and relief
strategies against PAF-mediated pro-inflammation. We propose that plasmalogen
analogs, acting as anti-PAF, may be considered as a new class of bioactive anti-
inflammatory drugs. Despite of the scarcity of available experimental data, the
competition between PAF and its natural plasmalogenic analogs for binding to the PAF
receptor (PAF-R) can be proposed as a mechanistic model and potential therapeutic
perspective against multiple inflammatory diseases (e.g., cardiovascular and
neurodegenerative disorders, diabetes, cancers, and various manifestations in
coronavirus infections such as COVID-19).
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INTRODUCTION

The interest in new classes of lipid-based anti-inflammatory drugs constantly increases in view of
their critical role in the strategies to inhibit the inflammatory component of the coronavirus SARS-
CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection (Casari et al., 2021; Deng and
Angelova, 2021; Schwarz et al., 2021), modulation of respiratory distress diseases (Mirastschijski
et al., 2020; Zhuo et al., 2021) as well as in cancer and diabetes (Paul et al., 2019), and neuro-
inflammation (Ifuku et al., 2012). Plasmalogens exert anti-inflammatory effects and have been first
described by Feulgen and Voit in 1924 in relation to their characteristic production of aldehydes in
acidic environment (Rapport, 1984). Plasmalogens are an unique type of ether glycerophospholipids
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carrying a vinyl-ether bond at sn-1 position of the glycerol
backbone (Dorninger et al., 2020; Eiriksson et al., 2018) and
typically a very long polyunsaturated fatty acid (PUFA) chain at
sn-2 position (Figure 1). The head group usually comprises
ethanolamine or choline at sn-3 position of glycerol backbone,
which distinguishes plasmalogen phosphatidylethanolamine
(pPE, or PE[P]) and plasmalogen phosphatidylcholine (pPC,
or PC[P]) derivatives respectively (Dorninger et al., 2020). The
levels of pPE often predominate over those of pPC (Paul et al.,
2019). Of note, pPE is abundant in brain, especially in gray matter
and white matter (Naughton and Trewhella, 1984; Lessig and
Fuchs, 2009), whereas pPC is highly enriched in heart and skeletal
muscles (Lessig and Fuchs, 2009; Braverman and Moser, 2012).
Various biological functions have been proposed for
plasmalogens including their protective role against oxidative
damage as well as modulatory role in cell membrane structure
and dynamics (Braverman andMoser, 2012; Almsherqi, 2021). In
addition, plasmalogen deficiency has been reported to be
associated with multiple diseases categorized as chronic
inflammation triggered by oxidative stress (Pham et al., 2021).

Platelet activating factor (PAF), also known as acetyl-glyceryl-
ether-phosphorylcholine, is an ether phosopholipid which is a
potent lipid chemical mediator of inflammation (Demopoulos
et al., 1979). PAFs are a family of endogenous pro-inflammatory
lipids that may trigger many inflammatory and allergic responses
(Palur Ramakrishnan et al., 2017). Noteworthy, plasmalogens can
be the lipid sources for the precursor of PAF in lipid biosynthesis
(Dorninger et al., 2020). However, the relationship between these
two lipid species has been rarely studied in terms of their
metabolic interconversion and reciprocal modulation in
inflammation/anti-inflammation processes. The plasmalogenic
analogs of PAF have been first introduced by Kulikov and
Muzia (1992), referring to a family of molecules with similar
chemical structures to plasmalogen or PAF. Compounds that
inhibit PAF function are referred to as PAF antagonists (anti-
PAF) and they may act as potential anti-inflammatory agents
(Lordan et al., 2019). In this work, we argue and discuss the
potential role of plasmalogenic analogs of PAF as PAF
antagonists (anti-PAF). In our opinion, targeting the PAF

receptor (PAF-R) by plasmalogenic analogs of PAF (anti-PAF)
may provide an alternative strategy in the prevention and therapy
for inflammation-mediated diseases.

SIGNIFICANCE OF PLASMALOGENS AS
BIOACTIVE VINYL-ETHER LIPIDS

Plasmalogens represent approximately one in five phospholipids
in mammalian and human tissues, and they are particularly
abundant in brain, heart, skeletal muscles and immune cells
(Braverman and Moser, 2012). These vinyl-ether bonded lipids
are also richly distributed in food products including fish,
mollusk, livestock and poultry (Yamashita et al., 2016; Wu
et al., 2019), however they have not been reported in plants or
fungi yet (Braverman and Moser, 2012). Of interest, they have a
multistage evolutionary history emphasizing their first
appearance in anaerobic bacteria and absence in most aerobic
bacteria and re-appearance in protozoa and animals (Goldfine,
2010). Plasmalogens also have been found accounting for
21–24 mol % of total phosopholipids in the slime molds
(Physarum polycephalum) (Poulos et al., 1971), belonging to
the class of Myxomycetes (Fiore-Donno et al., 2008).

Figure 1 summarizes a variety of proposed biological
functions for plasmalogens as antioxidants in addition to their
modulatory role in membrane structure and dynamics (Bozelli
et al., 2021). The high susceptibility of the vinyl-ether bond at sn-
1 position to radicals including reactive oxygen species (ROS) and
reactive nitrogen species (RNS) as well as to the traces of acids
supports their important role as a first-line defense system in
biology against oxidative damages (Zhuo et al., 2021; Bozelli et al.,
2021). Previously, Deng and colleagues have proposed that
plasmalogens carrying PUFA chains may promote intracellular
cubic membranes (CM) formation (Deng et al., 2009) with the
implication in virus-induced host CM formation (Deng et al.,
2010; Deng and Angelova, 2021). In addition, PUFA-
plasmalogens may also act as an integrated antioxidant
defense system to provide a protective shelter for nucleic acids
(RNAs) and other biomolecules (Almsherqi et al., 2008; Deng and
Almsherqi, 2015). It has been reported that plasmalogens are
highly concentrated in lipid bilayer microdomains in cellular and
subcellular organelle membranes (Messias et al., 2018). They
naturally participate in multiple cellular processes including
membrane fusion (Zhuo et al., 2021), cholesterol homeostasis
(Honsho et al., 2015), ion transport (Messias et al., 2018) and
immunomodulation (Deng and Angelova, 2021). In lipid
biosynthesis, plasmalogens can be the source of supply for the
precursor of PAF (Dorninger et al., 2020) (Figure 1). The
modulatory role of plasmalogens in membrane dynamics
mainly relies on their preference for the formation of non-
lamellar inverted hexagonal (HII) structures (Lohner, 1996)
and cubic phases (Angelova et al., 2021). Their role in
membrane fusion and fission processes has been suggested
and reviewed (Koivuniemi, 2017; Dean and Lodhi, 2018).
Plasmalogens may also serve as a reservoir of omega-6 and/or
omega-3 PUFAs whose metabolites are important in various cell
signaling pathways (Messias et al., 2018; Dorninger et al., 2020).

FIGURE 1 | General chemical structure of the vinyl-ether bonded
plasmalogen lipid and its proposed biological functions.
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Moreover, plasmalogen has shown its anti-inflammatory effect
both in vitro and in vivo (Sejimo et al., 2018).

The biosynthesis of plasmalogens starts in the subcellular
organelle peroxisome and completed in the endoplasmic
reticulum (ER) (Rangholia et al., 2021). Plasmalogen
deficiency has been reported to be associated with several
human diseases as well as aging (Bozelli et al., 2021; Pham
et al., 2021). Low levels of plasmalogens have been manifested
in Zellweger Syndrome (ZS) (Heymans et al., 1983,1984), and
Rhizomelic Chondrodysplasia Punctata (RCDP) (Huffnagel
et al., 2013; Buchert et al., 2014), both belong to the
peroxisome biogenesis disorders (PBDs) (Wanders and
Waterham, 2006). Reduced levels of plasmalogens have
been found in the brain and serum of patients with
neurodegenerative diseases including Alzheimer’s disease
(AD), Parkinson’s disease (PD), Multiple Sclerosis (MS),
depression and Niemann-Pick type C disease (Schedin
et al., 1997; Dragonas et al., 2009; Wood et al., 2016;
Bozelli et al., 2021; Rangholia et al., 2021). Plasmalogens
deficit is also implicated in other neurological disorders.
For instance, the total level of plasmalogens is reduced by
15–20 % in the plasma of autistic patients (Dorninger et al.,
2017). Similarly, pPE levels are decreased by 15% in the brain
of autism rat model (Thomas et al., 2010). A significant drop
of plasmalogens levels has been reported in the red blood cells
and fibroblasts of schizophrenia patients as well (Thomas
et al., 2010). Plasmalogens deficiency may be a secondary
effect outcome of metabolic and inflammatory disorders
including cancer, diabetes mellitus, various cardiac and
respiratory diseases (Braverman and Moser, 2012; Pham
et al., 2021). Plasmalogen supplementations have been
reported to improve cognition (Hossain et al., 2018) and

inhibit oxidative damage, neuro-inflammation and
apoptosis (Che et al., 2018; Bozelli et al., 2021). Restoring
plasmalogens levels has been achieved by the use of
plasmalogen replacement therapy (Bozelli and Epand,
2021), which turned out to be a successful way to restore
plasmalogen level as well as to improve diseased conditions
via the potential anti-inflammatory property of plasmalogens
(Bozelli et al., 2021).

CHEMICAL ANALOGS OF PLASMALOGEN
AND PAF

The ether-bonded phospholipid PAF has attracted much
attention (Dorninger et al., 2020), similarly to its precursor
vinyl-ether bonded plasmalogen derivatives (Braverman and
Moser, 2012; Pham et al., 2021), due to their importance in
cell signaling, neurodegeneration, and severe coronavirus
COVID-19 disease manifestations (Demopoulos et al., 2020;
Deng and Angelova, 2021).

Figure 2 summarizes the chemical structures of plasmalogens
(pPE and pPC), lyso-plasmalogens (lyso-pPE and lyso-pPC),
PAF and its analogs (1-alkenyl-PAF, alkyl-PC, acyl-PAF and
lyso-PAF). The latter are similar to PAF, with differences as the
vinyl ether bond or the ether bond at sn-1 position, and specific
chemical groups at sn-2 position while PAF includes an alkyl
ether bond. In the following, 1-alkenyl-PAF (PAF-like molecule
with vinyl ether bond at sn-1 position) is referred to as a
plasmalogenic analog of PAF. This designation was first
termed by Kulikov and Muzia (1992) in their study in the
effect of acyl-PAF and vinyl-PAF (1-alkenyl-PAF) on the
PAF-platelet interaction. Thus, the polar lipid molecules

FIGURE 2 | The chemical structures of vinyl ether-bonded plasmalogen lipids as compared to the family of plasmalogen analogs and plasmalogenic analogs of
PAF. The head group of plasmalogen at the sn-3 position of glycerol backbone can be either ethanolamine or choline, designated as pPE or pPC, respectively. The lyso
forms of plasmalogen are labeled as lyso-pPE and lyso-pPC. The chemical structures of plasmalogens (pPE and pPC) and lyso-plasmalogens (lyso-pPE and lyso-pPC),
PAF and its analogs (1-alkenyl-PAF, alkyl-PC, acyl-PAF and lyso-PAF) are all structurally related. The different colors represent the specific chemical structure and
functional group: alkyl groups (ether-bond) at sn-1 position are marked in red color; alkenyl groups (vinyl ether-bond) are marked in orange color; acyl groups (ester-
bond) at sn-2 position are marked in blue (acyl groups are light blue while acetyl groups are dark blue); the lyso form (hydroxyl-bond) are marked with pink color; and the
head groups at sn-3 position are green. R1 represents the alkyl chains. The saturated or unsaturated fatty acyl chains are labeled as R2, which is usually PUFA in
plasmalogens and alkyl-PC, an acetyl group in PAF, acyl-PAF and 1-alkenyl-PAF, or a hydroxyl group in lyso-plasmalogens and lyso-PAF. The head groups of PAF and
plasmalogenic analogs of PAF are often choline type, but can be ethanolamine type for pPE or lyso-pPE. In the upper row of the figure, the molecular structures are
considered as plasmalogen analogs. In the lower row, the molecular structures are more similar to PAF, and therefore termed as plasmalogenic analogs of PAF.
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shown in Figure 2, which are structurally similar to plasmalogen
or PAF, are considered as plasmalogen analogs or plasmalogenic
analogs of PAF, respectively.

Figure 3 depicts the interconversion pathway between
plasmalogen and PAF. Plasmalogens may supply as lipid
source of precursors for the generation of eicosanoids and
PAF (Toyoshima et al., 1995). Evidence shows that
interconversion beween pPC and pPE can be through the
head group transfer (Nagan and Zoeller, 2001) (reaction 1 and
10). Lyso-pPE can be generated through the hydrolytic cleavage
of pPE by phospholipase A2 (PLA2, EC 3.1.1.4, reaction 2, red
arrow). The lyso-pPE can be reacylated by a coenzyme
A-independent transacylase (CoA-IT, reaction 3, red arrow)
(Uemura et al., 1991), and the donor in reaction 3 is alkyl-PC.
The latter reaction may result in the production of lyso-PAF that
can be further converted to PAF by acetyl-CoA: lyso-PAF
acetyltransferase (lyso-PAF AcT, EC 2.3.1.67, reaction 4, red
arrow) (Shindou et al., 2007; Goracci et al., 2009). The
remodeling pathway of PAF biosynthesis is considered to be
responsible for the pro-inflammatory behavior of PAF in
response to acute and/or chronic inflammation (Lordan et al.,
2019).

PAF can be converted to pPE via a series of enzymatic
reactions (Frenkel and Johnston, 1992; Lee et al., 1992)
(Figure 3). In vivo pPE can be converted into pPC through
the head group transfer (reaction 10, blue arrow in Figure 3)
(Nagan and Zoeller, 2001). PAF may lose its acetyl group by PAF
acetylhydrolase (PAF-AH, EC 3.1.1.47, reaction 5, blue arrow) to
form lyso-PAF, which can be further converted to alkyl-PC by the
enzymatic action of lysophosphatidylcholine acyltransferase
(LPCAT, EC 2.3.1.23, reaction 6, blue arrow) (Snyder, 1995;
Shindou et al., 2007). The 1-alkyl-2-acyl-glycerol is formed by
the hydrolytic cleavage of alkyl-PC at the sn-3 position by
phospholipase C (PLC, EC 3.1.4.3, reaction 7, blue arrow),
resulting in alkyl-PE geneartion by a ethanolamine-
phosphotransferase (E-PT, EC 2.7.8.1, reaction 8, blue arrow).
The alkyl-PE can be further converted to pPE with Δ1 desaturase
(EC 1.14.19.77, reaction 9, blue arrow) (Maeba et al., 2018). Both
direction of chemical reaction processes, namely pPC to pPE,

lyso-PAF to alkyl-PC and PAF to lyso-PAF, are reversible
(Figure 3). The relation between PAF and plasmalogen is
most likely interconvertible and therefore several potential
analogs of PAF and plasmalogen might be generated as shown
in Figure 3.

SIGNIFICANCE OF PAF AS A BIOACTIVE
ALKYL-ETHER LIPID

PAF is a pro-inflammatory lipid mediator with well-known
messenger functions (Damiani and Ullrich, 2016).
Compounds, which inactivate PAF-R, can act as PAF-R
inhibitors. Demopoulos and colleagues have discovered the
chemical structure of PAF and have synthesized it for
confirmation using plasmalogen with a semi-synthetic method,
and the alkenyl ether double bond at the sn-1 position is
chemically converted into ether bond through catalytic
hydrogenation (Demopoulos et al., 1979). Structurally, PAF is
characterized by an alkyl ether linkage at sn-1 position, acetyl
groups at sn-2 position, and a phosphocholine group at sn-3
position of the glycerol backbone (Demopoulos et al., 1979)
(Figure 2). At variance, the potential plasmalogen analogs of
PAF have a vinyl-ether bond at sn-1 position and a PUFA chain at
sn-2 position (Figure 2). PAF analog per se has been commonly
referred to as phospholipids similar in chemical or spatial
structure as PAF. Notably, these PAF analogs may compete
for binding to the PAF-R and are collectively known as PAF-
like lipids or PAF-agonists (Lordan et al., 2019; Tsoupras et al.,
2018) (see Figure 2). PAF is produced by a plethora of blood and
immune cells including platelets, neutrophils, monocytes/
macrophages, lymphocytes, basophiles, eosinophils and mast
cells (Papakonstantinou et al., 2017). They can further act
back to stimulate the cells of its origin via autocrine action
(Demopoulos et al., 2020).

The pathophysiological role of PAF is primarily determined by
its produced amount via lipid biosynthesis and by the extent of its
enzymatic regulation. There are two enzymes that regulate the
PAF activity (Figure 3), namely acetyl transferase (PAF-AT) and
acetyl hydrolase (PAF-AH). The latter is a subtype of the PLA2

enzyme (Palur Ramakrishnan et al., 2017; Papakonstantinou
et al., 2017). The homeostatic level of PAF present in plasma
and biological tissues, is regulated by the balance between its
anabolic and catabolic pathways (Tsoupras et al., 2018). There are
two synthetic pathways of PAF, namely “de novo” and “re-
modeling” pathways (Liu et al., 2017; Tsoupras et al., 2018;
Rangholia et al., 2021). The latter is considered as the main
pathway of PAF biosynthesis in response to inflammatory
stimuli.

PAF may participate in multiple cellular processes, including
inflammation, apoptosis, reproduction, angiogenesis, and
glycogen degradation in addition to its physiological roles in
brain function, lung maturation, regulation of blood circulation,
blood pressure and coagulation (Tsoupras et al., 2018; Lordan
et al., 2019). Under the diseased conditions, the excess PAF may
act as a potent pro-inflammatory mediator, involved in a variety
of chronic inflammatory diseases, including cardiovascular

FIGURE 3 | Interconversion pathway between plasmalogen and PAF.
pPC can interconvert with pPE via head group transfer (reaction 1 and 10),
Plasmalogen PE (pPE) is hydrolyzed by PLA2 to form lyso-pPE (reaction 2).
The lyso-PE can be further reacylated by CoA-IT to form lyso-PAF
(reaction 3) with the presence of alkyl-PC, and is subsequently converted to
PAF by lyso-PAF AcT (reaction 4). PAF can be converted to pPE through the
several steps. Losing its acetyl group by PAF-AH (reaction 5) forms lyso-PAF,
which can be further converted to alkyl-PC by LPCAT (reaction 6). The alkyl-
PC might be hydrolyzed by PLC to form 1-alkyl-2-acyl-glycerol (reaction 7),
which then is converted to alkyl-PE by E-PT (reaction 8), and alkyl-PE is further
converted to pPE with Δ1 desaturase (reaction 9).
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diseases, atherosclerosis, diabetes, neurodegenerative disorders and
cancers. Moreover, several recent reports have suggested the
implication of PAF in viral infections such as HIV
(Papakonstantinou et al., 2017; Lordan et al., 2019) and even
COVID-19 pathogenesis (Demopoulos et al., 2020; Klein et al., 2021).

PAF/ANTI-PAF SIGNALING CASCADES IN
INFLAMMATORY RESPONSES

Human and guinea pig PAFRs consist of a single polypeptide
chain composed of 342 amino acids with seven transmembrane
domains, with the characteristics of G-protein coupled receptors
(GPCRs) superfamily (Chaudhary and Kim, 2021; Ishii et al.,
2002). GPCRs are the largest and most diverse group of
membrane receptors in the eukaryotes. These cell surface
receptors act like sensors for receiving the information in the
form of light energy, peptides, proteins, lipids, and sugars (Ritter
and Hall, 2009), and they are the molecular targets for nearly half
of the therapeutic drugs prescribed worldwide (Bridges and
Lindsley, 2008). Approximately 1,000 members of the GPCRs
family exhibit a conserved 7-transmembrane domain topology
and can be divided into 3 main subfamilies, termed A, B and C,
based on sequence similarity. The canonical view of how GPCRs
may modulate cellular physiology is that the binding of ligands
(such as hormones, neurotransmitters or sensory stimuli) induces
the conformational changes of transmembrane and intracellular
domains of the receptor, further allowing interactions with
heterotrimeric G proteins (Ritter and Hall, 2009). Up to July
2021, there are total 99 GPCR structures deposited in the Protein
Data Bank (PDB: www.pdbus.org), and most of them were
determined by the cryo-EM method (García-Nafría and Tate,
2021). After binding to PAF-R, PAF may activate intracellular
signaling pathways, including NF-κB and MAPK pathways
(Lordan et al., 2019). These important inflammatory signaling
pathways are initiated in macrophages (Jeong et al., 2016). They
may further trigger the expression and release of a wide range of
PAF-mediated inflammatory factors such as tumor necrosis
factor (TNF)-α, interleukin (IL)-6, and IL-1β. All together they
may orchestrate the inflammatory responses (Jeong et al., 2016).
Particularly, NF-κB pathway is one of the key transcriptional
pathways in PAF-mediated inflammatory response associated
with the regulation of pro-inflammatory factors expression
(Jeong et al., 2016). It has been demonstrated that both
endogenous and exogenous anti-PAF (PAF antagonists) may
inhibit the PAF activities (Lordan et al., 2019). The absence of
circulating anti-PAF in the blood may result in an increase of the
PAF activity and further worsen the situations of inflammation.
The PAF antagonists may halt or diminish the expressions of pro-
inflammatory mediators at different levels (Lordan et al., 2019).

There is a vast number of natural and synthetic anti-PAF
compounds known to inhibit PAF activity and act as potential
anti-inflammatory agents. The anti-PAF compounds of synthetic
origin, such as statin drugs (Tsantila et al., 2011), thiazolium
derivative (CV-3988), thienodiazepine derivatives such as
brotizolam, WEB 2086 (apafant), and WEB 2170 (bepafant) or
the natural origin, such as Ginkgolides (Papakonstantinou et al.,

2017), may competitively or non-competitively inhibit PAF
activity through binding to the active site of PAF-R on the cell
membrane, and therefore, directly inhibit PAF signaling cascades
(Papakonstantinou et al., 2017). The anti-PAF may exert anti-
inflammatory effects by impeding the binding of PAF to PAF-R.
This may result in the down-regulation of pro-inflammatory
mediators and cytokine production via inhibition of NF-κB
and/or MAPK pathways (Singh et al., 2013; Jeong et al., 2016;
Zhaocheng et al., 2016; Li et al., 2017; Sarkar et al., 2020). It has
been reported that other PAF agonists may also indirectly affect
the PAF/anti-PAF signaling cascades by affecting the upstream
and/or the downstream of nearby microenvironment of the PAF-
R in the cell membrane or of other related membrane receptors
(Tsoupras et al., 2018).

PLASMALOGENIC ANALOGS OF PAF AS
POTENTIAL ANTI-PAF AND
ANTI-INFLAMMATION AGENTS
Oxidation of PC phospholipids (including pPC) may generate
a series of lyso-phospholipids. Lyso-pPC carrying PUFA,
usually arachidonic acid (AA), can be further fragmented
to shorter-chain-length fatty acid (McIntyre et al., 1999).
Some of these oxidized phospholipids carrying very short
sn-2 residues (among other structural features) make them
recognizable by PAF-R receptor (Zimmerman et al., 2002).
There is a strong preference for PAF-R to bind PAF-like lipid
molecules with ether bond at sn-1 position, acetyl residue at
sn-2 position, and choline head group at sn-3 position
(McIntyre et al., 1999). Plasmalogens, especially pPC (1-
alkenyl PC), together with its hydrolysated form of lyso-
pPC, are important polar phospholipids with similar spatial
structure to PAF. The structural match between pPC/lyso-
pPC and PAF may determine the high affinity to the same
binding site at PAF-R (Snyder, 1990). Either pPC or lyso-pPC
is potentially as a PAF analog that may compete with PAF for
binding to PAF-R.

In this way, plasmalogenic analogs may effectively inhibit
PAF-induced platelet aggregation through competitive binding
to the receptor PAF-R (McManus et al., 1993; Smaragdi
Antonopoulou and Demopoulos, 2008). It has been reported
that 1-alkenyl-PAF, a plasmalogenic analog of PAF (similar to
pPC or lyso-pPC), exhibited high anti-inflammatory activity in
two inflammatory models of rat paw edema (Kulikov and Muzya,
2002). The authors have examined the mechanism of interaction
of the plasmalogenic analogs of PAF with human platelets
(Kulikov and Muzya, 1999). Of interest, 1-alkenyl-PAF has
been established to act as an inhibitor of PAF-induced platelet
aggregation without the influence on ADP- or thrombin-induced
platelet aggregation (Kulikov and Muzya, 1999; Lordan et al.,
2017). The acyl-PAF has been reported to act as potential anti-
inflammatory molecules to suppress the action of PAF (Chaithra
et al., 2018), Therefore, we speculate plasmalogens may be also
work as a potential anti-PAF lipid compound.

Here we emphasize that plasmalogens and some
plasmalogenic analogs of PAF (Figure 2) may act as novel
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PAF antagonists, which play an important role in modulating
PAF/anti-PAF signaling cascades with implication in
inflammation and inflammation-mediated disease processes
(Kulikov and Muzya, 1999; Lordan et al., 2017). More about
the anti-PAF effect of plasmalogen together with their analogs
may inspire more future studies to approve or disapprove the
hypothesis.

Plasmalogen has been demonstrated to exert an anti-
inflammatory activity (Sejimo et al., 2018; Ali et al., 2019), to
ameliorate neurotoxicity and inhibit neuro-inflammation and
neuronal apoptosis (Yamashita et al., 2016; Che et al., 2018).
A recent report showed that the intake of pPE with vinyl ether
linkages at sn-1 and omega-3 PUFA at sn-2 position efficiently
inhibited the downstream inflammatory and apoptotic signaling
cascades in a human colon (Nguma et al., 2021). The intracellular
anti-apoptotic effect of pPE has been achieved through
suppressing the generation of pro-inflammatory cytokines and
pro-apoptotic factors (Nguma et al., 2021).

PUFAs carried by plasmalogens at sn-2 position, especially
omega-3 long-chain PUFAs, are good ligands for peroxisome
proliferator-activated receptors (PPARs). These PUFAs may
effectively reduce inflammatory responses through activating
the PPARs proteins (Deplanque et al., 2003; Farooqui et al.,
2007; Korbecki et al., 2019). Moreover, PUFAs can easily be
oxidized to further activate PPARs (Echeverría et al., 2016) and
form a heterodimer with the 9-cis retinoic acid receptor (RXR)
(D’Angelo et al., 2018) and modulate the transcription of the
target genes. In brief, plasmalogens carrying omega-3 long-chain

PUFAs may provide anti-inflammatory activity through: 1)
inhibiting the expression of transcription factors (e.g., NF-κB),
intracellular signaling proteins (e.g., MAP kinases) and
inflammatory mediators (Carvalho et al., 2021); 2) reducing
the level of reactive oxygen species (ROS) by upregulation of
antioxidant enzyme expression (Carvalho et al., 2021); and 3)
inhibiting microglial activation and generation of pro-
inflammatory factors (Yan et al., 2003).

Plasmalogen and cholesterol are both enriched in
microdomains of cell membranes. Thus, there may exist a
metabolic reciprocity between them (Paul et al., 2019).
Plasmalogens are proved to play important roles at multiple
steps in cholesterol homeostasis via regulation of membrane
cholesterol esterification and transportation (Mandel et al.,
1998; Munn et al., 2003; Mankidy et al., 2010). The
esterification of cholesterol is also dependent on the amount
of pPE present in the membranes (Mankidy et al., 2010). A
plasmalogen-deficient cell has lower esterified cholesterol and
lower rate of HDL-mediated cholesterol efflux compared to
normal wild-type cell (Mandel et al., 1998) in addition to the
reduced synthesis of cholesterol (Mankidy et al., 2010).
Nevertheless, these impairments are repaired by restoring the
level of plasmalogens (Honsho and Fujiki, 2017), suggesting that
cholesterol homeostasis is tightly regulated by plasmalogen
metabolism.

Statin drugs can lower the biosynthesis of both cholesterol and
farnesol (Honsho and Fujiki, 2017), the latter being involved in PAF/
anti-PAF signaling cascades (Stancu and Sima, 2001). Statins have

FIGURE 4 | Suggested modes of action of plasmalogen, plasmalogen analogs and plasmalogenic analogs of PAF as PAF antagonists (i.e., anti-PAF). Plasmalogen
and its analogs, as well as plasmalogenic analogs of PAF, may compete with the other PAF lipid family (PAF and PAF-like lipids) to bind to the membrane receptor, PAF-
R. Consequently, they may modulate the PAF/anti-PAF signaling pathways, such as NF-κB and MAPK, and further inhibit the expression of transcription factors and
genes. The potential PAF antagonists (anti-PAF) may modulate the downstream inflammation-mediated pathways and other cellular responses.
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pleiotropic functions beyond cholesterol reduction, such as
improvement of endothelial function, thrombogenesis reduction,
and protection against oxidative stress and inflammation (Harada
et al., 2015). In addition, statins may exhibit anti-PAF activity and
suppress PAF biosynthesis via the “de novo” pathway in vivo
(Tsantila et al., 2011). Hence, plasmalogens have been suggested
as an alternative of statin drugs to reduce cholesterol levels (Mankidy
et al., 2010; Deng and Angelova, 2021). Of interest, PUFA-pPE
precursors are approximately twice as effective as statins at lowering
cholesterol levels (Mankidy et al., 2010). Both outcomes of lowering
cholesterol and anti-inflammation can be achieved by either
plasmalogens or statins. In addition, plasmalogen is a natural
product that may avoid the side effects of statin drugs, including
hepatotoxicity and increased risk of diabetes mellitus (Sirtori, 2014).
Thus, plasmalogens are potentially safe and efficient candidates as
PAF antagonists (anti-PAF) compared to statin drugs.

CONCLUSION

Plasmalogens, especially pPC, lyso-pPC and other plasmalogenic
analogs of PAF (Figure 2), are characterized by the similar
chemical structures as PAF, and may be considered as natural
PAF analogs acting as anti-PAF compounds (PAF antagonists).
This structural analogy is suggested to be beneficial for
modulation of inflammatory/anti-inflammatory responses.
Plasmalogens and plasmalogenic analogs of PAF may compete
with PAF or PAF-like molecules (PAF agonists) for binding to
the PAF-R (Figure 4). As a consequence, they may modulate
PAF/anti-PAF signaling cascades and further re-balance PAF
levels in various inflammation-mediated disease processes.
Plasmalogens, with a vinyl-ether bond at sn-1 position and PUFA
chain at sn-2 position, reveal per se their remarkable roles as
antioxidants and anti-inflammatory agents as well as regulators of
cholesterol homeostasis. Plasmalogen, plasmalogen analogs and
plasmalogenic analogs of PAF may thus offer novel therapeutic
developments as potential anti-PAF compounds for the

prevention and treatment of a variety of inflammation-mediated
diseases including diabetes, cancers, cardiovascular and
neurodegenerative disorders in addition to the expansive
manifestations of the COVID-19 pathology (Demopoulos et al.,
2020). In addition, the prevention and inhibition of neuro-
inflammation is of particular interest for slowing down neuro-
degeneration.

In conclusion, we propose that plasmalogens supplementation
together with anti-PAF enriched food, such as the Mediterranean
diet (Tsoupras et al., 2018; Detopoulou et al., 2021), may provide
an alternative strategy (Bozelli and Epand, 2021) in inflammatory
disease prevention and treatment through rebalancing of the
inflammatory mediators and radicals, consequently return or
regain system homeostasis.
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