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Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as
cholesteryl esters and triacylglycerols. They have recently emerged as key stress response
components in many different cell types. Lipid droplets in the nervous system are mostly
observed in vivo in glia, ependymal cells and microglia. They tend to become more
numerous in these cell types and can also form in neurons as a consequence of ageing or
stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a
characteristic feature of several neurodegenerative diseases. In this minireview, we take a
cell-type perspective on recent advances in our understanding of lipid droplet metabolism
in glia, neurons and neural stem cells during health and disease. We highlight that a given
lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial
or harmful to the functions of the nervous system depending upon cellular context. The
mechanistic understanding of context-dependent lipid droplet functions in the nervous
system is progressing apace, aided by new technologies for probing the lipid droplet
proteome and lipidome with single-cell type precision.
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INTRODUCTION

Lipid droplets (LDs) are intracellular organelles with a core of neutral lipids, such as triacylglycerols
(TAGs) and cholesteryl esters (CEs), surrounded by a monolayer of charged phospholipids and
proteins [reviewed in detail in (Walther and Farese, 2012; Wilfling et al., 2014; Walther et al., 2017;
Olzmann and Carvalho, 2019)]. In brief, LDs bud from the endoplasmic reticulum (ER) and
exchange lipids via direct contacts with several intracellular organelles including the mitochondria,
ER, nucleus, peroxisomes and lysosomes [reviewed in detail in (Goodman, 2008; Gao and Goodman,
2015; Barbosa and Siniossoglou, 2017; Schuldiner and Bohnert, 2017; Geltinger et al., 2020; Herker
et al., 2021; Thiam and Ikonen, 2021; Rakotonirina-Ricquebourg et al., 2022)]. LDs play a well-
known role in adipocyte energy storage but are also implicated in a diverse range of other processes
(Welte and Gould, 2017; Beller et al., 2020). For example, LDs can be induced in a wide range of
different cell types in response to metabolic stresses such as excess dietary fat, starvation, hypoxia,
and redox imbalance (Welte and Gould, 2017; Henne et al., 2018; de la Rosa Rodriguez and Kersten,
2020; Geltinger et al., 2020). LD accumulation in non-adipocyte cells is a hallmark of pathologies
where there is lipotoxicity, including non-alcoholic fatty liver disease, obesity-related and diabetic
kidney disease, as well as several cancers (Scorletti and Carr, 2022; Gluchowski et al., 2017; Opazo-
Ríos et al., 2020; D’Agati et al., 2016; Krahmer et al., 2013; Petan, 2020; Nagarajan et al., 2021). In
light of this, drugs targeting the synthesis of TAG, a major LD cargo, or other aspects of lipid
metabolism are thought to provide useful therapeutic strategies for several diseases (Yoon et al.,
2021).
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During LD biogenesis (Figure 1A), the synthesis of TAGs and
CEs takes place within the phospholipid bilayer of the ER
[reviewed in detail in (Walther et al., 2017; Olzmann and
Carvalho, 2019; Heier and Kühnlein, 2018)]. TAGs are
produced from fatty acids by four successive enzyme reactions
that result in the esterification of three fatty acids to a glycerol
backbone. The final step of TAG synthesis is catalyzed by
diacylglycerol acyl transferases (DGAT1 and DGAT2). CEs are

synthesized by esterification of fatty acids with cholesterol, a
reaction catalyzed by acyl-CoA cholesterol acyltransferase
(ACAT). TAGs and CEs tend to concentrate away from
charged phospholipids, forming a neutral lipid lens between
the ER membrane leaflets. Under the control of multiple ER-
resident proteins such as Seipin, which forms oligomeric rings in
the ER, neutral lipids are channelled into the growing LD core
(Thiam and Ikonen, 2021). When new LDs form and bud off

FIGURE 1 | Lipid droplet metabolism and mitochondrial regulation. (A) During lipid droplet (LD) biogenesis, triacylglycerols (TAG) and cholesterol esters (CEs) are
synthesized in the endoplasmic reticulum (ER). TAGs are generated from unsaturated and saturated fatty acids (uFAs and sFAs respectively) and glycerol-3-phosphate
via four sequential enzymatic reactions involving glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT), phosphatidate
phosphatase 1 (PAP1), and diacylglycerol acyltransferase 1 (DGAT1). CEs are generated by acyl-CoA cholesterol acyltransferase (ACAT), which esterifies FAs to
cholesterol (Chol). ER-resident enzyme Seipin controls the channelling of newly synthesized neutral lipids into the growing LD core. TAG and CE accumulate between the
two membrane leaflets of the ER bilayer, forming a nascent lipid lens that buds off as a LD. The LD surface is a phospholipid monolayer coated with a specific set of
proteins including perilipins (PLIN), which maintain structure and regulate lipolysis, as well as adipocyte triglyceride lipase (ATGL), hormone sensitive lipase (HSL) and
monoacylglycerol lipase (MAGL), which sequentially hydrolyze TAG to liberate free FAs via neutral lipolysis. During lipophagy, lysosomal acid lipases (LALs) hydrolyze
TAG in the lysosome via acid lipolysis after phagophore engulfment involving microtubule-associated protein light chain 3 (LC3). (B) LDs can protect against lipotoxicity
and high reactive oxygen species (ROS) via multiple non-mutually exclusive mechanisms. LDs buffer cytoplasmic free FA levels and generate lipid ligands/signals that
stimulate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα), a partner of PPARγ-Coactivator-1α (PGC1α), either via direct binding or indirectly
via interaction with the sirtuin 1 (SIRT1) deacetylase. SIRT1 deacetylase removes an acetyl group (Ac) and activates PGC1α allowing it to partner with PPARα to promote
the transcription of target genes involved in mitochondrial biogenesis and function, including Transcription factor A mitochondrial (TFAM), Transcription factor B2
mitochondrial (TFB2M), and Nuclear respiratory factor 1 (NRF-1). LDs also efficiently deliver FAs to mitochondria, where carnitine palmitoyltransferase (CPT1), converts
them into acylcarnitines for fatty acid oxidation (FAO) to produce adenosine triphosphate (ATP), via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS), and also ketone bodies (ketogenesis). In addition, the environment of the LD core may minimize the potentially toxic effects of oxidized polyunsaturated FAs
by protecting against lipid peroxidation or by sequestering already peroxidated lipids.
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from the ER they become coated with a unique set of proteins, the
LD proteome. This includes members of the Perilipin family that
function to maintain LD integrity and to regulate LD lipolysis
(Kimmel and Sztalryd, 2016). The catabolism of neutral lipids
stored in the LD core is achieved by two major mechanisms,
lipolysis and lipophagy (Figure 1A). During lipolysis, TAG
lipases localized at the LD surface, such as Adipose
Triglyceride Lipase (ATGL), liberate free fatty acids and
diacylglycerol (Grabner et al., 2021). Diacylglycerol can be
further hydrolyzed to produce additional free fatty acids by
the sequential action of Hormone Sensitive Lipase (HSL) and
Monoacylglycerol Lipase (MAGL). During lipophagy, neutral
lipids are degraded by a selective form of autophagy in which
LDs are engulfed by autophagosomes, which then fuse with acidic
lysosomes so that TAGs and CEs can then be degraded by the
lysosomal acidic lipases (Singh et al., 2009; Martinez-Lopez and
Singh, 2015; Haidar et al., 2021).

In the mammalian brain, lipid metabolism is known to be
highly cell-type specific (Fitzner et al., 2020). LDs have been
reported in non-pathological in vivo contexts to localize mostly to
ependymal cells (ependymocytes) and microglia (Lucken-
Ardjomande Häsler et al., 2014; Hamilton et al., 2015;
Shimabukuro et al., 2016; Hofmann et al., 2017; Fitzner et al.,
2020; Marschallinger et al., 2020; Chausse et al., 2021; Loving
et al., 2021; Ramosaj et al., 2021; Xu et al., 2021). LDs can also
form in astrocytes, oligodendrocytes and pericytes of the
neurovasculature but are predominantly observed in vivo in
these mammalian glial subtypes during stress or pathological
conditions (Shimabukuro et al., 2016; Farmer et al., 2020; Lee
et al., 2021; Ralhan et al., 2021).

Stresses and Diseases That Induce Lipid
Droplets in the Nervous System
From as far back as Alois Alzheimer’s 1907 description of glial
“adipose saccules”, numerous correlations have been made
between LD accumulation in the brain and neurodegenerative
diseases such as amyotrophic lateral sclerosis (ALS),
Huntington’s disease, Parkinson’s disease and Alzheimer’s
disease. The links between lipid metabolism, LDs and these
neurodegenerative diseases have been discussed in detail in a
number of recent reviews (Hamilton and Fernandes, 2018;
Pennetta and Welte, 2018; Farmer et al., 2020; Haidar et al.,
2021; Tadepalle and Rugarli, 2021; Teixeira et al., 2021). For some
hereditary neurodegenerative conditions, causal links have been
made to mutations in genes encoding proteins regulating LD
biogenesis or turnover. For example, in the case of ALS caused by
mutations in human Vesicle-Associated Membrane Protein
(VAMP)-associated protein B (hVapB), combined human and
Drosophila analyses implicate defective LD biogenesis as a
contributory factor (Sanhueza et al., 2015; Pennetta and Welte,
2018; Farmer et al., 2020). Dominant mutations in an ER protein
that regulates LD assembly, Seipin, can lead to seipinopathies
including some forms of motor neuron disease (Windpassinger
et al., 2004; Ito and Suzuki, 2009; Guo et al., 2013; Tadepalle and
Rugarli, 2021). Related to this, the ER shaping factor Receptor
Expression-Enhancing Protein 1 (REEP1) is required for forming

appropriate numbers of LDs in the mouse brain and dominant
mutations in this protein are associated with human hereditary
spastic paraplegia (Züchner et al., 2006; Renvoisé et al., 2016).
Furthermore, loss-of-function mutations in Sorting nexin 14
(Snx14), an ER-LD tethering protein, are associated with a
form of spinocerebellar ataxia called SCAR20 (Datta et al.,
2019; Datta et al., 2020). In the case of LD lipolysis, recessive
mutations in a brain TAG lipase (DDHD Domain-Containing 2
(DDHD2)), which hydrolyzes LD core lipids, underlie a form of
complex hereditary spastic paraplegia (Schuurs-Hoeijmakers
et al., 2012; Inloes et al., 2018). Additionally, mutations in
Huntingtin (Htt), a scaffold protein connecting the selective
autophagy receptor p62 to LD cargo disrupt LD
macroautophagy (lipophagy) and lead to Huntington’s disease
(Rui et al., 2015). For many other neurodegenerative diseases, it is
clear that lipid metabolism is perturbed but direct links between
specific LD components and pathologies have not yet been made.

Many different stresses are known to induce LDs in the
mammalian nervous system. In Schwann cells of the
peripheral nervous system (PNS), infection by Mycobacterium
leprae leads to myelin breakdown and Peroxisome Proliferator-
Activated Receptor gamma (PPARγ)-dependent induction of
LDs (Mattos et al., 2011; Díaz Acosta et al., 2018; Mietto
et al., 2020). In the adult central nervous system (CNS),
microglia accumulate LDs in response to innate inflammation,
dietary high fat or low glucose, neurodegeneration, neuronal
excitotoxicity or injury (Tamosaityte et al., 2016; Churchward
et al., 2018; Chali et al., 2019; Ogrodnik et al., 2019; Raas et al.,
2019; Marschallinger et al., 2020; Claes et al., 2021; Gouna et al.,
2021; Zhuang et al., 2022). Microglia also accumulate LDs during
ageing in the mouse and human brain, and this is associated with
defective phagocytosis and a proinflammatory cell state
(Marschallinger et al., 2020). Glial-like ependymal cells of the
vertebrate CNS can also accumulate LDs in response to injury or a
high fat diet (Enos et al., 2019; Maya-Monteiro et al., 2021).
Moreover, astrocytes display increased LDs in vivo in response to
a high fat diet and ex vivo/in vitro upon many different stresses
including nutrient deprivation, hypoxia, excess fatty acids, γ-
secretase inhibition, adrenergic receptor stimulation and
neuronal excitotoxicity (Kwon et al., 2017; Ioannou et al.,
2019; Ogrodnik et al., 2019; Gutierrez et al., 2020; Smolič
et al., 2021). In the case of a high-fat diet, astrocytes of the
hypothalamus that accumulate LDs also express
proinflammatory cytokines and may therefore contribute to
obesity-induced hypothalamic inflammation (Kwon et al., 2017).

In the invertebrate genetic model organism Drosophila, stress-
induced LDs have been well characterized in both the developing
and adult nervous systems (Bailey et al., 2015; Liu et al., 2015). In
the developing CNS, LDs form predominantly in cortex and
subperineurial glia, which constitute the niche for multipotent
self-renewing neural stem cells called neuroblasts, and they
increase following exposure to hypoxia or oxidant chemicals
(Bailey et al., 2015; Kis et al., 2015; Dong et al., 2021). At
adult stages, LDs are also present in glia of the CNS and
increase during hypoxia (Smolič et al., 2021). In the adult
retina, part of the PNS, several different genetic models of
neurodegeneration lead to an increase in LDs in glial-like
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retinal pigment cells (RPCs) (Liu et al., 2015; Liu et al., 2017;
Cabirol-Pol et al., 2018; Van Den Brink et al., 2018; Yeshaw et al.,
2019; Girard et al., 2020; Muliyil et al., 2020). Sparse LDs have
also been reported inDrosophilaCNS and photoreceptor neurons
and, in the latter, it is known that they increase in abundance in
several neurodegeneration models (Van Den Brink et al., 2018;
Wat et al., 2020; Girard et al., 2021). In both the mammalian and
Drosophila nervous systems, a growing body of evidence indicates
that a common feature of many of the stresses and pathologies
that induce glial LDs is redox imbalance, which is associated with
high levels of reactive oxygen species (ROS) (Bailey et al., 2015;
Liu et al., 2015; Liu et al., 2017; Ioannou et al., 2019; Cheng et al.,
2020; Muliyil et al., 2020).

Roles of Lipid Droplets in Glia
LDs perform a myriad of context-dependent cellular functions
beyond energy homeostasis, including the storage of vitamin and
signalling lipid precursors, the suppression of ER stress and
lipotoxicity, as well as the maturation, storage, turnover and
quality control of proteins [reviewed in (Welte and Gould,
2017; Roberts and Olzmann, 2020)]. In glia, the accumulation
of abundant LDs tends to correlate with the presence of stress and
disease (Section 2.1). In principle, therefore, LDs could either be
a driver or a mitigator (albeit not a 100% efficient one) of cellular
dysfunction. Consistent with this, beneficial and harmful roles
have been ascribed to stress-induced glial LDs, depending upon
biological context. In addition to contextual differences, it is
challenging to assign specific functions to LDs as few, if any,
genetic or pharmacological manipulations are completely specific
for this organelle and interpreting phenotypes is not always
straightforward. Nevertheless, some of the more specific
perturbations of glial LDs have targeted the enzymes
catalyzing the biosynthesis and lipolysis of their neutral lipid
cargos—CEs and TAGs.

In the developing mammalian brain, cholesterol is abundant
and the majority of it is synthesized in oligodendrocytes and
utilized in myelination (Dietschy, 2009). In the adult brain,
however, most cholesterol is synthesized in astrocytes and it
can be transferred to neurons in order to maintain axonal
integrity (Dietschy, 2009; Mou et al., 2020; Staurenghi et al.,
2021). In mouse models of Alzheimer’s disease, brain CEs—as
well as TAGs—are elevated and LDs accumulate in forebrain
ependymal cells of the neural stem cell niche (Chan et al., 2012;
Yang et al., 2014; Hamilton et al., 2015). LDs in microglia are also
implicated as a recent study showed that a genetic risk factor for
Alzheimer’s, the apolipoprotein E4 (ApoE4) allele, increases their
abundance and also alters microglial properties such as
phagocytosis (Machlovi et al., 2022). In several Alzheimer’s
models, the enzyme synthesizing the CE cargo of LDs—ACAT
also known as sterol O-acyltransferase (SOAT)—has been
blocked using genetic or pharmacological methods. In the
context of human mutant amyloid precursor protein (APP)
and triple-transgenic mouse models, ACAT inhibition is
beneficial as it substantially reduces APP processing and the
production of extracellular amyloid plaques (Hutter-Paier et al.,
2004; Shibuya et al., 2014). Brain CEs can also be lowered
indirectly by converting cholesterol to 24 (S)-

hydroxycholesterol, which can then be secreted from cells and
eliminated via the blood brain barrier (Moutinho et al., 2016).
Consistent with this, a chemical activator of cholesterol 24-
hydroxylase (CYP46A1) increased 24-hydroxycholesterol
secretion from APP mutant iPSC-derived neurons (but not
astrocytes) lowering CEs and increasing proteosomal
degradation of phosphorylated Tau, a hallmark of Alzheimer’s
Disease (van der Kant et al., 2019). Although it is not yet clear
how lowering CEs decreases APP processing and phospho-Tau
degradation, altered trafficking and autophagy in microglia and
neurons rather than in ependymal cells are likely to be relevant
(Puglielli et al., 2001; Shibuya et al., 2014; Shibuya et al., 2015; van
der Kant et al., 2019). In summary, the ACAT and CYP46A1
manipulations suggest that biosynthesis of the CE cargo of LDs
can be harmful, contributing to the pathogenesis of Alzheimer’s
disease.

Several recent Drosophila and mammalian studies have
blocked glial LD accumulation by targeting TAG metabolism,
using DGAT1 inhibition or ATGL overexpression (Bailey et al.,
2015; Liu et al., 2015; Van Den Brink et al., 2018; Nakajima et al.,
2019; Muliyil et al., 2020; Smolič et al., 2021). Comparisons
between these studies provide some useful insights into the roles
of glial LDs. The two Drosophila studies using DGAT1 (Mdy)
knockdown both reported that this method of blocking glial LDs
leads to non-cell autonomous cellular dysfunction: in one
context late-onset adult photoreceptor degeneration and, in
the other, underproliferation of neural stem cells and
increased ROS during hypoxia (Bailey et al., 2015; Van Den
Brink et al., 2018). Similarly, in cultured mammalian astrocytes,
DGAT1 and/or DGAT2 inhibitors were used to block LDs. This
resulted in a concomitant decrease in astrocyte cell number,
suggesting that LD biosynthesis is important for glial
proliferation and/or cell survival (Nakajima et al., 2019;
Smolič et al., 2021). The outcomes of all four Drosophila and
mammalian studies that inhibited DGAT1/2 are therefore
consistent in showing that glial biosynthesis of TAGs can be
beneficial in diverse contexts.

Three adult Drosophila retinal studies have utilized ATGL
(Bmm) overexpression to boost TAG lipolysis and thus delete
LDs. One found that this manipulation increases age-dependent
photoreceptor degeneration (Van Den Brink et al., 2018). In
contrast, the two other studies observed that ATGL
overexpression substantially rescues photoreceptor
degeneration in retinal cells mutant for a metalloprotease [A
Disintegrin And Metalloproteinase Domain-Containing
Protein 17 (ADAM17)/Tumor Necrosis Factor (TNF)-Alpha
Converting Enzyme (TACE)] or for mitochondrial components
[Mitofusin, Nicotinamide adenine dinucleotide (NADH)
Dehydrogenase (ubiquinone) 42 kDa subunit (ND-42) or
Methionyl-transfer Ribonucleic Acid (tRNA) synthetase,
mitochondrial (MetRS-m)], leading the authors to conclude
that, in these contexts, glial LDs promote neurodegeneration
(Liu et al., 2015; Muliyil et al., 2020). However, a
reinterpretation of this conclusion was recently suggested by
systematic side-by-side comparisons of DGAT1 knockdown
and ATGL overexpression, not in glia but in Drosophila renal
cells (Lubojemska et al., 2021). This study showed that, although
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both manipulations efficiently block LD accumulation, the
former is harmful whereas the latter is beneficial for cell
function. Based on these and other findings, it was argued
that overexpression of the lipid-droplet resident enzyme
ATGL equates to a gain, not a loss, of an LD subfunction,
enhancing the ability of the LD to stimulate TAG lipolysis
(Lubojemska et al., 2021). This may also be the case in glia,
such that DGAT1 and ATGL work in the same not opposite
“directions” to promote a beneficial flux of fatty acids through
the TAG compartment. More generally, the comparisons of
DGAT1 and ATGL manipulations in different glial contexts
illustrate that assigning an overall protective or a harmful role to
LDs can be confusing and, at best, is an oversimplification.
Instead, it may be useful to adopt a more nuanced approach,
parsing the individual subfunctions of LDs using specific
manipulations that avoid targeting more general aspects of
lipid metabolism such as fatty acid synthesis or uptake.

A growing body of evidence is now shedding light on the
mechanisms by which LDs in glia, and in other cell types,
function to protect against lipotoxicity and redox imbalance
(high ROS) during metabolic stress and disease (Ioannou et al.,
2019; Bailey et al., 2015; Cheng et al., 2020; Lubojemska et al.,
2021; Bensaad et al., 2014; Nguyen et al., 2017; Ackerman et al.,
2018; Islam et al., 2019; Taïb et al., 2019; Liu et al., 2021). These
protective LD roles appear to be intimately linked with
mitochondria via at least four non-mutually exclusive
mechanisms, whose relative importance is likely to be
context dependent (Figure 1B). First, LDs in glia can
provide an efficient conduit for delivering lipids via lipolysis
or lipophagy to mitochondria for β-oxidation, in order to
prevent fatty acid accumulation to toxic levels and/or to
generate adenosine triphosphate (ATP) and ketone bodies
(Rambold et al., 2015; Schulz et al., 2015; Ioannou et al.,
2019; Wu et al., 2020). Second, this lipid trafficking route
may help to minimize the potentially toxic effects of oxidized
polyunsaturated fatty acids (PUFAs) via the LD core acting to
protect against lipid peroxidation (Bailey et al., 2015; Li et al.,
2018) or to sequester already peroxidated lipids (Liu et al.,
2015; Ioannou et al., 2019). Third, in the context of mouse
embryonic fibroblasts and glioma cells, LDs have been shown
to act as a lipid buffer that is not required to deliver fatty acids
to mitochondria but to sequester them, thus preventing
acylcarnitine accumulation and lipotoxic dysregulation of
mitochondria (Nguyen et al., 2017; Cheng et al., 2020).
Fourth, LDs are also known, at least in non-neural contexts,
to generate lipid signals that promote mitochondrial
biogenesis and function (Haemmerle et al., 2011; Najt et al.,
2020; Lubojemska et al., 2021). Hence, ATGL lipolysis at the
surface of LDs can release fatty acids that activate the nuclear
receptor PPARα, a partner of PPARγ Coactivator-1α (PGC1α),
either directly or via the Sirtuin 1 deacetylase (Haemmerle
et al., 2011; Najt et al., 2020; Lubojemska et al., 2021).

Distinct from a role in mitochondrial regulation, glial LDs
can also regulate the activity of the intercellular signalling
protein Hedgehog (Hh). In cortex glia of the developing
Drosophila CNS, a proportion of the total Hh protein
colocalizes with markers of the LD surface (Dong et al.,

2021). Glial knockdown of a Drosophila Perilipin called
Lipid storage droplet-2 (Lsd2), a negative regulator of
ATGL, prevented glial overexpressed Hh from mediating an
anti-proliferative effect on neighbouring neural stem cells
(Dong et al., 2021). It is therefore possible that the
association of Hh with LDs modulates its secretion and/or
activity.

Intercellular Lipid Transfer and Glial Lipid
Droplets
Glia are known to secrete many types of lipids including
cholesterol, fatty acids, phospholipids and
phosphoglycolipids [reviewed in (Ralhan et al., 2021; Lee
et al., 2021; Lane-Donovan et al., 2014; Mahley, 2016)].
These lipids are bound to extracellular proteins such as
ApoE and can be taken up by neurons via low-density
lipoprotein (LDL) receptors or fatty acid transporters. They
are known to be essential for the maintenance of multiple
aspects of neuronal function, including membrane
homeostasis, neurite outgrowth and intracellular signalling.
Importantly, lipids can also be transferred in the reverse
direction, from neurons to glia. A series of elegant papers
(Ioannou et al., 2019; Liu et al., 2015; Liu et al., 2017; Van Den
Brink et al., 2018; Muliyil et al., 2020; Moulton et al., 2021)
used Drosophila and mammalian models of redox imbalance
and neurodegeneration to demonstrate that metabolically
stressed neurons deliver potentially toxic fatty acids to glia
(Figure 2) [reviewed in detail in (Ralhan et al., 2021)]. In the
context of Drosophila photoreceptor neurons, genetic
knockdowns of mitochondrial components such as ND-42
generate redox imbalance, which activates c-Jun-N-terminal
Kinase (JNK) and Sterol Regulatory Element Binding Protein
(SREBP) and stimulates the synthesis of fatty acids (Liu et al.,
2015; Liu et al., 2017; Van Den Brink et al., 2018; Moulton
et al., 2021). These fatty acids then become peroxidated in the
presence of high ROS, exported from neurons via ATP-
binding cassette transporter A (ABCA) transporters and
transferred via an apolipoprotein D (ApoD) orthologue,
Glaz, to glial-like RPCs. In RPCs, lipidated Glaz is thought
to be taken up by an ApoD/E receptor, Lipoprotein Receptor-
related Protein 1 (Lrp1), and fatty acids then trafficked in a
clathrin-dependent manner via fatty acid transport protein
(FatP) to be esterified via DGAT1 into TAGs stored in LDs
(Liu et al., 2017; Van Den Brink et al., 2018; Moulton et al.,
2021). Similarly, in a mammalian neuron-astrocyte coculture
model, excitotoxicity was used to induce redox imbalance and
increase autophagy, leading to neuronal production of excess
free fatty acids (Ioannou et al., 2019). These fatty acids are then
transferred to astrocytes via an ApoE and clathrin-dependent
mechanism, where they are likely trafficked via the brain-
specific fatty acid-binding protein, Fabp7, into LDs (Liu et al.,
2017; Ioannou et al., 2019; Islam et al., 2019; Moulton et al.,
2021; Qi et al., 2021). Together, the mammalian and
Drosophila studies show that glia take up fatty acids form
neurons and this can protect them from lipotoxicity. In this
context, glial LDs can play a neuroprotective role, sequestering
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potentially toxic or peroxidated lipids (Liu et al., 2017;
Ioannou et al., 2019; Moulton et al., 2021).

Roles of Lipid Droplets in Neural Stem and
Progenitor Cells
Neural stem and progenitor cells (NSPCs), like other stem cells,
are regulated by many different aspects of lipid metabolism
[reviewed in (Hamilton and Fernandes, 2018; Knobloch and
Jessberger, 2017; Harkins et al., 2021; Madsen et al., 2021)].
Although NSPCs have been extensively characterized, there are
very few reports of LDs in these cells in vivo in physiological
wildtype conditions. However, in the embryonic mouse brain,
conditional knockout in NSPCs of squalene synthase, an
enzyme of cholesterol biosynthesis, results in LD
accumulation and this correlates with the apoptosis of
newborn neuronal progeny (Saito et al., 2009). These mutant
embryonic NSPCs also upregulate vascular endothelial growth
factor, although it is not clear if this process is linked to LDs
(Saito et al., 2009). In the NSPC niches of the adult mammalian
brain, LDs have mostly been described in niche cells such as
ependymal cells not in the progenitors themselves [reviewed in
(Ralhan et al., 2021; Hamilton and Fernandes, 2018)]. Recently,
however, a study of the adult mouse brain found that NSPCs in
the subventricular zone (SVZ) and dentate gyrus (DG) niches
express the LD marker gene perilipin 2 (plin2) and, when

cultured in vitro, they accumulate abundant Plin2+ LDs
(Ramosaj et al., 2021). In cultured SVZ NSPCs, Plin2+ LDs
are smaller in size during the proliferative than the quiescent
(non-dividing) state. Furthermore, Plin2+ LD content per
NSPC varies and correlates positively with oxygen
consumption and extracellular acidification rates as well as
with proliferative ability (Ramosaj et al., 2021). NSPCs with
more abundant LDs also tend to have higher ROS levels,
although not an increase in lipid peroxidation. This suggests
that LDs in NSPCs could safeguard PUFAs, as they are reported
to do in glia of the developing Drosophila CNS (Bailey et al.,
2015; Ramosaj et al., 2021). Interestingly, genetic or
pharmacological knockdown of ATGL in cultured NSPCs
increased LDs and led to a decrease in proliferation
(Ramosaj et al., 2021). Conditional knockdown of fatty acid
synthase (Fasn) in SVZ or DG NSPCs has the opposite effect on
LDs, decreasing them, yet it also impairs proliferation
(Knobloch et al., 2013; Ramosaj et al., 2021). Conversely, a
Fasn gain-of-function mutation associated with a human
cognitive disorder leads to an accumulation of TAGs and ER
stress, again impairing the proliferation of DG NSPCs (Bowers
et al., 2020). It is therefore tempting to speculate that fatty acid
flux through the TAG compartment promotes NSPC
proliferation. The beneficial role of TAG lipolysis in NSPCs
could therefore be related to that observed in Drosophila glia
(Section 2.3).

FIGURE 2 | Glial-neuronal lipid transfer during physiological and pathological conditions. During physiological conditions (A), the exchange of lipids between glia
and neurons is mediated by apolipoprotein D/E (APOD/E) particles or other protein carriers such as albumin. In glia, fatty acids generated by fatty acid synthase (FASN)
and converted into triacylglycerols (TAGs) via diacylglycerol acyltransferase (DGAT) can be remobilized from lipid droplets (LDs) by adipose triglyceride lipase (ATGL) for
transfer to neurons or to enter mitochondria for fatty acid oxidation (FAO). In neurons, ATGL and DDHD Domain-Containing 2 (DDHD2) ensure that TAG lipolysis
approximately matches TAG synthesis, preventing LD accumulation and ensuring the FA supply for neuronal functions such asmembrane synthesis. Under pathological
conditions (B), mitochondrial dysfunction in neurons is associated with high reactive oxygen species (ROS) that trigger c-Jun N-terminal Kinase (JNK) and sterol
regulatory element-binding protein (SREBP) signalling, which increases FASN synthesis of FAs and in some circumstances leads to ectopic neuronal LDs. Excess
neuronal FAs are secreted from neurons via ATP-binding cassette (ABC) A transporters and APOD/E particles, taken up by glia via endocytosis and trafficked through the
endolysosomal pathway and ER via DGAT into glial LDs. Glial LDs may protect against lipotoxicity and high reactive oxygen species (ROS) via multiple non-mutually
exclusive mechanisms (Figure 1B). In neurons during pathological conditions, altered TAG metabolism and ectopic LDs may contribute to dysfunction and
neurodegeneration (axonal dotted line).
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The effector mechanisms by which ATGL activity influences
NSPC properties remain to be identified. One possibility is that
TAG lipolysis provides an efficient route for delivering fatty acids
to mitochondria for β-oxidation in order to fuel oxidative
phosphorylation (Section 2.2; Figure 1B). For cultured SVZ
NSPCs, however, the validity of this explanation is not yet
clear, in part because there is no consensus on the
contribution that fatty acid β-oxidation makes to overall
oxygen consumption rate (Stoll et al., 2015; Ramosaj et al.,
2021). Nevertheless, fatty acid import into mitochondria does
play an important role in SVZ and DG NSPCs as strong
pharmacological inhibition of a key enzyme in this pathway,
carnitine palmitoyltransferase 1a (CPT1a), decreases their
proliferation (Stoll et al., 2015; Knobloch et al., 2017). In
addition, pharmacological and genetic approaches indicate that
maintenance of the quiescent state of DG NSPCs in vitro and in
vivo also requires CPT1a and, by inference mitochondrial β-
oxidation (Knobloch et al., 2017). A connection between LDs and
β-oxidation may also be important for NSPCs in the embryonic
neocortex (Xie et al., 2016). In this context, LD lipolysis, carnitine
biosynthesis and CPT1a are all required to maintain the pool size
of Paired Box 6 (Pax6)+, T-box transcription factor Eomes/Tbr2+

neural stem cells. Carnitine biosynthesis and CPT1a were also
shown to function in the balance between self-renewing and
differentiative divisions and to maintain the mitochondrial redox
balance of embryonic neural stem cells (Xie et al., 2016).
Together, the available data suggest that, under physiological
conditions, fatty acid flux through the LD compartment of NSPCs
acts to promote mitochondrial β-oxidation, in turn regulating
multiple stem cell properties including the cell division mode and
proliferative state.

Roles of Lipid Droplets in Neurons
Neurons in non-pathological and unstressed conditions tend to
contain few if any LDs in vivo. An important question is why this
is the case, given that neurons (and most other cell types) can
form LDs in vitro when cultured under appropriate conditions.
At least part of the explanation lies in the greater propensity of
glia, ependymal cells and microglia to take up and process
extracellular brain lipids (Sections 2.2 and 2.3). This in vivo
“lipid sink” role has been mimicked in transwell co-cultures,
where ectopic LDs in hippocampal neurons from ApoE3 or
ApoE4 humanized mouse models of Alzheimer’s disease are
cleared by astrocytes via ApoE-dependent extracellular lipid
transport (Qi et al., 2021). Cell-intrinsic metabolic processes
also make an important contribution towards preventing LDs
from accumulating in neurons. For example, neurons express at
least two different TAG lipases—ATGL and DDHD2—and their
loss-of-function or chemical inhibition can lead to ectopic LDs in
mammalian, Drosophila and C. elegans neurons (Inloes et al.,
2014; Inloes et al., 2018; Yang et al., 2020a; Wat et al., 2020). In C.
elegans, it has also been shown that mutations in an Abhydrolase
Domain-Containing Protein 5 (ABHD5)/Comparative Gene
Identification-58 (CGI-58) orthologue, a known co-activator of
ATGL, or overexpression of DGAT1/2 orthologues leads to
ectopic LDs in neurons (Yang et al., 2020a). Similarly, some
perilipins protect LDs from lipolysis, and overexpression of either

the Lsd-1 or Lsd-2 perilipins in Drosophila photoreceptors results
in a large increase in the usually sparse LDs in these neurons
(Girard et al., 2021). Collectively, these findings provide evidence
that neurons do not usually accumulate LDs in vivo, because they
actively turnover TAGs, favouring lipolysis over biosynthesis
Figure 2. This raises the important general question of how
neurons and other cell types regulate their rates of neutral lipid
synthesis and lipolysis. In the case of TAGs in hepatocytes, an ER
and LD-associated protein called hypoxia inducible lipid droplet
associated (HILPDA) may contribute towards coordinating
synthesis and lipolysis rates as it both stimulates DGAT1 and
inhibits ATGL (de la Rosa Rodriguez et al., 2021). It is not yet
clear whether or not HILPDA functions in similar way in neurons
but it is known to be expressed and strongly hypoxia-inducible in
human primary astrocytes (Allen et al., 2020). In neurons, neutral
lipid turnover is likely to be beneficial for their function, at least
during unstressed homeostatic conditions (Inloes et al., 2014;
Inloes et al., 2018).

Neurons accumulate ectopic LDs in several neurodegenerative
diseases and during ageing (Shimabukuro et al., 2016; Farmer et al.,
2020; Conte et al., 2021). In sporadic and familial forms of
Parkinson’s disease, α-synuclein in neurons aggregates into
inclusion bodies known as Lewy bodies [reviewed in (Stok and
Ashkenazi, 2020)]. It is linked to multiple aspects of lipid
metabolism in complex ways, associating with LDs and directly
binding phospholipids and unsaturated fatty acids [reviewed in
(Teixeira et al., 2021; Roberts and Olzmann, 2020)]. The toxicity of
α-synuclein in human induced pluripotent stem cell (iPSC)
neurons likely involves unsaturated fatty acids as it is
ameliorated by inhibitors of stearoyl-CoA desaturase (Vincent
et al., 2018; Fanning et al., 2019). In the yeast S. cerevisiae, α-
synuclein inhibits growth and this is rescued by inhibition of Pah1,
a Lipin phosphatidate phosphatase, suggesting that diacylglycerol
synthesis is harmful, contributing to toxicity (Soste et al., 2019). A
closer functional link to TAG metabolism is suggested by a
Drosophila model of Parkinson’s disease where human α-
synuclein is expressed in photoreceptor neurons (Girard et al.,
2021). Coexpression of the perilipin Lsd2 induces LDs in
photoreceptors, which recruit α-synuclein to their surface and
increases the proportion of protease-resistant α-synuclein, a
characteristic associated with α-synuclein aggregation and
neurodegeneration (Cremades et al., 2012; Suzuki et al., 2015;
Girard et al., 2021). In a related α-synuclein photoreceptor model,
co-expression of ATGL with α-synuclein decreased the protease-
resistant fraction (Girard et al., 2021). Together, these findings
suggest that TAG lipolysis in Drosophila photoreceptor neurons
inhibits the formation of a toxic form of α-synuclein, thus playing a
protective role. TAG lipolysis is also beneficial during the recovery
of PNS neurons from optic nerve injury in mice, although it
remains unclear if LDs accumulate (Yang et al., 2020b).
Nevertheless, in this context, neuronal regeneration requires
ATGL and DDHD2 but is inhibited by DGAT1/2 (Yang et al.,
2020b). Given that phospholipid synthesis enzymes can also
facilitate regeneration, it may be that redirecting fatty acids
away from TAGs into membrane lipids is beneficial for
neuronal regrowth (Yang et al., 2020b; Roy and Tedeschi,
2021). TAG lipolysis in neurons is not, however, universally
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beneficial. In a C. elegans genetic model of excitotoxicity, LDs
accumulate in neurons during their degeneration but this is
rescued by inactivation of ATGL or ABHD5/CGI-58 and
worsened by C20 PUFA incorporation into phospholipids
(Yang et al., 2020a). Hence, in this excitotoxic model, TAG
lipolysis in neurons exacerbates their degeneration, perhaps
because it redirects PUFA into membranes where they are
vulnerable to peroxidation. ATGL-dependent lipolysis also
appears to be detrimental in cultured mammalian motor
neurons expressing Seipin N88S, a mutant associated with a
dominant spastic paraplegia that localizes to LDs and induces
ER stress (Holtta-Vuori et al., 2013). In summary, there appears to
be no universal truth about whether TAG lipolysis in neurons
protects or harms from stress or disease—it all depends upon
biological context.

Conclusion and Outlook
LDs are a common feature of the developing and adult nervous
systems of vertebrates and invertebrates. They have been
observed in essentially all major cell types of the nervous
system, albeit to differing degrees and in some cases only in
stress or disease contexts. Under physiological conditions in vivo,
LDs primarily accumulate in glia, ependymal cells and microglia.
However, even in the absence of detectable LDs, cells such as
neurons are still actively turning over neutral lipids. LDs in the
nervous system become more numerous as a hallmark of several
neurodegenerative diseases and also as a consequence of stresses
involving redox imbalance and lipotoxicity. LDs in the nervous
system during health and disease participate in multiple complex
functions, which are dependent upon the cell type that they
accumulate in. It is often difficult to make conclusions about
whether LDs overall are beneficial or harmful. A more useful
approach is to assign functions to individual biochemical
reactions that are directly linked to LDs, such as TAG
synthesis or lipolysis.

Looking forwards, a central challenge is to understand how
lipid metabolic networks become wired differently in glia,
neural stem cells and neurons, and how this influences
adaptation to stress and disease. An important part of
addressing this issue will be to determine how stresses
change the LD proteome differently in each cell type of the

nervous system. Rapid advances in technologies such as
spatially-resolved and single-cell transcriptomics and
proteomics are likely to help greatly in this quest (Armand
et al., 2021; Goto-Silva and Junqueira, 2021; Maniatis et al.,
2021). In addition, comparisons between the LD proteomes of
glia, ependymal cells, microglia and neurons may also be
facilitated by genetically encoded strategies that provide cell-
type specific proximity labelling using Ascorbate Peroxidase 2
(APEX2) or related enzymes (Bersuker et al., 2018). A surface
analysis technology from the physical sciences, mass
spectrometry imaging, is an approach that promises to offer
lipidomics and perhaps even proteomics with single-cell
resolution in brain tissue sections (Gilmore et al., 2019;
Taylor et al., 2021). Several different mass spectrometry
imaging (MSI) platforms have already been used to spatially
resolve amino acid, protein, lipid and LD metabolism, where
they are beginning to deliver exciting new insights into regional
and cell-type specific features of brain metabolism (Steinhauser
et al., 2012; Bailey et al., 2015; Narendra et al., 2020; Newell et al.,
2020; Wang et al., 2022).
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