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The gene Unc51-like kinase 4 (ULK4) belongs to the Unc-51-like serine/threonine kinase
family and is assumed to encode a pseudokinase with unclear function. Recently,
emerging evidence has suggested that ULK4 may be etiologically involved in a
spectrum of neuropsychiatric disorders including schizophrenia, but the underlying
mechanism remains unaddressed. Here, we summarize the key findings of the
structure and function of the ULK4 protein to provide comprehensive insights to better
understand ULK4-related neurodevelopmental and neuropsychiatric disorders and to aid
in the development of a ULK4-based therapeutic strategy.
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INTRODUCTION

Neuropsychiatric disorders are a wealth of debilitating brain diseases with overlapping etiologies,
including genetic variants and environmental stress. The concordance rate is high and the
heritability is substantial, although the influence of de novo mutations cannot be ignored
especially in autism spectrum disorders (ASDs) (Alonso-Gonzalez et al., 2018). During the
past decades, genome-wide association studies (GWASs) have reported numerous genetic
alleles with single nucleotide polymorphisms (SNPs) (Uffelmann et al., 2021). In addition,
recent progress in whole genome interrogation has also demonstrated massive genetic variants
that are not covered by GWAS(Rao et al., 2021). The advances in research methodologies have
expanded our understanding of the genetic architecture of psychiatric patients but also revealed
further complexity. Hence, it is compelling to identify the predisposing risk alleles and to fully
elucidate the associated mechanisms underpinning neuropsychiatric disorders. Unfortunately,
thus far, only limited success has been achieved. Intriguingly, recent studies have revealed
overwhelming evidence in neurodevelopmental elements in neuropsychiatric disorders
(Cristino et al., 2014; Cardoso et al., 2019; Al-Naama et al., 2020). Various genetic alterations
that occur during the embryonic stages can lead to pathological brain development and may
precipitate the onset of psychosis in adolescence. These developmental insults are believed to
disturb the neuronal connectivity and cellular architecture within the brain. The most common
neurodevelopmental and neuropsychiatric disorders include depression, schizophrenia, autism
spectrum disorders (ASD), bipolar disorder, attention deficit hyperactivity disorder, and X-linked
intellectual disability, among others. The prevalence of these disorders is growing rapidly, which
has caused a tremendous socioeconomic burden, primarily due to their high incidence in children
and adolescents (Androutsos, 2012; Robertson et al., 2015; Hansen et al., 2018; Ghandour et al.,
2019; Post and Grunze, 2021). During the past several decades, strenuous research has been
performed in these fields. Unfortunately, the etiology and underlying mechanisms remain poorly
understood.
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In 2014, we first reported that Unc-51-like kinase 4 (ULK4) is
crucial for neuritogenesis and neuronal motility and, when
defective, may predispose people to neuropsychiatric disorders
including schizophrenia (Lang et al., 2014). Since then,
accumulating evidence has strongly suggested that ULK4
participates in corticogenesis, cilia maintenance, myelination,
and white matter integrity, although the precise downstream
signaling pathways and interacting substrates remain elusive.
Recently, we have provided evidence that ULK4 deletion can
cause decreased intermediate neural progenitors and increased
apoptosis, which strongly disrupt normal cortical development
(Hu et al., 2021). In addition, ULK4 can form an interactome by
physically binding with PP2A and PP1α, the two most abundant
phosphatases, and is responsible for over 90% of total Ser/Thr
dephosphorylation in eukaryotes. This interactome closely
regulates the expression of p-Akt and p-GSK-3α/β, and mice
with ULK4-targeted deletion in the excitatory neurons of the
forebrain present a spectrum of core features of schizophrenia.
These data collectively suggest that ULK4 is a rare susceptibility
gene for psychiatric disorders, especially schizophrenia. In this
review, we will summarize the current knowledge of the roles of
ULK4 in neurodevelopmental and neuropsychiatric disorders.

MAIN TEXT

Unc-51-like Serine/Threonine Kinase (ULK)
Family
In 1998, a novel mouse ortholog of the Caenorhabditis elegans
serine/threonine kinase uncoordinated-51 (UNC-51) was first
cloned (Yan et al., 1998), and thereafter, five related genes in total
were found and grouped into the UNC-51-like serine/threonine
kinase (ULK) family: ULK1, ULK2, ULK3, ULK4, and serine/
threonine kinase 36 (STK36). The kinase domains of ULKs are
conserved and located at the N-terminus, and the C-terminal
region contains protein interactionmotifs important for substrate
recruitment (Figure 1). In mammals, ULK1 and ULK2 are

evolutionarily conserved serine/threonine kinase orthologs of
the yeast autophagy-related (ATG) family member ATG1, and
play a necessary but somewhat redundant function in proper
autophagy initiation (Wang et al., 2018). The high-resolution
structure analysis shows that ULK1 and ULK2 share a high
degree of conservative domain architecture, including an
N-terminal catalytic kinase, extensive middle linker, and
C-terminal domain essential for interaction with their binding
partners (Lazarus et al., 2015; Chaikuad et al., 2019). During
autophagy, the canonical early regulatory complex consists of
ULK1/ULK2, ATG13, RB1-inducible coiled-coil protein 1
(RB1CC1, also known as FIP200), and ATG101, which
translate upstream nutrient and energy signals (e.g., mTOR
and AMPK) into the downstream autophagy pathway (Ganley
et al., 2009; Jung et al., 2009; Wong et al., 2013; Lin and Hurley,
2016). Disrupting ULK1 expression in mice leads to defective
autophagy-mediated clearance of mitochondria, andmice lacking
both ULK1 and ULK2 die shortly after birth due to a defect in
glycogen metabolism, which is similar to what occurs with other
autophagy-defective mice (Kundu et al., 2008; Cheong et al.,
2014). Apart from these processes, ULK1/ULK2 also regulates
TrkA receptor trafficking and signaling, which instructs filopodia
extension and neurite branching during sensory axon outgrowth
(Zhou et al., 2007). Knockdown of ULK2 reduced asymmetric
neuropil elaboration and affected habenular development in the
brain (Taylor et al., 2011). Recently, Kang et al. revealed an
association between ULK2 polymorphisms and schizophrenia in
the Korean population (Kang et al., 2022).

The other three homologs, ULK3, ULK4, and STK36, contain
kinase domains homologous to ULK1/2 but do not have a
conserved C-terminal sequence, and they participate in many
physiological processes to maintain tissue homeostasis. ULK3 has
been reported to be involved in the autophagy induction during
senescence (Young et al., 2009). It also has a dual function in the
Sonic hedgehog signal transduction pathway, which controls a
variety of developmental processes and is implicated in tissue
homeostasis and neurogenesis in adults (Fuccillo et al., 2006;

FIGURE 1 | Domain architecture of the human ULK family. Protein interaction domains are annotated as interaction domain (IR), C-terminal domain (CTD) (ULK1
and ULK2), microtubule interacting, and trafficking molecule (MIT) (ULK3), and HEAT domains (ULK4).
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Maloverjan et al., 2010). STK36 is essential for the central pair
apparatus and cilia orientation of motile cilia in mice. The cilia of
STK36−/− mice are stiff and exhibit significantly reduced stroke
amplitude or even immotile movement, which eventually
promotes the occurrence of hydrocephalus (Merchant et al.,
2005; Nozawa et al., 2013). According to the database in the
Swiss Institute of Bioinformatics (SIB), ULK4 is widely expressed
in different systems, especially in the secretion system, immune
system, and nervous system, but its precise function remains
largely unclear. Since we first reported that ULK4 may be a rare
susceptibility gene for schizophrenia in 2014, research on this
gene has been springing up in the neuropsychiatric field.

ULK4 Protein Structure
ULK4 is a large protein (142 kDa) encoded by the gene Unc51-
Like Kinase 4, which is located on human chromosome 3p22.1
(Went et al., 2019). Unlike the homolog family member ULK1-3,
the ULK4 protein contains a pseudokinase domain at the
N-terminus and is thus predicted to be catalytically inactive.
There are five HEAT repeats at the C-terminus of ULK4
(842–880, 926–964, 1,025–1,063, 1,151–1,189, and
1,213–1,253) (Figure 1), which are commonly found in large
proteins, such as mTOR, and are presumably involved in protein
scaffolding or interaction (Andrade et al., 2001; Perry and
Kleckner, 2003). The crystallized high-resolution structure of
ULK4, including its small-molecule inhibitor and ULK4-ATP-
rS, has been recently interpreted by two independent research
groups (Khamrui et al., 2020; Preuss et al., 2020). Notably, ULK4
can bind to ATP in an unusual Mg2+-independent manner, and
the affinity is higher than that of any known pseudokinase
(Khamrui et al., 2020). Because some pseudokinases are
capable of binding to ATP and allosterically regulating the
catalytic functions of kinases using compensatory motifs, even
though ULK4 has no apparent phosphotransferase activity
(Zeqiraj and van Aalten, 2010), it is assumed that like many
others, ULK4 may work as the sensor of ATP and undergo
conformational changes upon the binding which subsequently
promotes its roles as a scaffold for substrate recruitment. Indeed,
Preuss et al. predicted many ULK4 interacting partners including
active kinases and phosphatases, which require further functional
validation (Preuss et al., 2020).

Similar to the working mechanism of STRAD/LKB1, the
pseudokinase domain of ULK4 specifically interacts with
STK36. This strongly indicates that ULK4 can regulate active
kinases directly, despite it being deemed catalytically inactive
(Zeqiraj et al., 2009). The unique C-terminal HEAT repeats may
enable ULK4 to bind to proper substrates or interacting proteins
using a similar recruitment mechanism as ULK1/2. This
hypothesis was further substantiated by Preuss and his
colleagues, who have revealed that these repeated regions
interacted uniquely with calmodulin-regulated spectrin-
associated protein 1 (CAMSAP1), oral-facial-digital syndrome
1 (OFD1), and poly(A)-specific ribonuclease subunit 2 (PAN2)
(Preuss et al., 2020). However, thus far, there has not been any
report that there is an interaction partner of the ULK4 HEAT
repeats at the C-terminal of STK36. Domain mapping of ULK4
provides a structural framework for its roles in diseases.

ULK4 and Unc-51
The unc-51 gene was initially described in the nematode C.
elegans by Brenner in 1974 and showed extensive expression
during embryonic brain development when neurons were
actively extending their axons, particularly in the head region
of late embryos (Brenner, 1974). Surprisingly, worms with the
unc-51mutation were mostly paralyzed, egg-laying defective, and
dumpy (McIntire et al., 1992; Ogura et al., 1994). These data
strongly suggested that the unc-51 protein is essential for axon
maintenance and elongation. In the brains of Drosophila
individuals, unc-51-mediated membrane vesicle transport is
pivotal in the targeted localization of guidance molecules and
organelles that regulate the elongation and compartmentalization
of developing neurons as well as motor-cargo assembly
(Mochizuki et al., 2011). Similarly, the unc-51 protein was
reported to localize in the vesicular structures of growth cones
of cerebellar granule cells and spinal sensory neurons in mice,
which controls axon formation in granule cells through the
endocytic membrane trafficking pathway (Tomoda et al., 1999;
Tomoda et al., 2004). As a homologous serine/threonine kinase of
unc-51 in humans, ULK4 was initially reported to be associated
with blood pressure and hypertension (Levy et al., 2009; Ehret
and Caulfield, 2013; Konigorski et al., 2014). Meanwhile, it may
be involved in cell cycle control, as its polymorphisms (rs1052501
and rs2272007) were associated with multiple myelomas
(Broderick et al., 2011; Greenberg et al., 2013). Inspired by the
physiological functions of unc-51, we reanalyzed the common
and rare variants of ULK4 in the databases of the International
Schizophrenia Consortium (ISC) and among the bipolar
Icelandic cases genotyped by deCODE Genetics, and we
discovered that it may serve as a rare susceptibility gene for
human mental disorders, especially schizophrenia (Lang et al.,
2014). Our subsequent functional study further revealed that
ULK4 is involved in the remodeling of cytoskeletal components,
such as acetylation of α-tubulin, and in this way regulates neurite
branching and elongation as well as cell motility.

ULK4 and Neurogenesis
Both in vivo and in vitro studies have suggested that ULK4 may
play a key role in neurogenesis and corticogenesis during
developmental stages. In Xenopus embryos, ULK4 mRNA is
mostly expressed in the ventricular (VZ) and subventricular
zones (SVZ) zones and distributed throughout the brain after
the closure of the neural tube. Constant expression of ULK4 has
also been found in neural stem cells in adult Xenopus
(Domínguez et al., 2015). Similarly, Ulk4 transcripts are widely
found in the VZ, SVZ, and cortical plate in the E15.5 cortex in
mice, and ULK4 protein is widely expressed in all cortical layers
after postnatal Day 7. Knockdown of ULK4 at E15.5 significantly
inhibited cell proliferation and corticogenesis in mice (Lang et al.,
2016). Meanwhile, the size of the neural stem cell pool in the
forebrain that is important for adult neurogenesis was remarkably
reduced in ULK4 null knockout mice at birth (Liu et al., 2016a).
Although normal cortical lamination was preserved, the
knockout mice showed a thinner cortex due to defective cell
proliferation. As abnormal neurogenesis is often associated with
neurodevelopmental or neuropsychiatric diseases (Kang et al.,
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2016; Guarnieri et al., 2018), it is therefore believed that ULK4
may contribute to the development of these diseases. Liu et al.
further identified that ULK4 expression was dependent on the cell
cycle, with a peak expression in the G2/M phases, and it decreased
during both embryonic and adult neurogenesis in ULK4 mutant
mice, probably because of a dysregulated Wnt signaling pathway
(Liu et al., 2017).

ULK4 and Neurite Arborization
It has been well documented that Unc-51 regulates the dendritic
development in the brains of individuals of the genus Drosophila
through kinesin-mediated membrane transport (Mochizuki et al.,
2011). In C. elegans, Unc-51 mutation often leads to abnormal
axonal elongation and structures (Ogura et al., 1994).
Consistently, appropriate neurite arborization is important in
establishing synaptic connectivity and neuronal plasticity, which
is critical for preventing the onset of schizophrenia (Mochizuki
et al., 2011; Mizutani et al., 2019). Therefore, it is assumed that the
ULK family plays an important role in the establishment of the
appropriate neural network and, when defective, may promote
the development of neurological diseases. In line with this
hypothesis, our data suggest that the proper expression of
ULK4 is critical for neurite branching and brain development.
Knockdown of ULK4 in SH-SY5Y cells led to less expression of
acetylated α-tubulin, which may underlie the reduced dendrite
length and/or branching and compromised neuronal migration
(Lang et al., 2014). Defective neuritogenesis may involve multiple
signaling pathways including protein kinase C (PKC), mitogen-
activated protein kinase (MAPK), extracellular signal-regulated
kinase (ERK), and c-Jun N-terminal kinases (JNK) (Lang et al.,
2014). Similarly, our in utero electroporation study in utero also
demonstrated that knockdown of ULK4 caused perturbed neurite
arborization in the pyramidal neurons of the cortex (Lang et al.,
2016).

ULK4 and the Integrity of White Matter
Children’s performance in cognition, intelligence, processing
speed, and problem solving is closely associated with the
thickness of the white matter, such as the corpus callosum and
defective myelination is a hallmark related to
neurodevelopmental and neuropsychiatric disorders (Liu et al.,
2018b). We previously showed that ULK4 null knockout mice
displayed impaired genesis of the corpus callosum (Lang et al.,
2014). Liu et al. further reported a 50% decrease in myelination in
ULK4−/− mice together with a general reduction in myelin
components (Liu et al., 2018b). Myelin is produced by
oligodendrocytes and controls impulse conduction speed along
the axon, which is important to cognitive performance. Children
with a less myelinated white matter in their brains often display
developmental delay problems. Meanwhile, ULK4 mutant mice
also present thin axons and extensive neuroinflammation, which
also promote the occurrence of hypomyelination. In addition,
ULK4 deficiency significantly attenuated the enrichment of
oligodendrocyte transcription factors, the newly formed
oligodendrocytes, and myelinating oligodendrocytes (Liu et al.,
2018b). These data collectively indicate that ULK4 may be a
crucial factor for the integrity of white matter and myelin.

ULK4 and Ciliopathy
The cilium is an antenna-like structure that protrudes from the
surface of almost all mammalian cells. It participates in
multiple signaling transduction pathways and when
defective, can result in a series of inherited disorders called
“ciliopathies”. The most common features of ciliopathy
include cystic liver and/or kidney, blindness, neural tube
defects, brain anomalies, mental disability, skeletal
abnormalities, obesity, and infertility, among others (Oud
et al., 2017). Genomic and bioinformatics research has
revealed that some primary cilia genes are linked to
psychiatric disorders, such as the genes CC2D2A and Disc1,
which are involved in ciliogenesis (Shen et al., 2008; Marley
and von Zastrow, 2010; Veleri et al., 2014), and their defects
can lead to psychiatric disorders, including Joubert syndrome
(Bachmann-Gagescu et al., 2012), mental retardation (Noor
et al., 2008; Shi et al., 2012), Meckel syndrome (Tallila et al.,
2008), and Bardet Biedl syndrome (BBS) (Haq et al., 2019). In
addition, several signaling pathways and crucial factors highly
associated with schizophrenia, such as Wnt signaling, the
fibroblast growth factor signaling system, neuronal
migration, and the dopamine hypothesis, are dependent on
the complete functionality of the cilium, although the specific
mechanism is not yet well understood (Marley and von
Zastrow, 2010; Muraki and Tanigaki, 2015; Narla et al.,
2017; Hoseth et al., 2018). In the mouse brain, ULK4 is
strongly expressed in the choroid plexus and ependymal
cells lining the ventricles (Lang et al., 2014). Both ULK4
null knockout and hypomorphic mice present disturbed
motile cilia development and disorganized ciliary beating
which impair CSF flow and eventually lead to congenital
hydrocephalus (Vogel et al., 2012; Liu et al., 2016b). These
data strongly indicate the potential connection between ULK4
haploinsufficiency and ciliopathy. Acetylated α-tubulin is an
important cytoskeletal component of cilia that is instrumental
for cilium assembly. Our study, however, revealed that
knockdown of ULK4 in human neuroblastoma cells (SH-
SY5Y) and the mouse brain led to reduced expression of
acetylated α-tubulin (Lang et al., 2014; Lang et al., 2016). In
addition, whole-genome RNA sequencing also revealed
massive disruption of genes closely related to ciliogenesis
including Foxj1, Pcm1, Tubb4a, Dnah9, Rsph4a, Gsn, Kif5a,
Lgals3, Lgals3bp, and Dnal1 in ULK4 mice carrying
hypomorphic alleles. Interestingly, it has been reported that
Foxj1 may target downstream substrates including Spag6,
Rsph9, Rsph4a, Dnah9, Dnal1, Ttll6, and Tekt2 which
consequently impairs ciliary development and results in
hydrocephalus (Liu et al., 2016b). A recent study also
reported that patients with a microdeletion of the ULK4
gene and a microduplication of the BRWD3 gene
manifested core features of ciliopathy such as psychomotor
delay, epilepsy, autistic features, hearing loss, obesity, minor
facial dysmorphisms, peculiar ear malformations, and skeletal
abnormalities (such as dorsal kyphosis and/or valgus knees
and flat feet) (Tassano et al., 2018). Thus, it is highly likely that
ULK4 contributes to ciliopathies. The results demonstrate that
ULK4 is crucial for ciliogenesis and ciliopathies.
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The Progress of Current Research on ULK4
in Mental Disorders
Although previous GWAS studies have suggested that ULK4 is a
risk locus for multiple myeloma and interindividual diastolic
blood pressure variation, emerging evidence also supports the
idea that ULK4 genetic variants may cosegregate people with
multiple neuropsychiatric disorders (Levy et al., 2009; Broderick
et al., 2011). In our previous research using the cohort data from
the International Schizophrenia Consortium, we identified four
schizophrenia patients with ULK4 intragenic fragment deletions
spanning from exon 21 to exon 34 among 3,391 schizophrenia
patients (Lang et al., 2014). Another study implicated that SNPs
rs7651623 and rs2030431 of ULK4 are associated with the risk of
discontinuing the use of antipsychotics in patients with
schizophrenia (Ou et al., 2019). In the Decode database, ULK4
deletion was also enriched in patients with schizophrenia (2/708),
bipolar disorder (2/1,136), and autism (1/507) (Lang et al., 2014).
In addition, association signals were observed at SNPs rs1052501,
rs1716975, and rs2272007, which are located in exons 2, 7, and 17
of ULK4, respectively, for allelic transmission disequilibrium
from parents to their children with ASD (Ou et al., 2019).
Similarly, SNP rs17210774 of ULK4 is significantly associated
with bipolar disorder in Caucasians and another SNP rs1722850,
which is close to but downstream of ULK4, is related to major
depressive disorders (Lang et al., 2014) (Table 1). A recent study
of the brain-body genetic resource exchange (BBGRE) cohort also
reported an incidence in a population of 1.2‰, showing ULK4
copy number variation and exhibiting pleiotropic
neurodevelopmental problems including learning difficulties
and language delay (Liu et al., 2016a). In addition, a recent
clinical study revealed 2 cases with ULK4 intragenic
microdeletion (together with partial microduplication of
BRWD3) that showed autistic features (Tassano et al.,

2018).Consistently, in the follow-up functional analysis, we
have revealed that knockdown of ULK4 altered the activity of
Wnt, PKC, MAPK, ERK1/2, and JNK signaling pathways
commonly found in human mental disorders, especially
schizophrenia (Figure 2). In addition, both ULK4 knockout
and hypomorphic mice presented congenital hydrocephalus
featuring dilated ventricles and CSF accumulation.
Interestingly, a proportion of schizophrenia patients also
display increased global or regional CSF(Vogel et al., 2012;
Lang et al., 2014). Moreover, Liu et al. revealed that ULK4
heterozygous mice displayed anxiety-like behavior with
reduced GABAergic neurons in the basolateral amygdala and
hippocampus (Liu et al., 2018a), and ULK4−/− mice showed a
significant hypomyelination phenotype (Liu et al., 2018b). All
these studies strongly suggest that ULK4 may be a rare risk factor
for neuropsychiatric disorders including schizophrenia but more
evidence is warranted in the future.

TABLE 1 | Summary of ULK4 variants and relevant manifestation in human patients.

SO Term Ref
Allele

Alt
Allele

SNP
Number

Related Disease Ref

intron C T rs17210774 bipolar disorder Lang et al. (2014)
intron T C rs1722850 depressive disorder Lang et al. (2014)
5 UTR A G rs7651623 risk of discontinuing use of antipsychotic medications in the

patients with schizophrenia
Ou et al. (2019)

intron C T rs2030431 risk of discontinuing use of antipsychotic medications in the
patients with schizophrenia

Ou et al. (2019)

missense (A542P/
A542T)

C G/T rs1052501 ASD/multiple myeloma (Broderick et al., 2011; Greenberg
et al., 2013)

missense (K39R/
K39T)

T G/C rs2272007 ASD/multiple myeloma Ou et al. (2019)

intron T A/C rs1717027 diastolic blood pressure Franceschini et al. (2013)
missense (I224F/
I224V)

T A/C rs1716975 ASD Ou et al. (2019)

intron T G rs4973978 ASD
intron T C rs9824775 ASD
intron T C rs6599175 ASD
intron G A rs6783612 ASD
intron C T rs9852303 ASD
intron A G rs4973893 ASD
intron T C rs1716670 ASD

FIGURE 2 | A schematic representation of altered activities of multiple
signaling pathways including p38 MAPK, JNK, ERK1/2, PKC, and Wnt
signaling pathways by ULK4. These alterations contribute to deficient
neuritogenesis, a common feature frequently represented by human
mental disorders.
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CONCLUSION AND PERSPECTIVES

Although ULK4 is a member of the Unc-51-like kinase family,
unlike its ortholog members ULK1-3 and STK36, it is predicted to
be catalytically inactive and to function as a pseudokinase.
Initially, ULK4 was found to be associated with blood pressure
and hypertension but further research has indicated its important
functions during neurodevelopment. Knockdown of
ULK4 in vitro also altered the activities of multiple signaling
pathways, including Wnt, PKC, p38 MAPK, ERK1/2, and JNK,
and mice with ULK4 deletion showed anxiety-like behaviors,
perturbed neurogenesis, and decreased myelination. As
mentioned above, ULK4 may be a rare risk factor for a range
of psychiatric disorders, including schizophrenia, ASD, bipolar
disorder, and depression, whose genetic variants were found in
relevant patients and are crucial for ciliogenesis and ciliopathies.
Further studies are warranted to fully understand the important
function of ULK4, especially in neurodevelopment, and the
specific underlying mechanisms for psychiatric disorders. With

the successful resolution of the protein structure of ULK4 and
further elucidation of its function, a series of small molecules
targeting ULK4 may be developed to alleviate relevant
neurodevelopmental and neuropsychiatric disorders in the
future.
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