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Most of the high-grade serous ovarian cancers (HGSOC) are accompanied by P53
mutations, which are related to the nucleotide excision repair (NER) pathway. This
study aims to construct a risk signature based on NER-related genes that could
effectively predict the prognosis for advanced patients with HGSOC. In our study, we
found that two clusters of HGSOC with significantly different overall survival (OS) were
identified by consensus clustering and principal component analysis (PCA). Then, a 7-gene
risk signature (DDB2, POLR2D, CCNH, XPC, ERCC2, ERCC4, and RPA2) for OS
prediction was developed subsequently based on TCGA cohort, and the risk score-
based signature was identified as an independent prognostic indicator for HGSOC.
According to the risk score, HGSOC patients were divided into high-risk group and
low-risk group, in which the distinct OS and the predictive power were also successfully
verified in the GEO validation sets. Then we constructed a nomogram, including the risk
signature and clinical-related risk factors (age and treatment response) that predicted an
individual’s risk of OS, which can be validated by assessing calibration curves.
Furthermore, GSEA showed that the genes in the high-risk group were significantly
enriched in cancer-related pathways, such as “MAPK signaling pathway”, “mTOR
signaling pathway”, “VEGF signaling pathway” and so on. In conclusion, our study has
developed a robust NER-related genes-based molecular signature for prognosis
prediction, and the nomogram could be used as a convenient tool for OS evaluation
and guidance of therapeutic strategies in advanced patients with HGSOC.
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INTRODUCTION

High-grade serous ovarian cancer (HGSOC) is of great concern to
the researchers among all ovarian cancers, as it accounts for
70%–80% of deaths from ovarian cancer. The modes of
carcinogenesis, molecular-genetic characteristics, and the
origin are distinctive from low-grade serous ovarian cancer
(Kurman et al., 2014; Bowtell et al., 2015). Due to the lack of
effective early screening methods for ovarian cancer, almost 90%
of serous ovarian cancer patients are diagnosed as stage III–IV at
first diagnosis, while the 10-year survival rate of advanced
patients with HGSOC is only 15% (Narod, 2016). So far,
surgery remains the most important treatment approach and
the subsequent chemotherapy, targeted therapy, radiation, and
immunotherapy are used to enhance the curative effect according
to the International Federation of Gynecology and Obstetrics
(FIGO) staging system (González-Martín et al., 2010; Jessmon
et al., 2017). However, for advanced patients, the current FIGO
classification method failed to provide accurate information to
predict prognosis, nor guide physicians’ treatment decisions
(Llueca et al., 2018; Tajik et al., 2018). It is a widespread
phenomenon for advanced patients with HGSOC at the same
FIGO stage to have completely different prognostic outcomes due
to complex biological processes and unintelligible molecular
mechanisms. Therefore, it is necessary and urgent to prompt a
search for novel and reliable prognostic molecular signatures for
predicting prognosis and guiding appropriate therapeutic
strategies.

In recent years, genome-wide expression profiling detection
can effectively provide detailed information for the prognosis
assessment of cancer patients (Anurag et al., 2018; Zhu et al.,
2018). In breast cancer, the genomic panel detection methods,
which included 21-gene recurrent score and 70-gene
MammaPrint assay, could provide some valuable information
for the prognosis evaluation and treatment selection of patients
(Cardoso et al., 2016; Sparano et al., 2018). Notably, although
HGSOC shares high molecular similarity with basal-like breast
cancer, there is no molecular evaluation system available for
clinical use in HGSOC (Cancer Genome Atlas Network, 2012).

DNA damage response and repair pathways play an essential
regulatory role in the occurrence and development of ovarian
cancer (Majidinia et al., 2017). DNA repair mechanisms mainly
contain various pathways, such as mismatch repair, base excision
repair, nucleotide excision repair (NER), homologous
recombination, and non-homologous end joining (Mirza-
Aghazadeh-Attari et al., 2019). Importantly, HGSOC is mostly
accompanied by mutations of P53 that are near related to the
NER pathway (Williams and Schumacher, 2016). The NER
pathway is composed of various proteins acting in concert and
is the main pathway to remove large DNA lesions caused by
ionizing radiation and other mutagens (Shuck et al., 2008). In
addition, the NER pathway also can repair the damage caused by
platinum drugs (such as cisplatin and carboplatin), which are
most widely used in the treatment of ovarian cancer. In recent
years, a large number of studies have reported that NER-related
genes, such as ERCC1, XPC, and GTF2H5, could be used as
biomarkers of treatment response or prognosis for tumor patients

(Lin et al., 2010; Fleming et al., 2012; Gayarre et al., 2015). Besides,
other studies have found that subtle changes of NER function
may greatly increase the susceptibility of healthy individuals to
lung cancer and head and neck squamous cell cancer (Wei et al.,
1996; Cheng et al., 1998). However, despite the increased concern
of NER in the field of ovarian cancer, there is still a lack of
comprehensive analysis of NER-related genes in advanced
patients with HGSOC to assess prognosis and guide therapy
strategies effectively.

In the present study, we comprehensively explored the roles of
31 NER-related genes in HGSOC based on multiple
transcriptome datasets, such as The Cancer Genome Atlas
(TCGA), the Genotype-Tissue Expression (GTEx) Project, and
the Gene Expression Omnibus (GEO) database. We evaluated the
interaction and correlation among the 31 NER-related genes and
employed the consensus cluster analysis to identify two HGSOC
clusters with different clinical outcomes based on their expression
patterns of these genes. Then we conducted the least absolute
shrinkage and selection operator (LASSO) Cox regression to
obtain a 7-gene signature on TCGA HGSOC cohort. This
robust risk signature was successfully confirmed in two GEO
validation sets and showed an excellent predictive effect on
prognosis. Moreover, the risk signature and clinical
characteristics were used to construct a nomogram to predict
the prognosis of advanced patients with HGSOC. Finally, we also
used the gene set enrichment analysis (GSEA) to explore the
differences in the signaling pathways between subgroups
classified by risk signature. Our results indicated that the risk
signature derived from seven NER-related genes could serve as
novel prognostic biomarkers for advanced patients with HGSOC.

MATERIALS AND METHODS

Public Data Collection and Processing
The study design flowchart is presented in Supplementary
Figure S1. The Fragments per Kilobase of transcript per
Million mapped reads (FPKM) for RNA-seq data of 378
ovarian cancer tissues and 88 normal ovarian tissues were
respectively extracted from two datasets, including the Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx), which were downloaded from UCSC Xena (https://
xenabrowser.net/datapages) (Goldman et al., 2018). According
to patients’ clinicopathological information of TCGA, RNA-seq
data and clinical data of 326 advanced HGSOC samples were
eventually enrolled in our analysis. The exclusive criteria were as
follows: 1) patients with stage I–II or unclear stage; 2) patients
with neoadjuvant chemotherapy; 3) patients with well
differentiation or unspecified defined; 4) patients with non-
ovarian primary tumor or other histological types; 5) patients
with survival less than 30 days.We re-annotated the gene symbols
based on the information recorded in the HUGO Gene
Nomenclature Committee (HGNC; http://www.genenames.org)
(Eyre et al., 2006), and the gene expression of both datasets was
unified as log2 (x + 1) to increase comparability. Then, the
“limma” package was used to average the repeated data of
each expression and merge the two datasets with
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normalization in programming language R (version 4.0.1; https://
cran.r-project.org) (Ritchie et al., 2015).

Four independent expression data of advanced patients with
HGSOC (GSE13876, GSE49997, GSE17260, and GSE63885) were
downloaded from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo). Gene expression in
GSE13876 was performed using Operon human v3 ~35 K 70-
mer two-color oligonucleotide microarrays (GPL7759; N = 415);
Gene expression in GSE49997 was performed using ABI Human
Genome Survey Microarray Version 2 (GPL2986; N = 204); Gene
expression in GSE17260 was performed using Agilent-014850
Whole Human Genome Microarray 4 × 44K G4112F (Probe
Name version) (GPL6480; N = 110); Gene expression in
GSE63885 was performed using Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570; N = 101). Then, we integrated
346 standards-compliant samples from three datasets [GSE49997
(N = 166), GSE17260 (N = 110) and GSE63885 (N = 70)] as a
combined validation set based on the exclusive criteria to improve
the sample size, and we executed batch normalization between
these three platforms using the “sav” and “limma” packages in R
to avoid generating unreliable results (Johnson et al., 2007; Leek
et al., 2012). Gene expression values of all GEO datasets were
converted by log2 and for genes with multiple probes, and we
used average values to represent the performance of
specific genes.

The 31 Candidate Genes
We used the database (TCGA, GTEx, and four GEO databases)
for gene screening. A total of 8,466 common genes were selected.
According to previous studies (Friedberg, 2001; Marteijn et al.,
2014), 31 shared genes among TCGA-GTEx and four GEO
datasets related to nucleotide excision repair (NER) were used
for our analysis, including RAD23A, RAD23B, RPA2, RPA3,
ERCC8, POLR2A, POLR2B, POLR2C, POLR2D, POLR2F,
POLR2G, POLR2K, POLR2L, DDB1, DDB2, LIG1, GTF2H1,
GTF2H3, GTF2H5, CUL3, CUL4A, CUL5, RBX1, CCNH, CDK7,
XPA, XPC, ERCC2, ERCC3, ERCC4, and MNAT1.

mRNA Expression Analysis of
31 NER-Related Genes
We first analyzed the mRNA expression levels between
HGSOC tissues and normal tissues by using the “limma”
package with cut-off criteria of p < 0.05. The mRNA
expression profiles of 31 NER-related genes were obtained.
The heatmap and violin plots were presented by “pheatmap”
and “ggplot2” packages in R.

Protein-Protein Interaction Network
Analysis and Correlation Analysis
All 31 NER-related genes were used for the protein-protein
interaction (PPI) analysis with a combined confidence score
≥ 0.9 via the Search Tool for the Retrieval of Interacting Genes
(STRING) (https://string-db.org/) (Szklarczyk et al., 2015).
Pearson correlation analysis was utilized to present the
collinearity among different NER-related genes.

Consensus Clustering Analysis and
Principal Component Analysis
The “ConsensusClusterPlus” package in R (50 iterations, resample
rate of 80%) was applied to explore the clinical implications of the
31 NER-related genes in the TCGA HGSOC cohort. The number
of clusters and their stability were determined by the consensus
clustering algorithm (Kanungo et al., 2002). Then, the TCGA
HGSOC cohort was clustered into different two clusters. To
further confirm the rationality of clustering, principal
component analysis (PCA) was carried out in R to observe the
distribution of gene expression in two clusters. The Kaplan-Meier
method and log-rank test were used to present the difference of
overall survival (OS) between two clusters. The associations
between the clinical characteristics and two different clusters
were analyzed by Chi-square test.

Construction of Gene Signature
Seven candidate genes associated with OS (p < 0.1) were
determined by the univariate Cox regression analysis of
31 NER-related genes; the hazard ratios (HRs) of genes <1 or
>1 were regarded as protective or risk genes, respectively. To
prevent over-fitting in our analysis, the least absolute shrinkage
and selection operator (LASSO) regression analysis was used to
identify the optimal prognostic model out of the selected seven
candidate genes (Goeman, 2010), and genes’ coefficients were
determined based on the best penalty parameter λ. The risk score
for the signature was estimated accurately using the following
formula:

Risk Score � ∑n

i�1CoefipExpi

N is the number of selected genes, Coefi is the regression
coefficient generated by the LASSO regression and Expi is the
expression value of each selected gene. TCGA HGSOC
patients were divided into low- and high-risk groups
according to the median risk score. Kaplan-Meier (K-M)
survival was used to estimate the OS between two risk
groups. In addition, the receiver operating characteristic
(ROC) curves and area under the ROC curves (AUC) were
also performed to estimate sensitivity and specificity. Chi-
square test was used to assess the association between the
clinical characteristics and two risk groups.

Validation of the Prognostic Signature
Similarly, the risk score of each advanced patient with
HGSOC from the GSE13876 and the merged GEO datasets
was calculated based on the formula above. Taking the median
risk score in the TCGA cohort as the cut-off value, HGSOC
patients in both validation sets were divided into high- or low-
groups. The K-M method and log-rank test were employed to
calculate OS with an overall significance level of p < 0.05. The
risk score was identified as an independent prognostic factor
by the method of the univariate and multivariate Cox
regression analyses. Moreover, the prognostic nomogram
based on the risk score of NER-related signature and
clinical-related variables was constructed. The performance
of the prediction model developed was validated by assessing
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the internal calibration curves of the TCGA cohort. To further
confirm the expression of seven selected genes, we analyzed
normal ovarian tissues and serous ovarian cancer tissues
obtained from the Human Protein Atlas (HPA) database.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was used in the TCGA
cohort to investigate the potential biological pathways
underlying the different risk groups defined by the 7-gene
expression signature. Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene sets (v7.1) and phenotype label
(high risk vs. low risk) files were generated and loaded into
the GSEA software (v4.0.3; Broad Institute, Cambridge, MA).
The permutation test run 1,000 times. The pathways with
normalized enrichment score (NSE) absolute value >1,
normalized p-value < 0.05, and false discovery rate (FDR)
q-value < 0.25 were significantly enriched.

Statistical Analysis
Unless otherwise specified, all statistics analyses were
performed with R software. The differences between groups
for the continuous and categorical variables were respectively
assessed by studentʼs t-test or one-way ANOVA and the Chi-
square test. The “limma”, “sva”, “ConsensusClusterPlus”,
“pheatmap”, “ggplot2”, “corrplot”, “pROC”, “rms”,
“survival” packages were used for analysis or visualization
in R. All statistical tests were two-sided and p < 0.05 was
considered statistically significant.

RESULTS

The Expression of 31 NER-Related Genes
Between Tumor Samples and Normal
Control Samples
To better understand the importance of the NER-related genes in
tumor initiation and progression, we firstly investigated
expression levels of NER-related genes in different tissue
samples of the merged TCGA-GTEx dataset. The TCGA-
GTEx cohort comprised 326 advanced patients with HGSOC
and 88 ovaries of healthy donors. The clinicopathological
characteristics of the TCGA HGSOC cohort were listed in
Table 1. We selected 31 NER-related candidate genes among
8,466 shared genes in all datasets for further analysis (Figure 1A).
Then, mRNA expression levels of the 31 genes were presented for
HGSOC along with corresponding normal controls by the
heatmap (Figure 1B). Overall, the expression levels of
13 NER-related genes were significantly increased, and 15
genes were significantly downregulated in HGSOC tissues
when compared to those with normal controls (Figure 1C).
However, the expression levels of three genes (including
POLR2B, ERCC4, and POLR2A) had no significant difference.

The Interaction and Correlation Among the
NER-Related Genes
The interaction relationships among the 31 NER-related genes
were shown by the PPI network, and the number of interactions
for each gene was counted in Figure 2. Our results showed that
the interrelationships among 31 genes were of high closeness and
great complexity (Figure 2A). Except CUL3 and CUL5, the other
29 genes seemed to be the hub genes of the interaction network,
because they had interactions with more than half of the genes
(Figure 2B). We also conducted correlation analysis and
observed that there were various degrees of positive and
negative collinearity among some NER-related genes in
HGSOC (Figure 2C). We believe that the changes in the
correlation of 31 NER-related genes may reflect the inherent
characteristics of antagonistic or synergistic effects between the
corresponding transcribed functional proteins.

Consensus Clustering of NER-Related
Genes Identified Two Clusters of HGSOC
With Different Prognostic Outcomes
Next, TCGA HGSOC samples were selected for the subsequent
consensus clustering analysis. According to the expression
similarity of the 31 NER-related genes, k = 2 could be the
optimal choice when clustering stability datasets increased
from k = 2–9 (Figures 3A–C). We noticed that the
distribution of sample numbers in each group was roughly
balanced, and the interference between groups was minimal in
the two groups when k = 2 (Figure 3C). Hence, TCGA HGSOC
samples were correspondingly classified as two groups (184
samples in cluster1 and 142 samples in cluster2) through

TABLE 1 | The clinical characteristics of the HGSOV cohort in the TCGA database.

Variable Number

Age
Mean (SD) 59.29 (11.30)

Pathological diagnosis
Serous 326

Grade
G2 34 (10.4%)
G3 292 (89.6%)

FIGO stage
IIIA 6 (1.8%)
IIIB 13 (4.0%)
IIIC 256 (78.5%)
IV 51 (15.6%)

Treatment response
CR 183 (56.1)
PR 42 (12.9%)
SD 20 (6.1%)
PD 24 (7.4%)
Unknown 57 (17.5%)

Residual tumor (post-operation)
<1 cm 211 (64.7%)
≥1 cm 87 (26.7%)
Unknown 28 (8.6%)

Abbreviation: HGSOV, High-grade serous ovarian cancers; TCGA, The Cancer Genome
Atlas; SD, Standard deviation; G2, Moderately differentiated; G3, Poorly differentiated;
FIGO, International Federation of Gynecology and Obstetrics; CR, Complete remission;
PR, Partial remission; SD, Stable disease; PD, Progressive disease
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consensus cluster analysis. The clinical characteristics of the two
clusters were shown in Supplementary Table S1. Moreover,
Principal component analysis (PCA) was used to compare the
difference of transcriptional profiles between the two clusters, and
the results exhibited a significant distinction (Figure 3D).
Besides, advanced patients with HGSOC were found to have
the significantly lower OS in the cluster1 than those in the cluster2
(p = 0.021), which suggested that the 31 NER-related genes could
classify the advanced patients with HGSOC at the prognostic level
(Figure 3E). We then analyzed the associations between the
clusters and clinicopathological characteristics. However, no
significant difference was found between two clusters in the

age, grade, stage, treatment response, and residual tumor (all
p > 0.05).

Identification of Prognostic Value and aRisk
Signature Based on NER-Related Genes
To further explore the prognostic value of 31 NER-related genes,
univariate Cox regression analysis was performed based on the
mRNA expression levels of genes from TCGA. The results
demonstrated that seven out of the 13 NER-related genes were
potentially associated with the OS (p < 0.1). Among these seven
genes, only DDB2 and POLR2D were considered as protective

FIGURE 1 | The expression levels of NER-related genes between tumor samples and normal samples in TCGA HGSOC cohort and GTEx normal ovary cohort. (A)
Venn diagram displays that 8,466 shared genes were contained in the TCGA, GTEx, and four GEO datasets. (B) The TCGA and GTEx databases were used to jointly
analyze 31 NER-related genes and the heatmap was used to visualize the expression levels of these genes in each clinical sample. (C) The violin-plot shows the
expression of 31 NER-related genes between tumor tissues and the normal tissues. pp < 0.05, ppp < 0.01, and pppp < 0.001. Abbreviation: HGSOC: high-grade
serous ovarian cancer; TCGA: The Cancer Genome Atlas; GTEx: the Genotype-Tissue Expression project; GEO: Gene Expression Omnibus; NER: Nucleotide excision
repair.
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genes with HR <1, while RPA2, CCNH, XPC, ERCC2, and
ERCC4 were considered as risky genes with HR >1 (Figure 4A).

According to our previous results, the collinearity between
these genes may affect the accuracy of traditional Cox regression
analysis (Figure 2C). Therefore, the LASSO Cox regression
method to the seven potentially prognosis-related genes was

performed to identify the most powerfully prognostic NER-
related genes finally. The LASSO results demonstrated that all
seven genes were chosen to construct the prognostic risk
signature (Figures 4B,C), and the coefficients of selected genes
were shown in Figure 4D. Then, the risk scores were calculated
according to the coefficients, and the median risk score was the

FIGURE 2 | The interaction and correlation among 31 NER-related genes. (A) The PPI network of the 31 NER-related genes was constructed by STRING database
and each line represents a reported physical protein–protein interaction between nodes. (B) The number of bar graphs represents the total connections of each node to
other nodes frequency. (C) The Pearson correlation analysis shows the collinearity among 31 NER-related genes. Abbreviation: NER: Nucleotide excision repair; PPI:
Protein-protein interaction; STRING: the Search Tool for the Retrieval of Interacting Genes.
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cut-off value. A total of 326 HGSOC patients were divided evenly
into the high- and low-risk groups. The distributions of the 7-
gene signature-based risk scores, OS status, and mRNA
expression profiles were displayed in Figures 4E–G. The K-M
survival plot showed that the OS of the advanced patients with
HGSOC was significantly worse in the high-risk group than that
in the low-risk group (p = 5.707e-05) (Figure 4H). The 5-year OS
was 14.1% in high-risk group and 27.0% in low-risk group. The
predicting power of the risk signature showed well-prediction
efficiency with the AUC value equal to 0.693 (Figure 4I). Next,
the associations between the risk groups and clinicopathological
characteristics were also investigated in the present study
(Figure 4J and Supplementary Table S2). The results showed
that except treatment response (p = 0.049), there were no
significant differences between the high- and low-risk groups
in the age, grade, stage, and residual tumor (all p > 0.05).

Moreover, the Human Protein Atlas (HPA) database was
used to validate the cellular sub-localization and expression
patterns of the seven selected genes in serous ovarian cancer
tissues and normal ovarian tissues at the protein levels
(Figures 5A–G). HPA analysis showed that at protein

levels, the expressions of DDB2, POLR2D, CCNH, and
RPA2 in HGSOC tissues and normal controls were similar
to the mRNA level changes and were mainly located in the
nucleus (Figures 1C, 5). However, XPC and ERCC2 did not
show significant distinctions at the protein levels between
serous ovarian tissues and normal ovarian tissues (Figures
5C,E). The heterogeneity between the HPA data and TCGA
RNA-seq data may be ascribed to the differences in post-
transcriptional regulation. Altogether, the results further
verified that the regulation of NER-related genes was highly
disordered in serous ovarian cancer.

Validation of the Risk Signature to Predict
OS of Advanced Patients With HGSOC
To confirm that the NER-related genes based on classifier had
similar prognostic value in different cohorts, we assessed the
samples in GSE13876 (n = 415) and the merged GEO dataset (n =
346), respectively. According to the median risk score as the cut-
off value in the TCGA HGSOC cohort, 192 (46.3%) patients were
classified as low-risk, and 223 (53.7%) as high-risk in GSE13876;

FIGURE 3 | Consensus clustering and overall survival of TCGA HGSOC patients in the different two clusters. (A) Consensus clustering CDF for k = 2 to 9. (B)
Relative change in area under CDF curve for k = 2 to 9. (C) The TCGA HGSOC patients was divided into two distinct clusters when k = 2. Consensus clusteringmatrix for
k = 2. (D) PCA of the total mRNA expression profile in the TCGA dataset. HGSOC patients in the cluster1 subgroup are marked with red, HGSOC patients in cluster2 are
marked with green. (E) Kaplan–Meier OS curves for different clusters. (F) No significant difference was found for the clinicopathologic features between cluster1
and cluster2.
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255 (73.7%) patients were classified as low-risk, and 91 (26.3%) as
high-risk in the merged GEO datasets. The corresponding 5-year
OS was 24.1% for the high-risk group and 35.0% for the low-risk
group in GSE13876 (HR: 1.394, 95% CI: 1.107–1.754; p = 3.901e-
03; Figure 5H). Similarly, in the merged GEO validation set, the
5-year OS was 35.3% for the high-risk group and 67.8% for the
low-risk group (HR: 2.300, 95%CI: 1.663–3.181; p = 2.035e-07;
Figure 5I). The distributions of the risk scores, OS status, and
mRNA expression profiles of the two validation sets were
respectively conducted (Figures 5J,K). As shown in Figures
6A–F, the worse OS rate was observed in the high-risk group
compared to that in the low-risk group for patients with FIGO
stage IIIC (p = 6.78e-04), or patients with CR/PR (p = 1.214e-03),
or patients with optimal cytoreductive surgery (p = 2.263e-03), or
those with non-optimal cytoreductive surgery (p = 0.025).
However, no significant difference was observed for OS
between high- and low-risk groups for patients with FIGO
stage IV (p = 0.116), or patients with SD/PD (p = 0.245) due
to sample size limitation.

Nomogram Combined NER-Related Risk
Signature and Clinical-Related Features to
Predict Patients’ OS
To investigate whether the prediction was better by the risk
signature constructed from mRNA expression than from any
other clinical-related features, various variables, such as age,
stage, grade, treatment response, and residual tumor were
included as the potential prognostic factors. In the TCGA
HGSOC cohort, the results of both univariate and multivariate
analysis revealed that treatment response and risk signature were
significantly associated with OS (Figures 7A,B). Due to the
potential impact of age on OS (p = 0.077), a nomogram that
combined the age, treatment response, and risk signature was
developed to predict 3- or 5-year survival of advanced patients
with HGSOC (Figure 7C). The calibration plots for the
nomogram presented the acceptability and conformance in the
original cohort between the nomogram forecast and actual
observation for the 3- or 5-year OS (Figure 7D). Conclusively,
we constructed a nomogram combining various clinical-related

FIGURE 4 | Construction of risk signature based on seven NER-related genes. (A–D) The process of constructing the signature based on seven NER-related
genes. (A) Univariate Cox regression analysis of the NER-related genes was identified seven genes that potentially correlated with OS (p < 0.1). (B) LASSO algorithms
was used to identify and evaluate the 7-gene signature in the TCGA HGSOC cohort and seven genes were finally selected and used to develop a risk signature to predict
patients prognosis. (C) LASSO coefficient profiles of the seven genes based on the TCGA HGSOC cohort. (D) The coefficients estimated by multivariate Cox
regression via LASSO are presented. (E–G) Visualization of the association of the risk scores with survival status and gene expression profiles in HGSOC. (H) TheOSwas
remarkably worse in the high-risk group than that of low-risk group. (I) ROC curve was used to evaluate the prediction efficiency of the risk signature. (J) Significant
differences were found for the treatment response between high- and low-risk groups. Abbreviation: NER: Nucleotide excision repair; OS: Overall survival; LASSO: Least
absolute shrinkage and selection operator; TCGA: The Cancer Genome Atlas; HGSOC: Highly-grade serous ovarian cancer; ROC: Receiver operating characteristic.
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FIGURE 5 | The protein expression levels of seven NER-related genes by IHC staining and the validation of the prognostic signature. (A) Representative IHC
staining of RPA2 in serous ovarian cancer and normal ovarian tissues. (B) Representative IHC staining of CCNH in serous ovarian cancer and normal ovarian tissues. (C)
Representative IHC staining of XPC in serous ovarian cancer and normal ovarian tissues. (D) Representative IHC staining of DDB2 in serous ovarian cancer and normal
ovarian tissues. (E) Representative IHC staining of ERCC2 in serous ovarian cancer and normal ovarian tissues. (F) Representative IHC staining of POLR2D in
serous ovarian cancer and normal ovarian tissues. (G) Representative IHC staining of ERCC4 in serous ovarian cancer and normal ovarian tissues. (H) For advanced
patients with HGSOC, the high-risk group had a significantly worse OS than that in the low-risk group in GSE13876. (I) For advanced patients with HGSOC, the high-risk

(Continued )
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factors. NER-related risk signature could provide the most useful
and accurate information for the prognosis of these advanced
patients with HGSOC.

Gene Set Enrichment Analysis of High-Risk
and Low-Risk Groups
To better understand the significance of risk signature based
NER-related genes, GSEA analysis was performed to scrutinize
the signaling pathways between the high-risk group and low-risk
group from the TCGA cohort. Intriguingly, genes involved in the
following biological processes/signaling pathways showed active
expression in the high-risk group: mTOR signaling pathway (NSE
= 2.15, normalized p < 0.0001, FDR q = 0.009), inositol phosphate
metabolism (NSE = 2.14, normalized p < 0.0001, FDR q = 0.007),
phosphatidylinositol signaling system (NSE = 2.13, normalized
p < 0.0001, FDR q = 0.006), MAPK signaling pathway (NSE =
1.97, normalized p < 0.0001, FDR q = 0.014), and VEGF signaling
pathway (NSE = 1.94, normalized p < 0.0001, FDR q = 0.018). In
contrast, two downregulated biological processes/signaling
pathways were observed in the high-risk group: DNA
replication (NSE = -1.82, normalized p = 0.024, FDR q =
0.144) and spliceosome (NSE = -1.80, normalized p = 0.037,
FDR q = 0.112) (Supplementary Figure S2). These results above
showed the risk signature identified based on the seven NER-
related genes were closely associated with the malignancy of
HGSOC.

DISCUSSION

Serous ovarian cancer was divided into low-grade serous ovarian
cancer and HGSOC, and they had significantly different features
in genomics, clinical manifestations, origin, and prognosis
(Schmeler and Gershenson, 2008). The previous study initially
explored the value of a single NER-related gene in HGSOC
(Gayarre et al., 2015), but we considered that it failed to
provide a robust predictive efficacy due to the expression of a
single gene restricted by multiple factors. Therefore, we
comprehensively analyzed the specific value of 31 NER-related
genes in HGSOC. Our results demonstrated that the expression
levels of NER-related genes were closely associated with the
prognostic outcomes of advanced patients with HGSOC.
Firstly, we compared the expression levels of 31 NER-related
genes using the merged TCGA-GTEx dataset and found that
most genes were abnormally expressed in HGSOC. Then, two
clusters (cluster1 and cluster2) of HGSOC with completely
different prognosis were identified through consensus
clustering. Also, based on the data of TCGA HGSOC, a
prognostic risk signature of seven NER-related genes was

retrieved through the LASSO algorithm. Advanced patients
with HGSOC were assigned into two risk subgroups with
significant differences for OS according to the risk signature.
More importantly, in the external validation datasets, the risk
signature was further successfully confirmed as a highly robust
prognostic indicator. In addition, a stratified analysis based on
clinical factors demonstrated the robustness of the risk signature
in prognostic evaluation, and it also implied that the difference in
survival based on the risk signature was more likely to be
associated with the tumor inherent biological characteristics.
Taking advantage of the risk signature, we constructed a
nomogram including 7-gene signature and clinical-related
factors (age and treatment response) to predict OS of
advanced HGSOC patients. Finally, the GSEA analysis
explored the differences in oncology-related pathways and key
biological processes between the two risk subgroups classified
based on the risk signature. Overall, our nomogram could be used
as a prognostic classification tool and help clinicians make
individualized therapeutic strategies for advanced patients with
HGSOC.

NER is a complex biochemical process that requires
multiple proteins assemble in an ordered at base damaged
sites and then function as a multi-protein complex (De Boer
and Hoeijmakers, 2000; Hoeijmakers, 2001). In our research,
we also noticed the complex association between various genes
expression levels and protein interactions in the NER pathway
of HGSOC patients (Figure 2). Surprisingly, two clusters with
distinctive OS were identified based on 31 NER-related genes
consensus clustering analysis (Figure 3), which indicated the
practical possibility of further distinguishing the HGSOC
patients at the molecular level.

We also identified a risk signature of seven genes consisting
of ERCC2, ERCC4, POLR2D, DDB2, XPC, CCNH, and RPA2
that predicts OS in the TCGA and GEO datasets. ERCC2 single
nucleotide polymorphisms (SNPs) were found to be associated
with an increased risk of ovarian cancer (Bernard-Gallon et al.,
2008; Bicher et al., 1997). The same is applied for ERCC4
(Osorio et al., 2013). POLR2D is also known as DNA-directed
RNA polymerase II, which was associated with shorter disease-
free survival in prostate cancer (Yamada et al., 2018). In
contrast, our results showed that POLR2D was a protective
factor for the OS in HGSOC patients (Figure 4A), and this
difference may attribute to the fact that the same gene may play
different roles in the occurrence and development of different
cancers. The other protective factor discovered in our study
was DDB2 (Figure 4A), and it was reported that DDB2 could
repress ovarian cancer stem cell properties (Cui et al., 2018). In
addition, the highly expressed DDB2 could enhance the
sensitivity of ovarian cancer cells to cisplatin by increasing
cell apoptosis (Barakat et al., 2010). Moreover, downregulation

FIGURE 5 | group had a significantly worse OS than that in the low-risk group for the combined GEO datasets. (J) Visualization of the association of the risk scores with
survival status and gene expression profiles in GSE13876. (K) Visualization of the association of the risk scores with survival status and gene expression profiles in the
combined GEO datasets. Abbreviation: T: Serous ovarian cancer; N: Normal ovarian tissue; NER: Nucleotide excision repair; HPA: The human protein atlas; IHC:
Immunohistochemistry. GEO: Gene Expression Omnibus; HGSOC: Highly-grade serous ovarian cancer; OS: Overall survival.
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FIGURE 6 | Differences in survival between high- and low-risk groups stratified by clinicopathological factors in TCGA cohort. (A) The OS was remarkably worse in
the high-risk group than that of low-risk group in FIGO stage IIIC patients. (B) The low-risk group showed a better prognosis trend than the high-risk group in FIGO stage
IV patients. (C) Among patients who achieved CR or PR after treatment, the OS of the high-risk group was also shorter than that of the low-risk group. (D) Among
patients who achieved SD or PD after treatment, there was no significant difference in OS between the high-risk group and the low-risk group. (E) The OS was
remarkably worse in the high-risk group than that of low-risk group among patients with optimal cytoreductive surgery. (F) The OSwas remarkably worse in the high-risk
group than that of low-risk group among patients with non-optimal cytoreductive surgery. Abbreviation: OS: Overall survival; CR: Complete remission; PR: Partial
remission; SD: Stable disease; PD: Progressive disease.
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FIGURE 7 | Nomogram development of 7-gene signature to predict the risk of survial in advanced patients with HGSOC. (A) Univariate Cox regression analysis of
the risk score and clinicopathological factors to identify the indicators that were significantly associated with OS. (B)Multivariate Cox regression analysis of the risk score
and clinicopathological parameters to reveal the independent prognostic factors. (C) A nomogram was constructed to predict three- or 5-year survival. (D) Calibration
curves of the nomogram to predict 3-or 5-year OS in TCGA internal validation. The actual OS is plotted on the y-axis; nomogram predicted probability is plotted on
the x-axis. Abbreviation: NER: Nucleotide excision repair; HGSOC: Highly-grade serous ovarian cancer; OS: Overall survival.
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of XPC could also enhance the sensitivity of ovarian cancer to
cisplatin (Zhang et al., 2015), and XPC SNPs were correlated
with survival outcomes of ovarian cancer treated with
platinum-based chemotherapy (Kang et al., 2013). Our
results also demonstrated that the low-risk group was
associated with better treatment response, which meant that
these patients had upregulated DDB2 and downregulated XPC
expression and were more sensitive to chemotherapy
(Figure 4J). In addition, CCNH was related to the
promotion of cancer cell migration (Wang et al., 2013), and
RPA2 expression was an independent predictor of adverse
outcome in ovarian cancer (Levidou et al., 2012). Taken
together, these findings revealed the universal importance of
NER-related genes, and indicated that these inhibitor or
promotor genes in cancer development were interdependent.

The mechanisms were further investigated to reveal the causes
of the different prognosis of the two HGSOC risk subgroups
stratified by the 7-gene signature. GSEA demonstrated that some
pivotal signaling pathways and biological processes were
significantly enriched in the high-risk group with poor
survival, including inositol phosphate metabolism, MAPK
signaling pathway, mTOR signaling pathway,
phosphatidylinositol signaling system, and VEGF signaling
pathway. It was reported that inositol phosphate recycling
regulated glycolytic and lipid metabolism that drove cancer
aggressiveness (Benjamin et al., 2014). It was known that
MAPK signaling pathway, mTOR signaling pathway, and
VEGF signaling pathway were crucial in tumorigenesis,
progression, and drug therapy (Pópulo et al., 2012; Santarpia
et al., 2012; Apte et al., 2019). In the low-risk group, GSEA
enriched two significant biological processes related to cancer,
including DNA replication and splicesome (Herrick and
Bensimon, 2009; Ladd et al., 2013). In the current study, the
cellular process of NER-related DNA repair was consistent with
the biological function of these identified signal pathways. DNA
damage and repair processes affect most of all aspects of
biological processes, including RNA metabolism, protein
translation, and modification. Therefore, the different clinical
phenotypes (high-risk group and low-risk group) were further
supported by the difference in signal pathways and biological
processes.

Despite encouraging findings in the present study, several
limitations still exist. First of all, our results are mainly based on
bioinformatics analysis. Although there are multiple datasets for
mutual verification, experimental and clinical data will be needed
to verify our results in the future. Secondly, although the risk
signature and nomogram showed good prediction accuracy in the
internal verification, their performance is still warranted
validation in different HGSOC populations. Finally, our study
did not contain clinicopathological information such as the scope
of surgical resection and specific chemotherapy drugs, since
TCGA did not cover such information, and the treatment
standard for advanced patients with HGSOC has been
controversial.

CONCLUSION

Taken together, we profiled the sharply altered NER-related genes
betweenHGSOC and normal samples, whichmay play a vital role in
the progression of HGSOC. More importantly, a robust risk
signature that was significantly associated with the clinical
outcome of HGSOC was constructed and validated in two
different GEO validation sets. In addition, we also developed a 7-
gene nomogram containing the risk signature and clinical-related
risk factors, which may aid the individualized prediction of the
prognosis of advanced patients with HGSOC. Finally, further
research on these genes may provide new insights into the
potential relationship between the NER repair pathway and
HGSOC prognosis.
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