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Ehlers-Danlos Syndromes (EDSs) are a group of connective tissue disorders,
characterized by skin stretchability, joint hypermobility and instability. Mechanically,
various tissues from EDS patients exhibit lowered elastic modulus and lowered
ultimate strength. This change in mechanics has been associated with EDS
symptoms. However, recent evidence points toward a possibility that the comorbidities
of EDS could be also associated with reduced tissue stiffness. In this review, we focus on
mast cell activation syndrome and impaired wound healing, comorbidities associated with
the classical type (cEDS) and the hypermobile type (hEDS), respectively, and discuss
potential mechanobiological pathways involved in the comorbidities.
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INTRODUCTION

Ehlers-Danlos Syndromes (EDSs) are a group of connective tissue disorders (Malfait et al., 2017).
Currently, within the 2017 classification system, the disorders are grouped into 7 different subclasses with
one more recently discovered type having yet to be named and fitted in the classification system (Malfait
et al., 2017; Blackburn et al., 2018). The genes involved in every type except one have been identified
(Malfait et al., 2017). Most of identified genes, if not all, are associated with components within collagen
matrix, e.g., collagen I, III, V, or with assembly or crosslinking of the procollagen fibrils, e.g., procollagen
N-proteinases, lysyl hydroxylase or tenascin XB, etc. Accordingly, all EDS subclasses exhibit some level of
changes in collagen microarchitecture (Royce et al., 1990; Hausser and Anton-Lamprecht, 1994; Burch
et al., 1997; Colige et al., 2004;Malfait et al., 2007; Fukada et al., 2008; Rohrbach et al., 2011; Hermanns-Lê
et al., 2012; Kapferer-Seebacher et al., 2016; Blackburn et al., 2018; Van Damme et al., 2018; Ayoub et al.,
2020; Delbaere et al., 2020; Kosho et al., 2020). Each EDS subclass is associated with stretchiness or
rupture of skin and artery or hypermobility of joint (Bowen et al., 2017; Brady et al., 2017; Byers et al.,
2017; Tinkle et al., 2017; Blackburn et al., 2018). Despite identified genetic defects, molecular explanation
of how the genetic defects lead to clinical phenotypes that are assessed for EDS subclass determination has
been unclear (Malek and Köster, 2021). Since defected genes are related to collagen formation, it has been
assumed that microarchitectural changes due to those genetic defects can give rise to clinical abnormality
exhibited in the EDS patients (Kobayasi, 2004). However, recent evidence shows that the structure alone is
not a sole factor that determines clinical severity (Proske et al., 2006; Hermanns-Lê et al., 2012; Angwin
et al., 2019). As an alternative, mechanobiological factors appear to be a key player that induces the EDS
symptoms. For example, changes in adhesion and cytoskeletal organization, key mediators for
mechanotransduction, are observed, along with defects in migration and contractility, in dermal
fibroblasts from cEDS, hEDS and vEDS (Viglio et al., 2008; Zoppi et al., 2018). How EDS affects
fibroblast dysfunction has been well discussed in a recent review article (Malek and Köster, 2021).
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However, how extracellular changes in EDS, particularly in the two
most common types, hypermobile type (hEDS) and classical type
(cEDS), can promote comorbidities of EDS have just begun to be
revealed. In this review, we discuss how aberrant collagenmechanics
can lead to mast cell activation syndrome and impaired wound
healing, comorbidities found in hEDS and cEDS, respectively. The
review begins with introducing findings about changes in tissue
stiffness and extensibility in both EDS types. Then we summarize
recent discoveries regarding potential linkages between mechanics
and the two comorbidities and predict potential mechanobiological
pathways involved in each comorbidity.

Ehlers-Danlos Syndrome Pathophysiology
Associated With Altered Collagen
Microstructure
Out of 14 types (Malfait et al., 2017), most patients have one of the
two most common types, hEDS and cEDS (Malfait et al., 2010;

Tinkle et al., 2017). hEDS is characterized by hypermobile joints
and joint instability along with other minor signs of reduced
strength of connective tissues such as mitral valve prolapse,
piezogenic papules, and soft stretchy skin (Tinkle et al., 2017).
cEDS has similar symptoms to hEDS although cEDS-induced
joint involvement is generally less severe whereas skin
involvement is more severe than ones by hEDS. Skin in
patients with cEDS is fragile, soft, and stretchy. Wounds take
longer to heal and result in atrophic scaring (Bowen et al., 2017).

One common component that is altered in both patients with
hEDS and cEDS is collagen fibril structure. In both types, large,
irregularly shaped collagen fibrils have been observed from the
skin biopsy samples (Figure 1A). In addition, in patients with
cEDS, overall collagen fibril diameter has been found to be larger
than patients without EDS (Hausser and Anton-Lamprecht,
1994). In cEDS, the increase in diameter is caused by
haploinsufficiency in collagen V. Unlike collagen I, which has
a straight triple helix structure, the N-terminal end of the collagen

FIGURE 1 | Collagen in EDS is irregular in microarchitecture, softer in mechanical behavior, and might induce mast cell degranulation. (A) Transmission electron
microscopy images of normal skin biopsy (A1), adapted from (Malfait et al., 2013), cEDS skin biopsy (A2), adapted from (Angwin et al., 219), and hEDS skin biopsy (A3),
adapted from (Hermanns-Lê et al., 2012). Note that collagen fibrils are enlarged (black arrowheads) and have irregular shapes in (A2), and that occasional irregular fibrils
depicted by black arrowheads in (A3). Scale bar: 200 nm for all panels. (B) A typical nonlinear stress-strain curve of a skin tissue of control (dotted line) and EDS (red
line). Note that EDS shifts the curve to the softer regime (light brown arrow) and that the softening is distinctly present only in the small stress regime (R1). For high stress
regime (R2), there is no significant difference between control vs. EDS skin. Illustrated graph recreated by adapting (Grahame and Beighton, 1969). (C) Potential
mechanobiological mechanism for MCAS in hEDS. (C1) In extracellular environment from control cases, stiff-enough collagen, intertwined with fibronectin, provides
small strain or small magnitude of vibration. Amast cell adjusts its own stiffness by adjusting expression level and organization of vimentin intermediate filaments (orange),
which help secure granules inside the cell. Vimentin is connected to F-actin and integrin αVβ3, α5β1, and αIIbβ3.via plectin. F-actin could also be in high tension due to the
stiffness sensing via integrin adhesions. The stable vimentin and increased cell stiffness allows only small strain or vibration, which can help prevent excessive
degranulation. (C2) In hEDS, irregular collagen organization results in overall low ECM stiffness, allowing large strain or vibration. The low ECM stiffness is sensed by
integrin adhesions, which induces down-regulation of F-actin tension and cell stiffness by poor vimentin expression and polymerization. This results in poor vimentin
organization around granules, unstable immobilization of granules, and ultimately promotion of excessive degranulation. Vimentin filaments were illustrated for only one
part of a cell to contrast the encapsulation vs. loose organization between WT vs. hEDS, respectively.
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V is globular. This structural difference results in steric hindrance
limiting the diameter of collagen fibrils (Mak et al., 2016).
Collagen V haploinsufficiency thus increases collagen diameter
by allowing parallel collagen fibril assembly. The cause for the
abnormal morphology in collagen fibrils in hEDS tissue is
unknown (Tinkle et al., 2017). This altered collagen
architecture appears to trigger different adhesion and
cytoskeletal response by fibroblasts within connective tissue
(Zoppi et al., 2018). For example, in hEDS, cEDS, and vEDS,
which have different sources for altered collagen architectures,
fibroblasts display similar changes in gene expression for integrin
heterodimer expressions (Chiarelli et al., 2019b). This finding
suggests that regardless of underlying cause of abnormal ECM
architecture, the altered ECM architecture itself can induce
fibroblasts dysfunction. One important parameter controlled
by the microarchitecture is the mechanical stiffness, which we
will focus in this review.

Soft Tissue Mechanical Properties
Thick fibers in collagen gel have been putatively associated with
high local stiffness. Collagen gels in vitro with thicker fibrils has
been measured stiffer than collagen consisting of thin fibers,
which has also been computationally modeled via fiber-based
mechanics model (Seo et al., 2020). In cEDS tissue, however, this
positive correlation has not been observed. Rather, the cEDS
connective tissue, where collagen fibrils are larger than normal,
has been reported softer than normal (Hausser and Anton-
Lamprecht, 1994; Nielsen et al., 2014). A rheological
measurement, done by measuring skin deformation curve over
time in response to a sudden constant vacuum force followed by
relaxation, has also shown that cEDS tissue is consistently softer
than normal skin (Catala-Pétavy et al., 2009). This finding implies
that the fiber diameter alone cannot predict the bulk mechanical
property when it co-resides with other cells and ECM
components as in the skin. The findings also suggests that
reconstituted collagen gel might not represent the mechanical
properties of collagen in the skin because it lacks the bundling of
fibrils into fibers and the anisotropic orientation of collagen fibrils
(Piérard and Lapière, 1987; Salvatore et al., 2021). Moreover, as
seen in Figure 1A2, not all of collagen fibrils in skin appear to be
larger in diameter in cEDS, but there are significant number of
thinner fibers as well. Yet further systematic study is needed to
elucidate the functional relationship between heterogeneous
collagen organization and gel stiffness.

In hEDS, it is likely that the skin tissue is soft and
hyperextensible, but not as much as in cEDS. When measured
using a soft tissue stiffness meter, which measures the percentage
change in distance between two dots drawn on the back of the
hand when the skin is stretched (Farmer et al., 2010), a significant
increase in extensibility has been observed in the hEDS group
compared to control group (Remvig et al., 2009). However,
depending on the test methods or the sample size, such
significant extensibility has not been always guaranteed. When
a suction cup method (Piérard et al., 2013) was used, for example,
the increase in extensibility became statistically insignificant
(Remvig et al., 2009). Using the same method, the reduction
in the elasticity has been observed only in cEDS but not in hEDS

(Catala-Pétavy et al., 2009). It is worth noting that small sample
sizes were used in both studies, e.g., with 6 and 18 people,
respectively, in the hEDS groups, which may not have
provided sufficient statistical power. For hEDS, the connective
tissue in other tissues than in the skin appears to be more
distinctly and consistently softer than control group. When
non-invasively measured using dynamometer during isometric
plantar flexion, reduction in Achilles tendon stiffness has been
observed from hEDS patients, along with larger maximal joint
angle (Rombaut et al., 2012). Similarly, when the strain
elastography, which estimates tissue elasticity by measuring
perpendicular deformation in response to small strain induced
by ultrasound, was used, the relative stiffness, represented by
strain ratio and strain index, has been found to be lower in the
brachioradialis muscle, patellar tendon, and Achilles tendons of
patients with hypermobile disorder (Alsiri et al., 2019).

Importantly, as in typical animal soft tissue, the human skin
tissue exhibits a nonlinear mechanical behavior (Figure 1B,
dotted line) (Fung, 1993; Xu et al., 2008; Annaidh et al.,
2012). Strain-stiffening behavior has been associated with
continuous alignment of collagen with stretch (Bancelin et al.,
2015). EDS, especially classical type, lowers and widens the stress-
strain curve in low stress regime (Figure 1B, red line), likely due
to altered microstructural change in collagen organization
(Bancelin et al., 2015). Accordingly, depending on the strain
regime where the skin-extending test is performed, the acquired
tissue elasticity can be widely variable. When the second strain
regime was used for the elastic modulus estimation, the estimated
stiffness displayed no statistical difference between EDS specimen
and control ones (Grahame and Beighton, 1969). In contrast, the
EDS tissue’s elastic modulus is significantly reduced when it is
estimated from the first, i.e., small, strain regime (Grahame and
Beighton, 1969).

Mast Cell Activation Syndrome and
Mechanosensitivity of Mast Cells Within
Hypermobile Type Ehlers-Danlos
Syndromes
Mast cell activation disorder (MCAD) is a family of
immunological disorders in which mast cells degranulate,
i.e., release their granules containing histamine and other
substances, unusually easily (Hamilton, 2018). Mast cells are
derived from multipotential hematopoietic stem cells (MHSCs)
which then differentiate into mast cell progenitors (MCPs). These
MCPs then leave the circulatory system and migrate into
connective and mucosal tissue where they proliferate and
differentiate into mast cells (Kitamura et al., 2007). Mast cells
are filled with granules filled histamine, heparin, and various
cytokines among other pro inflammatory molecules. When
triggered, mast cells degranulate, i.e., release the contents of
their granules into the surrounding tissues (Krystel-
Whittemore et al., 2016). Accordingly, too early and/or too
much degranulation, which is the case of MCAD, can cause
allergic reactions. Typical symptoms of these reactions are pain,
fatigue, itching, flushing, dizziness, abdominal cramps, and
diarrhea (Jennings et al., 2018).
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Mast cell activation syndrome (MCAS) is a subtype of MCAD
characterized by mast cell activation due to abnormal sensitivity
of mast cells without being associated with mast cell proliferation.
Around 25% percent of patients with hEDS have MCAS (Mcgillis
et al., 2020). However, the MCAS-hEDS association has not been
robustly supported with clinical evidence partly due to changing
criteria of hEDS classification (Kohn and Chang, 2020). MCAS
causes allergic symptoms when a patient is exposed to ‘a trigger’
(Hamilton, 2018). The antigen within the trigger promotes
immunoglobulin E production. Binding of antigen to IgE
triggers degranulation process (Krystel-Whittemore et al.,
2016). The trigger includes matters that cause classical allergic
responses such as food. However, it also includes heat and
mechanical stimuli.

One mechanical stimulus is the physical vibration (Jennings
et al., 2018). hEDS, by being easily deformable, likely increases
probability to allow higher magnitude of vibration that triggers
degranulation. A mediator for this vibration-induced
degranulation is a transmembrane protein adhesion G protein-
coupled receptor E2 (ADGRE2). ADGRE2 consists of an
extracellular α subunit and a transmembrane β subunit. The
protein is initially expressed as one unit but undergoes
posttranslational modification by cleaving itself into an α
subunit and a β subunit, held together by non-covalent bonds.
While the α subunit is attached to the β subunit, it remains in its
inactive state. Vibration can activate ADGRE2 by breaking its α
subunit away from β subunit, which triggers degranulation
(Olivera et al., 2018). Whether ADGRE2 is overexpressed in
hEDS, or whether the magnitude of the vibration is a determinant
of ADGRE2’s conformational change is yet to be determined. An
ex vivo study supports the idea in the latter by showing that the
magnitude of mechanical strain is a determinant of
degranulation. When fibrotic rat lungs were ventilated at
either low, control pressure of 5 cmH2O or high pressure of
30 cmH2O, more mast cell degranulation was observed in the
high pressure-based ventilation group than in a lower pressure
condition. This demonstrates that strain-induced degranulation
is also strain magnitude-dependent (Shimbori et al., 2019).

Another component that may endow degranulation process
with mechano-sensitivity is an intermediate filament vimentin.
Intermediate filaments play a role in determining cell stiffness by
resisting compression (Brown et al., 2001; Ingber, 2003). In mast
cells, vimentin encapsulates the granules and immobilize them
within the cytoplasm (Dráber et al., 2012). Upon degranulation,
vimentin filaments rapidly depolymerize, which facilitates
exocytosis of the granule’s contents (Dráber et al., 2012). Mast
cells in a vimentin-deficient mouse model have shown easier
degranulation than the control (Dráber et al., 2012). Cells adapt
their own stiffness to the stiffness of their underlying substrate via
remodeling of the cytoskeleton (Yeung et al., 2005; Solon et al.,
2007). Although not explicitly reported, it is possible that mast
cell stiffness could be lowered due to reduced elasticity of the
collagen and the ECM, which could elicit remodeling of the
vimentin filaments. Vimentin expression is correlated with
substrate stiffness (Murray et al., 2014). This makes vimentin
a protein of particular interest in the investigation of the
pathophysiology behind in the link between hEDS and MCAS.

To be mechanosensitive, cells need to anchor themselves to the
ECM. Mast cells anchor themselves to fibronectin in the ECM
using integrins αVβ3, α5β1, and αIIbβ3 that bind to the RGD motif
(Fowlkes et al., 2013). When treated with echistatin, an inhibitor
for αVβ3, α5β1, and αIIbβ3 by competing with RGD sequence for
integrin binding, mast cells have shown reduction in
degranulation in a dose-dependent manner: cells treated with
the highest dose of echistatin has shown the least degranulation,
comparable to the static control (Fowlkes et al., 2013). This
evidence suggests that the RGD-binding family of integrins are
mediators for strain-induced degranulation in mast cells. As these
RGD-binding integrins do not bind collagen (Humphries et al.,
2006), it is possible that the “softness” of the collagen is sensed by
mast cells through cells’ binding to fibronectin and fibronectin-
collagen binding. It is worth being reminded of the mechanics
that the resultant stiffness of the twomaterials connected in series
is lower than that of the softer material.

These pieces of evidence point toward a potential
mechanobiological interpretation about how mast cells in
hEDS tissue might be easier to degranulate. As illustrated in
Figure 1C, wild-type (WT) ECM is relatively stiff enough owing
to well-organized collagen network. WT mast cells bind the ECM
via fibronectin-binding integrins. Potential strain or vibration, in
response to the cell-generated force or external forces, is relatively
small due to high ECM stiffness. Mast cells adapt to the high ECM
stiffness by upregulating F-actin tension and vimentin expression
and stiffness. The stable and stiff-enough vimentin protect mast
cells from excessive degranulation (Figure 1C1). In hEDS,
however, a large strain or vibration magnitude is possible due
to irregular collagen network and resulting softness in the ECM.
Low stiffness might disable the contractility in F-actin and
expression and organization of vimentin, which ultimately
facilitate the cytoplasm mechanically unstable. The larger
strain and unstable vimentin potentially help promote
excessive degranulation (Figure 1C2). Another possibility is
that the integrin adhesions can be a direct input for IgE’s
activation because a study with rat basophilic leukemia mast
cells has shown the adhesion protein (e.g., talin, vinculin and
paxillin)-IgE colocalization and connection to F-actin (Torres
et al., 2008). Softened ECM can thus induce a more direct effect
on IgE via weak integrin adhesions forming in hEDS.

Wound Healing in Classical Type
Ehlers-Danlos Syndromes
One of the more challenging dermatological issues caused by EDS
to treat is impaired wound management. Because of the fragility,
the skin of cEDS patients splits open easily (Malfait et al., 2010).
Surgical repair of these wounds is complicated by the fragility of
skin in cEDS, e.g., stitches ripping through the skin. Once
occurred, wounds in cEDS tend to take significantly longer to
heal than wounds in control patients (Bowen et al., 2017).
Furthermore, even after closure, widening of the scars tends to
occur if tension is placed on them. Scars in cEDS are frequently
widened and atrophic (Bowen et al., 2017).

Collagen V mutations present in cEDS have been recently
associated with downregulation (e.g., SPP1, EDIL3, and PAPPA)
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or upregulation (e.g., IGFBP2 and C3) of genes in fibroblasts,
which encode soluble and matricellular proteins involved in
wound healing in vivo (Chiarelli et al., 2019a). Reduced
migration and impaired wound healing have been observed
from in vitro fibroblasts as well (Viglio et al., 2008). Chiarelli
and colleagues have found that the changes in gene expressions
can be replicated by mutated collagen V expression (Chiarelli
et al., 2019a). Pathways from collagen V mutation to gene
expression for wound healing, however, have remained to be
investigated.

A factor that might play a critical role in the impaired wound
healing in cEDS is the ECM stiffness that is significantly lowered
in the case of cEDS due to lack of collagen V. The change in
stiffness can affect the wound healing in many ways. First,
fibroblasts’ differentiation to myofibroblasts, which plays an
important role in wound healing, is regulated by the ECM
stiffness (Huang et al., 2012). During wound healing,
fibroblasts migrate from the edges of the wound and
differentiate into myofibroblasts. Myofibroblasts contract the
edges of the wounds, lay down the ECM and compact the
ECM by exerting high contractile force (Darby et al., 2014).
Similar to mesenchymal stem cell differentiation into bone
lineage (Engler et al., 2006), fibroblasts are differentiated into
myofibroblasts at a higher degree in stiff ECM than in soft
substrates (Walraven and Hinz, 2018; Seo et al., 2020). Thus,
we speculate that the reduced ECM stiffness in cEDS impairs
myofibroblast differentiation, which again diminishes the overall
wound healing process. This possibility needs further controlled
experiments to evaluate.

Second, wound healing requires fibroblasts to actively migrate
into the wound site. Although fibroblasts migration is directed by
chemical cues such as cytokines and growth factors, it is also well
established that it is strongly regulated by mechanical properties,
e.g., stiffness, of the ECM. Most cell types including fibroblasts
display durotaxis, that is the tendency to migrate in the direction
of a stiffer surface (Lo et al., 2000; Sunyer et al., 2016). There are
currently two main models for explaining durotaxis: the random
walk model and the molecular clutch model. In the random walk
model, the cell creates protrusions in all directions. Since the
adhesions that form to stiffer substrates are more persistent than
those formed on softer substrates, the net movement of the cell is
in the direction of the stiffer substrate (Novikova et al., 2017). In
the molecular clutch model, on stiff substrates, there is frictional
slippage between flowing actin and adhesion protein (e.g., talin)
whereas the interaction between actin and adhesion periodically
builds up load on softer substrates until the strain reaches their
failure point at which point it fails catastrophically allowing the
substrate to snap back to its original position. The load-and-fail
dynamics promote faster retrograde flow of actin than the
frictional slippage, resulting in retraction of the cell on softer
substrates and protrusion on stiffer thereby causing the cell to
move in the direction of the stiffer substrate (Chan and Odde,
2008). Therefore, the lowered ECM stiffness observed in cEDS
might impair wound healing by slowing down fibroblast
migration.

Phenotypically, collagen V allows for cell adhesion to
fibroblasts (Yamamoto et al., 1992; Kihara et al., 2004), and

promotes fibroblast contractility (Berendsen et al., 2006),
implying that absence of collagen V synthesis in cEDS
downregulates fibroblast adhesion and contractility. Fibroblasts
from a cEDS-exhibitingmouse, thus unable to synthesize collagen
V, have shown reduction in migration and proliferation as well
(Denigris et al., 2016). Similarly, cells derived from skin biopsies
from patients with cEDS display significant reduction in
expression of α2β1 and α5β1 integrins, major receptors for
collagen types I-VI and fibronectin, respectively, via less-
organized collagen network (Zoppi et al., 2004). Despite this
reduction, cells can survive by increased expression of αVβ3
integrins and avoiding anoikis, a type of apoptosis that is the
result of an adherent cell becoming detached from its substrate
(Zoppi et al., 2004). This has been associated with pathways
independent of focal adhesion kinase (FAK). Typically, in
adherent cells, FAK signaling prevent anoikis by inhibiting
p53 activity which is responsible for cell cycle arrest and
apoptosis (Lim et al., 2008). FAK is recruited to integrin
adhesions after integrins’ binding to the ECM, is activated by
integrin and undergoes autophosphorylation (Frisch et al., 1996;
Zhan et al., 2004), and initiates a signaling cascade preventing
anoikis (Hungerford et al., 1996; Gilmore, 2005; Zouq et al.,
2009). However, FAK is not associated with the most common
integrin αVβ3 (Zoppi et al., 2008; Kuonen et al., 2018) but with
α5β1 integrin that is expressed in wild-type fibroblasts (Zoppi
et al., 2004). Instead, αVβ3 acts together with endothelial growth

FIGURE 2 | Potential pathways for impaired wound healing in cEDS
tissue. In cEDS, collagen V deficiency results in irregular collagen
microarchitecture, which features reduced tissue mechanics. Fibroblasts
respond to the low ECM stiffness by exhibiting poor integrin adhesion
formation and growth, which is unable to accommodate FAK binding. Signals
from weak adhesion downregulate myosin contractility and actin
polymerization, which again downregulates survival, proliferation and
migration, which all impacts impaired wound healing.
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factor receptor (EGFR) to trigger a separate pathway that involves
the phosphorylation of paxillin, paxillin’s pp60src binding, which
ultimately helps prevent anoikis (Zoppi et al., 2008).

The impaired cell adhesion and proliferation in cEDS as well as
downregulated expressions of actin and focal adhesions can be
output from mechanosensing of the ECM architecture
abnormally organized by mutated/lacked collagen V. One key
evidence supports this idea by exogenously expressing collagen V
and showing the cEDS cells’ phenotypic change. For example, cEDS
cells are restored to the wildtype phenotype with normal integrin
expression and fibronectin secretion by providing an exogenous
source of collagen V (Zoppi et al., 2004). Also, the cEDS-like
phenotype, e.g., with the altered integrin expression, and
impaired fibronectin expression, is induced in wildtype fibroblasts
when their collagen V expression is blocked by collagen V-blocking
antibody (Zoppi et al., 2004). Altogether, the impaired wound
healing in cEDS tissue can be still attributed to softened, irregular
ECM structure by lack of collagen V’s contribution, which induces
poor cell-ECM adhesion formation and growth, which again
transduce insufficient mechanotransduction signals that supports
cell migration, survival, and proliferation (Figure 2). Detailed studies
on how collagen V changes microarchitecture of the collagen
network and overall ECM would shed light on further insight to
the cEDS’s main comorbidity.

CONCLUSION

We have reviewed the two most popular types of Ehlers-Danlos
syndrome, hEDS and cEDS in a perspective of mechanobiology.

We attempted to link the common mechanical feature in both
hEDS and cEDS, e.g., connective tissue being softer to
comorbidities associated with hEDS and cEDS: MCAS and
impaired wound healing, respectively. For MCAS, we identify
ADGRE2, vimentin, and the RGD binding family of integrins
αVβ3, α5β1, and αIIbβ3 as mechanosensitive proteins that are
altered in hEDS. For impaired wound healing, the reduced
ECM stiffness, due to lack of collagen V, may be the main
contributor to impaired myofibroblast differentiation, altered
integrin expression and fibronectin secretion in cEDS. Beyond
the current focus in the EDS field on uncovering the cause of
hEDS and better defining what MCAS is, our review suggests that
mechanobiological research using hEDS mast cells or cEDS
fibroblasts would advance mechanistic understanding of
phenotypic changes in the two comorbidities.
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