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Cardiovascular diseases (CVDs) are the leading cause of global mortality. Therapy of CVDs
is still a great challenge since many advanced therapies have been developed. Multiple cell
types produce nano-sized extracellular vesicles (EVs), including cardiovascular system-
related cells and stem cells. Compelling evidence reveals that EVs are associated with the
pathophysiological processes of CVDs. Recently researches focus on the clinical
transformation in EVs-based diagnosis, prognosis, therapies, and drug delivery
systems. In this review, we firstly discuss the current knowledge about the biophysical
properties and biological components of EVs. Secondly, we will focus on the functions of
EVs on CVDs, and outline the latest advances of EVs as prognostic and diagnostic
biomarkers, and therapeutic agents. Finally, we will introduce the specific application of
EVs as a novel drug delivery system and its application in CVDs therapy. Specific attention
will be paid to summarize the perspectives, challenges, and applications on EVs’ clinical
and industrial transformation.
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INTRODUCTION

Cardiovascular diseases (CVDs) are the highest rate of death around the world (Balakumar et al.,
2016). The mortality of atherosclerotic cardiovascular disease (ASCVD) including ischaemic heart
disease (IHD) and ischaemic stroke is as high as 40% in China (Zhao et al., 2019). It accounts for 17.3
million deaths globally per year and is expected to account for >23.6 million deaths per year by 2030
(Mozaffarian et al., 2015). CVDs have become a major health issue affecting global economic and
social development. Currently, cardiovascular drug innovation meets major challenges, including
widely varying outcomes, and persistent CVD treatment costs rise, improvement of “upstream
factors” such as social status, self-empowerment, education, and health revenue (McClellan et al.,
2019).

Over the past decade, although traditional pharmacotherapy and surgery can alleviate the
symptoms of CVDs and reduce the mortality rate (Roth et al., 2017; Zelniker and Braunwald
2020), there is still lack of clinical strategy for repairing damaged myocardium after myocardial
infarction (MI) or preventing the catastrophic development of heart failure (HF) (Andersson and
Vasan 2018). Traditional medication is less invasive, but it can cause organs damage, or other serious
side effects (Lassiter et al., 2020). Despite the excellent effect, the clinical application of cardiac
surgery is always limited by the complex procedures and postoperative complications (Roth et al.,
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2020). The prognosis of CVDs remains poor. Therefore, new
strategies and methods are urgently needed for CVDs therapy.

With the application of the human genome project and
molecular biology, targeted therapies (macromolecular drugs,
gene editing technologies, nucleic acid drugs, and cell therapy)
were applied to the CVDs (Xu and Song 2021), especially since
cell-based therapy in CVDs has been intensively studied
worldwide. Numerous preclinical studies showed that cell-
based therapeutic strategies have emerged as the most
promising option for CVDs through repairing and replacing
the damaged vascular and cardiac tissues, then improving
cardiac function (Afzal et al., 2015; Wollert et al., 2017; Xu
et al., 2021). However, challenges include the insufficient
number of implanted stem/progenitor cells, the poor survival
rate of transplanted cells in the ischaemic cardiac tissue, the
impaired reparative ability of stem/progenitor cells in patients
with CVDs, predisposition to cardiac arrhythmias, cardiac
hypertrophy, and cancer limit the clinical efficacy of cell-based
therapy (Passier et al., 2008; Chen et al., 2021; Xu et al., 2021).

Recently, with the continuous research on extracellular
vesicles (EVs), the roles of EVs in CVDs have been
gradually recognized. Therefore, systematic research on EVs
is necessary for the clinical diagnosis, prognosis, and therapy
development in CVDs (Chong et al., 2019; Han et al., 2021).
EVs exist in blood, urine, saliva, amniotic fluid, malignant
ascites, breast milk, and so on (Jansen et al., 2017), which are
nano-sized, enclosed by a lipid bilayer, and secreted by
virtually all cell types, including exosomes, microvesicles
(MVs) and apoptotic bodies (Fu et al., 2020). EVs can carry
proteins, lipids, messenger ribonucleic acids (mRNAs), micro-
ribonucleic acids (miRNAs), and deoxyribonucleic acids
(DNAs). Compared with other biological carriers, EVs
exhibit the function of transmitting information between
cells in biological processes such as inflammation, blood
coagulation, vascular regulation, cell proliferation, and
apoptosis (de Abreu et al., 2020; Sanwlani and Gangoda
2021). EVs can be used as clinical markers for coagulation
function, inflammatory response, and tissue as well as organ
damage diagnosis (Berumen Sánchez et al., 2021). EVs may act
as a clinical therapeutic agent for regulating vascular
homeostasis, correcting coagulation, improving the internal
environment, and protecting tissue function (Colombo et al.,
2014). Interestingly, accumulating evidence showed that
CVDs cause vascular endothelial cells and cardiomyocytes
damage. Then EVs were released into the extracellular
environment and participated in the process of CVDs. In
addition, EVs are involved in many physiological and
pathological development of CVDs, including angiogenesis
(Beltrami et al., 2017), cardiomyocyte hypertrophy (Bang
et al., 2014), cardiac fibrosis (Bang et al., 2014; Yamaguchi
et al., 2015), apoptosis (Barile et al., 2018; Qiao, Hu et al.,
2019). Numerous pre-clinical researches exhibit the
therapeutic potential of EVs in cardiovascular regeneration
and protection (Lai et al., 2010; Giricz et al., 2014; Gallet et al.,
2017). In conclusion, compared with cell-based therapy, EVs
present the following advantages to CVDs therapy: 1) EVs are
lack the self-replicating ability and have no tumorigenic

potential (Laggner et al., 2020); 2) Constituent and function
of EVs are relatively stable (Im et al., 2017); 3) EVs can cross
biological barriers and reach the ischemic injury area easily
(Kooijmans et al., 2016); 4) EVs can be easily modified and
stored (Casado-Díaz et al., 2020); 5) EVs exhibit the same
biological properties with their very source and can carry a
variety of bioactive molecules to the recipient (Kim et al.,
2018); 6) Obviate the need for transplantation of large
numbers of cells. However, the potential of EVs is limited
in several aspects: bioactivity, biodistribution, targeting,
intracellular trafficking, and internalization. These
limitations may be overcome by enhancing native EVs
through pre- and/or post-isolation techniques before EVs-
based therapeutics in clinically. In bioengineering
approaches, researchers try to improve EVs’ bioactivity,
biodistribution, delivery, targeting efficiency, and
intracellular trafficking by modifying the surfaces of EVs in
vivo (de Abreu et al., 2020). Therapies based on native and
engineered EVs have been used to improve cardiac function in
inflammation, cardiomyocyte death, fibrosis, and infarct size,
and increased angiogenesis through transplantation (de Abreu
et al., 2020).

In this review, we elaborated on the biophysical properties of
EVs in the application of CVDs therapy. We also discuss the role
of EVs in prognostic and diagnostic biomarkers in clinical.
Particular attention will be paid to the bioengineered EVs
which can favorably alter their bioactivity, targeting,
internalization, and intracellular trafficking by modulating the
native Evs’ surface.

The Biophysical Properties of EVs
The EVs Size and Importance in Trafficking/Molecular
Transport
The prevailing view on EVs’ classification depends on the
diameter and origin. Several subtypes of EVs have been
identified, such as exosomes, membrane vesicles, apoptotic
bodies, and MVs (O’Brien et al., 2020). Exosomes are released
from cells via the endolysosomal pathway. Exosomes are formed
by inward budding of the limiting membrane of multivesicular
endosomes (MVEs). The diameter of exosomes is 30–50 nm and
MVs (also referred to as ectosomes, 50–1000 nm diameter),
budded directly from the plasma membrane. The apoptotic
bodies (1–5 μm diameter) are derived from the apoptotic cell
membrane (Han et al., 2021) (Figure 1).

EVs size is crucial for the composition, tissue biodistribution
efficiency, and intracellular trafficking in the application of CVDs
therapy (Théry et al., 2006; Théry et al., 2018; Cabeza et al., 2020).
For example, larger aggregates are more likely to be associated
with membrane recycling or lysosomal degradation (Lim and
Gleeson 2011). However, smaller vesicles (diameter <100 nm),
were taken up via clathrin- or caveolae-mediated endocytosis
(Costa Verdera et al., 2017). Therefore, smaller EVs may be more
efficiently delivered into the cell. In the cardiac environment,
especially for systemically administered EVs, the volume of EVs is
critical relative to the successfully penetration into the heart
tissue. So that EVs can be effectively absorbed by the relevant
cell types (Liu et al., 2020).
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EVs Potential and Interaction With Ligands Were
Promoted Uptake by Target Cells
The surface potential of EVs is another important property. The
EVs potential depends on the sugar composition of the plasma
membrane (Akagi et al., 2014), which is rich in phosphate groups.
In other words, the global negative charge is the norm for EVs.
The changes in surface charge can be used to infer the stability of
EVs in suspension. With the reduction of repulsive force, EVs
accumulate mostly. The surface potential of EVs is the key to the
interaction between EVs and many potential ligands, as well as
their uptake by target cells (Ayala et al., 2013; de Abreu et al.,
2020). In addition, more and more studies have shown that EVs
play important roles in hemostasis and thrombosis due to the
exposure to negatively charged procoagulant phospholipids
(PPL) (Francula-Zaninovic and Nola 2018).

EVs Structure and Biological Content
For the structure of EVs, there is some structural similarity
between cells and vesicles, both of which are lipid bilayer
structure and negative potential. EVs are less susceptible to the
penetration of small solutes due to their high cholesterol content
(de Abreu et al., 2020). Benefiting from the external structure,
EVs ensure the safe and efficient transmission from internal
content to target cells. More interestingly, membrane
composition differs from different types of EVs.

The biological contents of EVs consist of various bioactive
substances, including nucleic acids (DNA and RNA), proteins
(biogenesis factors, enzymes), lipids, and metabolites
(Jeppesen et al., 2019). The microRNA (miRNA), transfer
RNAs (tRNAs), messenger RNA (mRNA) and fragmented
mRNAs, long-stranded non-coding RNAs (lncRNAs), and
circRNA are all found in EVs though the concentrations of
RNA are relatively low (Li J et al., 2021). Proteins, such as
Membrane surface markers (annexins and GTPases),
lysosomal-associated membrane proteins 1 (LAMP1 and
LAMP2), heat shock proteins (HSP 70 and HSP 90),
tetraspanins proteins (CD9, CD63, CD37, CD53, CD81, and
CD82), phospholipases, and other lipid-related proteins, are
used to identify and isolate cell-type-specific EVs (Loyer et al.,
2018). As the major part of EVs, RNAs and proteins don’t exist
in the cytoplasm randomly (Valadi et al., 2007). Compared
with lncRNAs and miRNA, circRNA is rarely studied, which is
likely to become the next hot molecule for exosomes detection
due to its unique stability, tissue specificity, timing, and disease
specificity (Shi et al., 2020) (Figure 2). In addition to directly
cell-cell contact or the transport of secreted molecules, EVs
also participate in intercellular communication. By containing
and transporting various bioactive molecules to target cells,
EVs could affect biological behaviors and gene phenotypes
through several molecular pathway’s regulation.

FIGURE 1 | Exosomes and MVs are both released by healthy cells. Exosomes are nanometer-sized vesicles of endocytic origin that form by inward budding of the
limiting membrane of MVEs. MVs bud from the cell surface. Part of the endomembrane system in the cytoplasm includes the endoplasmic reticulum (ER), Golgi
apparatus, and lysosomes, it helps to package proteins inside the cell throughmembrane-bound vesicles. Vesicles also allow exchangingmembrane components with a
cell’s plasma membrane. Similar to healthy cells, apoptotic cells can also release EVs (termed apoptotic extracellular vesicles, ApoEVs).
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EVs-Content Release Within Target Cells
EVs have been proposed to transfer membrane encapsulated
cargoes from donor to acceptor cells. However, the
mechanism of EV-content release within acceptor cells
remains debated. There is no consensus on the uptake mode
of EVs, whether is receptor-dependent or not. High-resolution
microscopy or new living cell reporter genes are needed for the
research on EVs-content delivery within target cells (Sung et al.,
2020), and reporter gene assay could also be used to measure the
EVs membrane fusion efficiency during cargo delivery to
receptors (Somiya and Kuroda 2021). Currently, studies have
shown the way that EVs enter cells including receptor-mediated
endocytosis, clathrin interaction, lipid raft interaction,
phagocytosis, micropinocytosis, and possible directing fusion
(Kalluri and LeBleu 2020). In addition, several pieces of
research have shown that most EVs may not be absorbed by
uninjured or chronically damaged heart tissues, but by non-
cardiac cells (Yi et al., 2020; Kang et al., 2021).

EVs for CVDs Applications
Roles of EVs in the Prognostic and Diagnostic Biomarkers for
CVDs
Currently, the treatment of CVDs includes traditional
pharmacotherapy and surgery, which is costly and exhibits
great side effects (Leong et al., 2017). The lack of biomarkers
that limit the progress and treatment clarifies the pathogenesis of
CVDs. Therefore, looking for new diagnostic, therapeutic, and
prognostic approaches to prevent and treat CVDs is the major
health priority. The biomarkers are used in clinical widely for the
acute coronary syndrome (ACS) and HF including cardiac
troponin, B-type natriuretic peptide, and so on. However, it is
still very difficult to detect these biomarkers recently. For
example, the use of highly sensitive methods to detect cardiac
troponin I will accompany the loss of diagnostic specificity of

acute myocardial infarction (AMI). Atrial fibrillation and renal
insufficiency induced a decrease in diagnostic specificity in the
diagnosis of acute HF. With the continuous development of
molecular diagnostic concepts, liquid biopsy-based on EVs can
reflect the dynamic changes of the disease effectively and become
a future direction for molecular diagnostic research.

Studies suggested that circulating EVs may be used as
biomarkers to predict and diagnose CVDs. In a prospective
study of around 60 patients with AMI, the platelet P2Y12
antagonist Tegretol reduces mortality by down-regulation of
the plasma EVs concentrations during AMI (Gasecka et al.,
2020). In β-thalassemia patients with pulmonary arterial
hypertension (PAH), the large Red Blood Cell-EVs, platelets,
and medium platelet-derived EVs carrying phosphatidylserine
(PS) were increased, compared with normal subjects (Manakeng
et al., 2018). These phenomena suggest that the number of EVs
may be a useful marker of disease stratification. Similarly, the
contents of EVs could also be a useful marker for determining the
severity of CVDs and clinical prognosis. A clinical trial around
CVDs patients exhibited that the lncRNAs AC100865.1 (referred
to as CoroMarker), as a diagnostic model from Fisher’s criteria
could increase sensitivity significantly from 68.29% to 78.05%,
while specificity decreased slightly from 91.89% to 86.49% in
CVDs diagnosis (Yang et al., 2015). This evidence suggests that
CoroMarker can be used as a stable, sensitive, and specific
biomarker to determine the progression of CVDs in clinical.
During the measurement of coronary circulation concentration
gradients, it was found that miR-133a andmiR-499 were enriched
in cardiac myocytes in patients with troponin-positive acute
coronary syndrome, which were released from the heart into
the coronary circulation during myocardial injury, while vascular
miR-126 was depleted (S., De et al., 2011). Increased expression of
miR-199a in EVs but not plasma has been associated with major
adverse cardiovascular events reduction in patients (Jansen et al.,

FIGURE 2 | The general outlook of the EVs membrane composition and different molecular cargoes can markedly vary based on the parental cell and vesicle
biogenesis.
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2014). In addition, the level of miR-208a in serum exosomes was
significantly higher in patients with ACS, compared to healthy
individuals and the one-year survival group (Bi et al., 2015). It
may provide an important point that miRNA may also act as
biomarkers for CVDs prediction.

These studies illustrated the potential of both EVs and their
contents can act as biomarkers in determining the occurrence,
severity, and clinical prognosis of CVDs. Clarifying the
relationship between the changes in EVs and CVDs will
supply more evidence to support the clinical application of
EVs. Additional biomarkers can help diagnose AMI quickly
and specifically. The relationship between the components of
EVs and the disease process is complex. Multiple biomarkers
applied together can help reflect CVDs progression effectively,
compared with single molecules (Han et al., 2021).
Cardiomyocyte death and inflammatory stimulation can also
promote fibrosis and induce coronary artery occlusion in
ischemic heart disease, through the secretion of extracellular
matrix (ECM) proteins (Prabhu and Frangogiannis 2016). It is
reported that the levels of CD3+/CD45+ and SMA-α+ EVs
increase in individuals with high cardiovascular risk (Niel
et al., 2018). EVs-derived proteins can reflect the dynamic
changes of CVDs specifically. Another study showed that the
elevated level of cystatin C, serine protease inhibitors F2, and
CD14 protein in plasma EVs is associated with the occurrence
events of CVDs (Kanhai et al., 2013). In summary, the above
studies illustrated that the correlation between EVs levels and
CVDs status is close. Undoubtedly, EVs play important roles in
the prognosis and diagnosis of CVDs. But further research on the
specific relationship between EVs and CVDs is still needed.

Application of EVs in CVDs Therapy.
EVs are a group of heterogeneous natural particles that can be
used for CVDs therapy. More and more evidence highlights that
EVs exhibit potential therapeutic function in CVDs (Sánchez-
Alonso et al., 2018). Certain properties in these endogenous
vesicles enable them to survive in the extracellular space,
bypass biological barriers, and transport their biologically
active molecular cargo to recipient cells (Nawaz and Fatima
2017; Kalluri and LeBleu 2020). The biological function of
EVs depends on the state of donor cells and can vary during
the different microenvironments (Genschmer et al., 2019). EVs
containing miRNAs and proteins regulate multiple functions in
target cells, including maintaining cardiovascular balance and
health, inducing pathological changes in CVDs. Therefore, the
fascinatingly complex features of EVs should also be taken into
consideration in clinical applications (Han et al., 2021). EVs
carried with miRNA-21 can effectively inhibit apoptosis and
restore cardiac function in vivo and in vitro (Song et al.,
2019). The therapeutic benefits of EVs in CVDs have also
been confirmed by large animal models such as pigs and
nonhuman primates (Li Q et al., 2021; Yao et al., 2021). The
therapeutic effect of EVs has also been evaluated in several kinds
of diseases through small animal models, including MI (Couto
et al., 2017), hindlimb ischemia (Prabhu et al., 2017), and stroke
(Tian et al., 2018). Studies have shown that EVs from different
sources can trigger a variety of cardioprotective effects (Figure 3)

(Benjamin et al., 2017; Jie et al., 2017; Fu et al., 2020). EVs isolated
from the plasma of healthy volunteers can protect myocardium
from ischemic reperfusion (I/R) injury or promote angiogenesis
in the ischemic limb injury in animals (Vicencio et al., 2015; Aday
et al., 2021). Increasing evidence suggests that the effects of EVs
on target cells are mainly dependent on miRNAs and proteins
transferred by EVs (Benjamin et al., 2017). Cardiomyocytes
release EVs with high expression of miR-217, which act on
fibroblasts and promote the proliferation of fibroblasts. These
results indicate that miR-217 plays an important role in cardiac
hypertrophy and dysfunction (Nie et al., 2018). Cardiomyocytes
can promote cardiac fibroblast proliferation and myofibroblast
differentiation by releasing EVs containing a high level of miR-
208a (Yang et al., 2018). Related studies have also shown that EVs
derived from platelets containing polyubiquitin, which can
reduce platelet aggregation and inhibit the expression of CD36
through ubiquitination, thereby inhibiting the formation of
atherosclerotic thrombosis (Srikanthan et al., 2014). EVs can
act as a drug and ideal drug carrier in therapy for their benefit on
circulation, immune rejection and cellular toxicity. As drug
carrier, EVs exhibit potentials on protecting bioactive cargoes
from degradation and higher transmission efficiency, compare
with common liposomes (Barile and Vassalli 2017).

In consideration of that cardiac is lack of regenerative capacity
following MI. Stem cell therapy has recently been applied to
improve cardiac repairs in research. Early studies have found that
stem cells, especially modified stem cells, show significant
therapeutic potential in CVDs. During therapy, the
differentiation degree can determine the efficacy of stem cells
(Mangi et al., 2003; Kawamoto et al., 2006). Gnecchi’s group also
found that the higher expression of Akt in mesenchymal stem
cells (MSCs) the shorter recovery time cardiac function has,
which means that modified stem cells are optimized for CVDs
therapy (Gnecchi et al., 2006). Stem cells have a great potential for
tissue regeneration and repair. However, stem cells have the
ability of self-renew and proliferate indefinitely. The clinic
application of stem cells is limited due to the teratoma risk
(Nawaz et al., 2016). Recent findings elucidate exchange of
genetic information utilizing persistent bidirectional
communication mediated by EVs could regulate stemness,
self-renewal, and differentiation of stem cells (Nawaz et al.,
2016). Studies found that MSCs transplantation accelerated
angiogenesis and improved cardiac repair after MI (Müller
et al., 2018; Liang et al., 2021). Subsequently, the mechanism
of MSCs mediated paracrine has been accepted and validated in
exploring the principal mechanism of stem cells for CVDs
therapy (Fan et al., 2020). It has emerged that the paracrine
functions of MSCs could, at least in part, be mediated by EVs. EVs
have significant potential as a novel alternative to CVDs. Studies
have also found that native EVs used for CVDs could be derived
fromMSCs (Gollmann-Tepekylü et al., 2019), cardiac progenitor
cells (CPCs), cardiosphere-derived cells (CDCs) (Couto et al.,
2017), embryonic (ESCs), induced pluripotent stem cells (iPSCs)
(Adamiak et al., 2018), dendritic (DCs) (Liu et al., 2016), and
endothelial progenitor cells (EPCs). Compared to cell-based
therapies, EVs may exhibit a superior safety profile such as a
lower propensity to trigger innate and adaptive immune
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responses and the inability to form tumors directly (Rani et al.,
2015). Moreover, the isolation of EVs from stem cells is
potentially sustainable and reproducible. Compared with cells,
EVs can be stored with high efficiency safely and easily (Ran et al.,
2015).

MSC-derived EVs (MSC-EVs), derived from different origins
such as bone marrow, adipose tissues, umbilical cord and heart,
have exhibited comprehensive protection and reparation effects
on cardiovascular (Racchetti and Meldolesi 2021). MSC-EVs can
reduce cardiomyocyte apoptosis and cardiac fibrosis, but
promote angiogenesis via the transfering bioactive miRNA,
lncRNA, and protein cargos into targeted cells (Peng et al.,
2020; Gca et al., 2021). CDC and CPC-derived EVs (CDC-EVs
and CPC-EVs) have also been extensively used inMI or I/R injury
(Barile et al., 2016; Romain et al., 2016). Studies had proved that
CDC-EVs was safe and effective during repairing heart tissue
damaged in HF (Raj and Mohsin 2017; Ibrahim et al., 2019).
Other studies have shown that CDC-EVs can also reduce
infiltration and inhibit cardiomyocyte apoptosis via
transferring Y RNA fragment (EV-YF1) and miRNA-181 to
the macrophages (Couto et al., 2017). Importantly, miR-147,
miR-18, miR-133, miR-206, miR-10, miR-142, miR-146a were
enriched in CDC-EVs and performed protective effects (Ibrahim
et al., 2014). In addition, CPC-derived exosomes have also
exhibited cardiac protection by reducing cell apoptosis and
poor remodeling (Xiao et al., 2016). Another study found that
human CPC-EVs reduced myocardial infarction by reducing
cardiomyocyte death and promoting angiogenesis (Wu et al.,
2020).

The iPSCs-derived EVs (iPSCs-EVs) also provide a cell-free
system to avoid the risks associated with direct cell
transplantation (Chandy et al., 2020). Regarding iPSC-EVs,
miRNA is also an important functional component. As
reported, miR-19, miR-20, miR-126, miR-130, and miR-17
derived from iPSCs exert a powerful effect on promoting
angiogenesis, adjusting hypoxia, and oxidative stress. In
addition, bioinformatics analyses showed that miRNA in
iPSC-EVs can prove the cellular functional state to inhibit
apoptosis through regulating Wnt, phosphatidylinositol-3
kinase/protein kinase B (PI3K-Akt), and mitogen-activated
protein kinase (MAPK) pathways (Adamiak et al., 2017).

ESC-derived EVs can also augment cardiac function effectively
in infarcted hearts through enhancing neovascularization,
cardiomyocyte survival and proliferation, but inhibiting
fibrosis in cardiac. This beneficial effect of ESC-derived EVs
was linked to miR-294 was delivery from ESC to CPCs
specifically, then increased survival, cell cycle progression, and
proliferation (Adamiak and Sahoo 2018). The study showed that
human CD34+-positive EPCs exhibited the potential on CVDs
therapy (Sahoo et al., 2011; Sahoo and Losordo 2014) and
promote proangiogenic paracrine activity in ischemic limb
tissues (Prabhu et al., 2017). Further studies shown that EPCs-
derived EVs (EPCs-EVs) could increase the formation of new
blood vessels and improved left ventricular function in patients
with MI (Yue et al., 2020). In addition, EPCs-EVs could also
enhance blood vessel formation by promoting the transformation
of fibroblasts into endothelial cells (Huang, et al., 2021; Ke, et al.,
2021). DC-derived exosomes were involved in activation ECs by

FIGURE 3 | Origins and roles of EVs in CVDs. EVs can be released by cardiovascular system-related cells, such as cardiomyocytes, endothelial cells (ECs),
fibroblasts, smooth muscle cells (SMCs), leukocytes, monocytes, and macrophages. EVs mimic the cardioprotective properties by stimulating cell proliferation,
improving cardiac survival, activating cell autophagy, promoting angiogenesis, enhancing neovascularization, decreasing cell apoptosis, reducing tissue fibrosis,
preventing inflammation, inhibiting cardiovascular remodeling, treatingmyocardial infarction, reducing oxidative stress levels, and affecting immune cell polarization.
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TNF-α and NF-kB signaling pathways in human umbilical vein
endothelial cells (Jadli et al., 2021).

In conclusion, EVs were identified as the major component of
stem cell secretome responsible for the observed increase in
cardiac function. The contents of EVs play key roles in CVDs
therapy, and their effects can be summarized as follows: 1) Inhibit
apoptotic; 2) Reduction of oxidative stress; 3) Reduction of
fibrosis; 4) Regulation of autophagy; 5) Reduction of
inflammatory response; 6) promotion of angiogenesis; 7)
Stabilization of mitochondrial membrane potential. As
reported, the stem cell-derived EVs in CVDs therapy included
MSC-EVs, CDC-EVs, iPSC-EVs and DC-EVs. They can help to
carry different microRNAs to cardiac develop their therapy
function (Table 1).

The potential of EVs is limited in multiple factors, including
bioactivity, biodistribution, targeting, intracellular trafficking,
and internalization. Variations and limitations in EVs
isolation techniques, basic characterization, and precise
dosing regimens can affect study results. The expected
biological effects of EVs are mostly produced from
internalization of recipient cells through endocytosis
pathways (Mulcahy et al., 2014). Numerous studies have
found that intravenously administered EVs are rapidly
cleared by macrophages and accumulated in mononuclear
phagocyte system (MPS) organs such as the liver, spleen,
and lung (Chen, Wang et al., 2021). Compared with
intracoronary or intravenous administration,
intramyocardial administration of EVs can increase the
lifetime of EVs in heart. Results showed that
intramyocardial delivery of EVs can improve left ventricular
ejection fraction and reduce the infarct size, regardless of its
source (de Abreu, Fernandes et al., 2020). However,
intramyocardial delivery of EVs is complex in a clinical
catheterization (Gallet et al., 2017). Targeted technology can
increase the accumulation and decrease the application dose of
EVs in the cardiovascular system. The strategy of using specific

biomolecules to increase the content of EVs may be the key to
its successful clinical application. Currently, three strategies
for targeted delivery of therapeutic EVs to the heart have been
reported: 1) encapsulation of EVs in hydrogels, 2) genetic
engineering of EVs, and 3) two-step EV delivery. In summary,
three strategies can shorten the time that EVs take to reach
their therapeutic targets and significantly reduce off-target
effects, thereby improve therapeutic efficacy (Chen et al.,
2021). To improve the efficacy of native EVs in CVDs,
researchers have also developed technologies to improve the
biological activity and stability of EVs in the cardiovascular
system. The bioengineered EVs can be obtained by modulating
the source of cells, genetics, metabolic engineering, and
chemical or physiological methods (Huang et al., 2019; Hao
et al., 2020). Cardiac homing peptide (CHP) was used to
conjugate with EVs with a special linker. Modified EVs
exhibited a longer lifetime in myocardial tissue as well as
better functional status in the heart after injecting
intravenously (Wen et al., 2019). The protein or peptide
modified lipid is physically incorporated into the EVs
membrane, or the linker is chemically coupled to the
functional groups on the surface of the EVs. Compared
with traditional bio-combination technology, the modified
lipid is fast, more selective, and efficient. Chemical structure
modification can change Evs’ surface and targeted epitopes’
density effectively, regardless of the source of the cell. In
addition, the chemical method can be carried out during
the purification process of EVs. Therefore, it is more
suitable for clinical application (de Abreu et al., 2020). In
conclusion, the modified EVs were enriched in therapeutically
relevant compounds, and decorated with surface epitopes that
improved their cardiac targeting and pharmacokinetics.
Therapies based in modulated EVs exhibits improvement
on cardiac function through decreasing in inflammation,
cardiomyocyte death, fibrosis and infarct size, as well as
increasing angiogenesis.

TABLE 1 | Origins and therapeutic application of stem cell-derived EVs in CVDs.

Classification Origins Functional
Contents

Functions References

MSC-EVs Mesenchymal stem cells miR-19 (a) reduce cardiomyocyte apoptosis (Saad et al., 2016; Wen et al., 2017; Moghaddam et al., 2019;
Pan et al., 2020)miR-21 (b) reduce cardiac fibrosis

miR-210 (c) promote angiogenesis
Growth factor-D (d) stabilize mitochondrial membrane

potential

CDC-EVs Cardiosphere-derived
cells

EV-YF1
miRNA-181

(a) reduce oxidative stress (Cheng et al., 2014; Rustagi et al., 2015; Gabbia et al., 2021)
(b) promote angiogenesis
(c) reduce cardiac fibrosis

iPSC-EVs Induced pluripotent stem
cells

miR-21 (a) adjust hypoxia and reduce
oxidative stress

(Treguer et al., 2012; Li et al., 2018; Moghaddam et al., 2019;
Atum et al., 2021)

miR-24 (b) promote angiogenesis
miR-294
miR-19

DC-EVs Dendritic miR-494 (a) reduce inflammatory response (Rana et al., 2013; Mao et al., 2015; Espinosa-Diez et al., 2018)
(b) promote angiogenesis
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PERSPECTIVES AND CHALLENGES

The observational or interventional clinical trials involving
EVs grow continually in cancer therapy (Eitan et al., 2017;
Kontopoulou et al., 2020). Several clinical trials in the
treatment of CVDs or acute ischemic stroke have exhibited
that, no major adverse events were observed during EVs
clinical application (Sciences 2021; Xinhua Hospital 2021).
The clinical transformation of EVs as potential therapies still
faces some challenges. Firstly, further technologies are
needed to overcome the challenges in isolation,
purification, characterization, and long-term storage of
EVs, which are crucial for the quantification of EVs (Hao,
Song et al., 2021). EVs are heterogeneous, and there are no
methods or specific markers could help to distinguish

exosomes, small MVs, or exosome subgroups, which limit
the application of EVs in therapy. Secondly, after entering the
circulation system, EVs must be avoided digestion in the
liver, lung, kidney, or other organs and immune cells
(Herrmann et al., 2021), as well as other targeting cells.
These systemic treatments may be limited due to off-target
effect. Finally, the application of EVs in the cardiovascular
area also requires standardized sources. EVs can be harvested
from autologous or exogenous sources. Their
immunocompatibility makes it impossible to be on-
demand production, and it is more difficult to standardize
their production (de Abreu et al., 2020). Therapy with
bioengineered EVs will be a promising, cell-independent,
durable and customizable way to improve the progrosis
factors of CVDs patients (Figure 4).

FIGURE 4 |Modulation of EVs for CVDs therapy. Several strategies have been used to overcome the limitations of native EVs. To enhance the therapeutic potential
of EVs, the membrane and the lumen have been functionalized. To track in vivo EVs, fluorophores, luminescence reporters, or radiotracers have been used to label
formulations. To improve the targeting efficacy of EVs, exogenous peptides, proteins or lipids have been modified. To enhance EV internalization and endolysosomal
escape, the vesicles have been modified with cationic lipids, pH-sensitive peptides, and cell-penetrating peptides.
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CONCLUSION

Over the past decade, significant progress has been made to
understand the biological characteristics of EVs, that helps to
enhance EVs’ role as CVDs drug delivery vehicles, acted in
diagnosis, prognosis, therapy, and clinical transformation. The
severity of CVDs and their progression can be reflected by
detecting changes in the circulating levels and biological
composition of EVs, or by detecting altered circulating levels
of EVs containing specific surface molecules and contents.
Although the specific relationship between circulating levels of
EVs and CVDs is known little currently, EVs are still used as
biomarkers in determining cardiovascular function and disease
progression. To study the role of EVs in the occurrence and
progression of CVDs, more analysis of the relationship between
EVs and the clinicopathological features of CVDs should be
conducted, and further exploration of their targeted therapy
options is needed. These will help treating CVDs, prevent the
further deterioration of CVDs, and promote the development of
EVs in the clinical setting. Moreover, EVs are using in
regenerative medicine currently, which indicates that EVs
exhibit great potential in CVDs therapy. Ultimately, EVs are

robust and promising approaches to improve outcomes for
patients with CVDs.
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