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Introduction

Fumonisins are a class of water-soluble secondary metabolite mainly produced by

Fusarium moniliforme and Fusarium rotundus, which can contaminate a variety of foods

and their products and severely affect agricultural and animal husbandry production (Scott,

1993). Fumonisin B1 (FB1) is a major component of fumonisin compounds and occupies an

important position in the toxic effects of fumonisin (Lino et al., 2007; Stockmann-Juvala and

Savolainen, 2008; Chen et al., 2020). FB1 is frequently found in corn-based foods, and is a

key contaminant in a large number of food products throughout the world (MarinaMartins

et al., 2008; Domijan, 2012). The multiple toxic effects triggered by the exposure to FB1 in

many animal species make FB1 contamination a severe public health problem (Hussein and

Brasel, 2001;Wild and Gong, 2010). The high contamination rate and high detection cost of

FB1 make it difficult to completely eliminate the risk of FB1 intake by livestock and poultry

through feed (Ren et al., 2017). Clinically, long-term intake of food contaminated with

fumonisin can increase the risk of esophageal cancer and cardiovascular disease in human,

and cause nephrotoxicity, hepatotoxicity, neurotoxicity, and intestinal barrier dysfunction

in different mammals, while ingestion of FB1-contaminated diets in pigs can specifically

present with hydrothorax and pulmonary edema (Gbore and Egbunike, 2008; Scott, 2012;

Stoev et al., 2012; Kamle et al., 2019; Régnier et al., 2019; Tardieu et al., 2019). Because pigs

are an excellent model for cardiovascular and other diseases in humans, the mechanism for

FB1 toxicosis in pigs must be characterized to permit assessment of its potential toxicity in

human populations. At present, there are few studies on FB1-induced immunotoxicity, and

studying themolecular mechanism of cellular action of FB1 toxicity will help to develop new

prevention and control strategies for FB1.

The development and wide application of various omics approaches have greatly

boosted different fields of biological and biomedical studies. Among them, RNA sequencing

(RNA-seq) and Assay for Transposase-Accessible Chromatin with high-throughput

sequencing (ATAC-seq) techniques are particularly powerful in genome-wide

transcriptomic and regulatory profiling (Ayturk, 2019; Shashikant and Ettensohn, 2019).

RNA-seq can be used to profile the abundance of messenger RNAs (mRNAs) which have

OPEN ACCESS

EDITED BY

Ann-Kristin Östlund Farrants,
Stockholm University, Sweden

REVIEWED BY

Tang Zhonglin,
Agricultural Genomics Institute at
Shenzhen, Chinese Academy of
Agricultural Sciences, China
Xing Du,
Nanjing Agricultural University, China

*CORRESPONDENCE

Wenbin Bao,
wbbao@yzu.edu.cn

SPECIALTY SECTION

This article was submitted to
Epigenomics and Epigenetics,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 15 February 2022
ACCEPTED 29 September 2022
PUBLISHED 18 October 2022

CITATION

Jin J, Jiang J, Wu Z, Huang R, Sun M and
Bao W (2022), Transcriptomic and
chromatin accessibility dynamics of
porcine alveolar macrophages in
exposure to fumonisin B1.
Front. Cell Dev. Biol. 10:876247.
doi: 10.3389/fcell.2022.876247

COPYRIGHT

© 2022 Jin, Jiang, Wu, Huang, Sun and
Bao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Data Report
PUBLISHED 18 October 2022
DOI 10.3389/fcell.2022.876247

https://www.frontiersin.org/articles/10.3389/fcell.2022.876247/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.876247/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.876247/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.876247/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.876247&domain=pdf&date_stamp=2022-10-18
mailto:wbbao@yzu.edu.cn
https://doi.org/10.3389/fcell.2022.876247
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.876247


FIGURE 1
Schematic diagram of experimental design, data analysis workflow, and RNA-seq data quality metrics. These flow charts summarize the
experimental and bioinformatic analysis procedures related to RNA-seq (A) and ATAC-seq (B), respectively. The involved procedures, including those
related to sample treatment and collection, sequencing library construction and bioinformatic analysis, are demonstrated. The figures visualize the
Principal Component Analysis (PCA) and pair-wise correlation analysis results for different samples based on the expression profiles of mRNA
(C,D), lncRNA (E,F) and circRNA (G,H), respectively. For the PCA plots, the x-axis and y-axis represent PC1 and PC2, respectively (C,E,G). Regarding
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protein coding potentials, and various types of non-coding RNAs

(ncRNAs) including microRNAs (miRNAs), long non-coding

RNAs (lncRNAs), and circular RNAs (circRNAs) which have

distinct structural properties and regulatory functions (Ponting

et al., 2009; Lindberg and Lundeberg, 2010; Lappalainen et al.,

2013; Booton and Lindsay, 2014; Xu and Xie, 2018). The

accessibility of chromatin affects the binding of transcription

factor and activity of regulatory elements (e.g., promoters and

enhancers), which regulates gene transcription (Tsompana and

Buck, 2014; Lambert et al., 2018). While RNA-Seq is useful for

transcriptomic profiling, recently developed ATAC-seq technique

enables genome-wide profiling of chromatin accessibility

landscape which facilitate the revealing of the regulatory

mechanism (Buenrostro et al., 2013; Klemm et al., 2019).

Notably, the integration of RNA-seq and ATAC-seq techniques

determines both the transcriptional and regulatory landscapes,

which can facilitate the revealing of regulatorymechanism between

gene expression and chromatin accessibility, and identification of

the underlying key transcription factors and regulatory networks.

To understand the transcriptional and regulatory mechanisms

underlying the cytotoxic effect of FB1, we applied RNA-seq for

transcriptomic profiling of mRNA, lncRNA, circRNA andmiRNA

in porcine alveolar macrophages during FB1 exposure (Figure 1A),

which generated a total of 468,818,429 high-quality reads

(Supplementary Tables S2,S3). We also applied ATAC-seq to

determine the genome-wide chromatin accessibility alterations

upon FB1 exposure (Figure 1B), yielding a total of

467,539,462 high-quality reads (Supplementary Table S4). These

data may facilitate the identification of the key genes and signaling

pathways contributing to cellular response to FB1 exposure.

Materials and methods

Cell culture, treatment and collection

The cell viability of porcine alveolar macrophages (3D4/21)

(ATCC, CRL-2843) treated with different concentrations (0, 10,

20, 30, 40, 50, and 60 μg/ml) of FB1 at different culture time points

(24, 48, and 72 h) was measured on a Tecan Infinit 200 microplate

reader (Tecan) platform using the Cell CountingKit-8 (CCK-8) kit

(Dojindo, Shanghai, China), and finally 50 μg/ml FB1 was induced

for 24 h as the optimal treatment concentration and action time to

investigate the cytotoxicity of FB1 on 3D4/21 cells. Porcine alveolar

macrophages were seeded in 6-well plates at a density of 5 × 105

cells/mL and cultured in a 5% CO2 incubator at 37°C for 24 h.

FB1 at a final concentration of 50 μg/ml was added to the culture

medium of the experimental wells, and the same amount of

enzyme-free water was added to the culture medium of the

control wells. After 24 h of FB1 treatment of cells and control

cell culture, cells were collected for RNA-seq and ATAC-seq,

respectively. Three FB1 treated samples and three control

samples were collected for strand-specific library construction

(lncRNAs, mRNAs, circRNAs) of ribosomes depleted for RNA-

seq (Supplementary Table S1). Two FB1 treated samples and two

control samples were also collected for small RNA library

construction (miRNA) (Supplementary Table S1). At the same

time, three FB1 treated samples and three control samples were

collected for ATAC-seq analysis (Supplementary Table S1).

rRNA-depleted RNA-seq library
construction

Total RNA was extracted from the experimental samples using

the Trizol (Invitrogen, Carlsbad, CA, United States ) kit according to

the instructions, RNA purity and concentration were preliminarily

detected using a NanoDrop2000 spectrophotometer (Thermo

Scientific, MA, United States ), and RNA integrity was accurately

quantified using an Agilent 2100 (Agilent Technologies, CA,

United States ) bioanalyzer. Then, we remove the rRNAs from

the total RNA of the sample, retain mRNAs and ncRNAs, reverse

transcribe the obtained RNA, purify the cDNA fragment using

QiaQuick PCR kit (Qiagen, Venlo, Holland), repair the end, add

PolyA, add sequencing linker, degrade the product by UNG (Uracil-

N-Glycosylase) enzyme and amplify the product by PCR, and

sequence the library by Illumina HiSeqTM4000.

Small RNA library construction

Total RNA was extracted from the experimental samples

using the Trizol (Invitrogen, Carlsbad, CA, United States ) kit

according to the instructions. The RNA of the size of 18–30 nt

was enriched by polyacrylamide gel electrophoresis (PAGE). The

3′ adapter and 5′ adapter were connected respectively, and the

small RNA connected with the two adapters was reverse

transcribed. The bands of 140–160 bp in size were amplified

by PCR and recovered and purified to complete the library

construction. The constructed library was quality controlled

using an Agilent 2100 (Agilent Technologies, CA,

United States ) and sequenced by Illumina HiSeqTM2500.

FIGURE 1 (Continued)
the pair-wise correlation analyses, Pearson’s was calculated and visualized by color gradients in the heatmaps (D,F,H). (I)Distribution of miRNA
sequencing read length for each sample. (J) Principal component analysis of miRNA. The x-axis and y-axis represent PC1 and PC2, respectively. (K)
Visual heatmap analysis of miRNA expression profiles. The amount of miRNA expression is indicated by color gradients, with red indicating higher
expression and blue indicating lower expression.
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RNA-seq data analysis

We used fastp v0.18.0 (Chen et al., 2018) for quality control

and data filtering of raw reads from rRNA-depleted library, to

remove reads containing adapters, with a N-containing

proportion greater than 10%, with all A bases, or with bases

with Q-value ≤20 accounting for more than 50% of the whole

reads. The processed reads were aligned to the pig reference

genome (release Sscrofa11.1) using HISAT2 v2.1.0 (Kim et al.,

2015). To examine the relationship among different samples,

Principal component analysis (PCA) was performed using R

package gmodels (https://CRAN.R-project.org/package=

gmodels). Differentially expressed genes were identified by

DESeq2 (Love et al., 2014), with cut-off: FDR<0.05 and |

log2(fold change)|≥1. The raw data of small RNA library was

filtered to remove low quality reads containing more than one

low quality (Q-value≤20) base or containing unknown

nucleotides (N) in the data, to filter out reads without

3 ′adapters, to filter out reads containing 5′ adapters, and to

filter out reads containing poly A. All clean tags were searched to

identify known porcine miRNAs (exist miRNAs) using the

miRbase database (release 22) (Griffiths-Jones et al., 2006).

ATAC-seq library construction

The cell samples were collected and the nuclei were extracted,

and the transposable mixture containing Tn5 transposase was

added to the nuclear suspension for transposable reaction.

Tn5 transposase entered the nucleus and preferentially cleaved

exposed DNA in the open region of chromatin, while ligating

specific sequencing adaptor. The DNA fragments ligated with

adaptors were amplified by PCR, and the amplified PCR products

were purified with the MinElute PCR Purification Kit (QIAGEN,

Shanghai, China) and sequenced by Gene Denovo Biotechnology

Co., Ltd. (Guangzhou, China).

ATAC-seq data analysis

Data quality control was performed on ATAC-seq raw reads

obtained from the sequencer before information analysis, and

low-quality reads containing adapter reads, reads containing

more than 10% unknown nucleotides (N), and low-quality

reads containing more than 50% low quality (Q-value≤20)
bases were removed to obtain high quality clean reads. The

processed reads were aligned to the pig reference genome

(release Sscrofa11.1) using Bowtie2 v2.2.8 (Langmead and

Salzberg, 2012), with reads aligned to mitochondrial genome

discarded, and reads that are uniquely aligned were used for

subsequent analysis. The distribution map of insert fragments of

each sample was drawn by ATACseqQC (Ou et al., 2018).

DeepTools (Ramírez et al., 2016) was used to visualize the

read distribution flanking transcription start sites (TSSs). Peak

calling was performed using MACS v2.1.2 (Zhang et al., 2008)

with a threshold of q-value < 0.05. Only the common peaks

among replicates (with overlap of more than 50%) were retained

for analysis. Peak annotation was performed using ChIPseeker

v1.16.1 (Yu et al., 2015).

Technical validation

RNA-seq quality verification and data
evaluation

For rRNA-depleted RNA-seq data, we confirmed that all

samples are of similar sequencing depth, and the raw data are of

good quality with >95% of bases pass the Q20 threshold. All these

samples achieved alignment efficiency of higher than 91%

(Supplementary Table S2). PCA and Pearson correlation

analyses were used to understand consistency among

replicated samples. PCA visualization according to the

expression of mRNA, lncRNA, or circRNA revealed that these

samples can be well clustered as two groups before and after

exposure to FB1 (Figures 1C,E,G). The correlation coefficient

among replicates was greater than 0.91 based on mRNA

expression (Figure 1D), 0.98 based on lncRNA expression

(Figure 1F), and 0.65 based on circRNA expression

(Figure 1H). Together, these results indicate these data are of

good quality and well replicated, therefore can be used for further

analysis.

For miRNA-seq data, after quality control and pre-processing,

more than 99% of the raw reads are retained as clean reads, and the

proportions of clean tags of the small RNAs exceeded 98%

(Supplementary Table S3). As expected, the lengths of most

tags were distributed between 21 and 24 nt (Figure 1I), which

was in consistent with the biological characteristics of small RNAs.

PCA visualization showed that the samples were well clustered by

groups before and after exposure to FB1, and the intra-group

reproducibility of sequencing data was good (Figure 1J). In order to

examine the miRNA expression patterns in different samples, the

expression profiles of different miRNAs were further visualized as

heatmap, which also suggest that our data are well replicated

regarding miRNA expression profiles (Figure 1K).

ATAC-seq quality verification and data
evaluation

After quality control of ATAC-seq data, clean reads were

mapped to the pig reference genome (Supplementary Table S4).

The genomic distribution of uniquely aligned sequences was

analyzed, and the read depth distributions across the genome

were examined (Figure 2A). The chromatin accessibility

fragments of the samples showed a size period corresponding to
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FIGURE 2
ATAC-seq data quality control and characteristics. (A)Distribution of sequencing depth across the genome. The x-axis is the sequencing depth.
The y-axis on the left (in black color) corresponds to the black cumulative curve representing the fraction of genomic regions above corresponding
sequencing depth, while the y-axis on the right (in red color) corresponds to red histogram representing the proportion of genomic regions
corresponding to different sequencing depths. (B) Distribution of insertion fragment size of each sample. The x-axis represents the fragment

(Continued )
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the integral multiple of nucleosomes, with the main peak between

10 and 100 bp was mainly the open region without nucleosome

binding, and the small peaks around 200 bp and 400 bp being a

DNA fragment bound to one or two nucleosomes respectively

(Figure 2B). In addition, PCA analysis indicated that the samples

were well clustered by their groups (Figure 2C). The pairwise

Pearson’s correlation was calculated based on the read signals on

the combined ATAC-seq peaks, which further indicated that the

replicates from the same group resemble each other (Figure 2D).We

visualized the signal distribution around the TSS and as expected,

the ATAC-seq reads were strongly enriched around the TSS

(Figure 2E), indicating that chromatin accessible regions could be

successfully detected by ATAC-seq. Further examination of the

genomic distribution of identified peaks indicate that only

approximately 22% of them located in promoter regions, while

remaining peaks are within exons, introns, and distal intergenic

region—notably more than 50% of them fell into intronic and distal

intergenic regions which are putative enhancers (Figure 2F).

Conclusion

In summary, using the porcine alveolar macrophage cell line

(3D4/21) as model, we applied both rRNA-depleted RNA

sequencing (RNA-seq) and small RNA-seq to analyze the

genome-wide transcriptional alterations of mRNA, lncRNA,

circRNA and miRNA before and after exposure to FB1. To

further reveal the underlying regulatory mechanism, we

applied Assay for Transposase-Accessible Chromatin with

high-throughput sequencing (ATAC-seq) to determine the

genome-wide chromatin accessibility alterations in response to

FB1-induced cytotoxicity. We anticipate that this dataset will

serve as valuable resource for clarifying the transcriptional and

regulatory mechanism underlying the immunotoxicity of FB1,

and facilitate the identification of the key genes and signaling

pathways contributing to mammalian cells response to

FB1 exposure.
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