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Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) emerge as promising
agents to treat anemia in chronic kidney disease (CKD) but the major concern is their
correlated risk of cancer development and progression. The Wilms’ tumor gene, WTT7, is
transcriptionally regulated by HIF and is known to play a crucial role in tumorigenesis and
invasiveness of certain types of cancers. From the mechanism of action of HIF-PHIs, to
cancer hypoxia and the biological significance of WT1, this review will discuss the link
between HIF, WT1, anemia correction, and cancer. We aimed to reveal the research gaps
and offer a focused strategy to monitor the development and progression of specific types
of cancer when using HIF-PHIs to treat anemia in CKD patients. In addition, to facilitate the
long-term use of HIF-PHIs in anemic CKD patients, we will discuss the strategy of WT1
inhibition to reduce the development and progression of cancer.

Keywords: Wilms’ tumor 1, anemia, cancer, chronic kidney disease, hypoxia-inducible factor-prolyl hydroxylase
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INTRODUCTION

Anemia is a common complication of chronic kidney disease (CKD) (Stauffer and Fan, 2014; Sofue
et al,, 2020). It causes reduced quality of life and increased morbidity and mortality in CKD patients
(Coresh et al.,, 2007; Cases et al., 2018; Lee et al., 2018). Anemia in CKD is caused by many factors,
including inadequate production of erythropoietin, functional iron deficiency, chronic
inflammation, metabolic acidosis, hyperparathyroidism, dietary deficiency of folic acid and
vitamin B12, and the side effects of concurrent medications (Babitt and Lin, 2012; Gluba-
Brzozka et al, 2020). In spite of its complex pathogenesis, erythropoiesis-stimulating agents
(ESA) have improved the quality of life of patients, reduced anemia-associated cardiovascular
morbidity and the requirement for blood transfusion (Stone et al., 1988; Drueke et al., 2006;
Finkelstein et al., 2009; Lewis et al., 2011). Despite the clinical success of current injected ESA, several
large studies have established that supraphysiologic dosing of ESA is associated with increased risk of
cardiovascular events, vascular access thrombosis, and overall mortality (Szczech et al., 2008;
Solomon et al., 2010).

Cardiovascular complications and safety concerns from current injected ESA have led to the
development of alternative strategies for the treatment of renal anemia. One of the most promising
approaches is the development of hypoxia-inducible factor-prolyl hydroxylase inhibitors
(HIF-PHIs), which offer a more consistent physiological level of erythropoietin (EPO) to
stimulate red blood cell production. Despite the promising data from clinical trials of HIF-PHIs
on anemia correction in CKD patients, the increased HIF raises the concern of the cancer risks. It is
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known that hundreds of genes induced by hypoxia in an HIF-
dependent manner encode proteins that play key roles in many
aspects of cancer biology including proliferation, cell survival,
epithelial-to-mesenchymal transition (EMT), angiogenesis,
invasion and metastasis (Talks et al, 2000). Notably, a
substantial proportion of these genes are regulated by the
Wilms’ tumor gene (WTI) (Zhang et al., 2005; Wagner et al,
2008; Meyer et al., 2019; Le et al., 2020).Besides, WT1 is critically
regulated by HIF and plays a crucial role in tumorigenesis and
metastasis. In this review, we will discuss the mechanisms of
action, the outcome of the clinical trials, and the theoretical
concerns regarding HIF-PHIs and malignancies. We will
discuss HIF-PHIs and malignancies from the perspective of WT1.

HIF-PHIS AS A PROMISING TREATMENT
FOR ANEMIA IN CKD

Mechanism of Action of HIF-PHIs

HIF, consisting of an oxygen-sensitive a-subunit and a constitutively
expressed [-subunit, is a heterodimeric transcription factor
responsible for activating the expression of EPO and genes
involved in iron metabolism (Rankin et al, 2007; Kapitsinou
et al,, 2010; Kobayashi et al., 2016). HIF prolyl hydroxylase (HIF-
PHD) enzymes affect the stability of the o subunit of HIF by
promoting post-translational hydroxylation in an oxygen-
dependent manner. HIF-PHIs temporarily inhibit PHD catalysis
and contribute to a transient increase in HIF expression, regulating
the function of many genes, including EPO, EPO receptor, proteins
promoting iron absorption, iron transport, and heme synthesis
(Bernhardt et al., 2010; Provenzano et al., 2016).

Clinical Outcomes of HIF-PHIs in CKD
HIF-PHIs stimulate erythropoiesis in a dose-dependent manner and
have consistently shown clinical efficacy in patients with anemia of
non-dialysis-dependent and dialysis-dependent CKD in phase II and
II studies. The HIF-PHI roxadustat, orally administered three times a
week for 8 weeks, effectively corrected hemoglobin levels in a small
double-blinded, placebo-controlled phase III study in China (Chen
etal, 2019), and in a two-arm, randomized, open-label study in Japan
(Akizawa et al., 2020). Preliminary results were comparable to those
of darbepoetin alfa in a 52-weeks, randomized, open-label study in
Japan (Akizawa et al., 2021). Besides, HIF-PHI administration in
CKD patients was associated with an increase in total iron binding
capacity in most phase II and III studies (Pergola et al., 2016; Akizawa
etal, 2019). A comprehensive review on the clinical trial data of well-
investigated HIF-PHIs has recently been published (Haase, 2021).
There are four compounds being licensed for marketing in Asia. An
investigation on their long-term safety, including the occurrence and
progression of cancer in extended trials, and a post-marketing
analysis are yet to be performed.

Theoretical Concerns on HIF-PHIs and

Malignancies
In addition to promoting erythropoiesis, the HIF pathway is
essential for cellular survival under hypoxic conditions and

WT1, HIF, and Cancer

TABLE 1 | Cancers associated with the activated HIF pathway.

Cancers Models Species References
Breast Cell lines and patients Human Choudhry et al. (2015)
Colon Cell lines Human Kaidi et al. (2006)
Lung Animal Mice Beck et al. (2017)
Pancreas Patients Human Yang et al. (2016)
Osteosarcoma Cell lines Human Yoo et al. (2011)
Leukemia Patients Human Deeb et al. (2011)

regulates an array of biological processes, including cell growth
and differentiation, angiogenesis, vascular tone, and metabolic
processes (Semenza, 1999; Kewley et al., 2004; Wenger et al,
2005). The major concern is its effects on tumor growth and
invasion as well as resistance to therapeutic agents. Activation of
HIF-1a and HIF-2 has been shown to increase tumor survival in
colorectal and breast cancers through different mechanisms
(Kaidi et al, 2006; Choudhry et al, 2015). In addition,
activation of HIF pathway has been reported to be associated
with tumor aggressiveness, invasion, and metastasis through the
c-Myc pathway in osteosarcomas (Yoo et al,, 2011). It is also
known to promote EMT in pancreatic cancer (Yang et al., 2016).
In hematologic malignancies, overexpression of HIF-1a has been
reported in acute myeloid leukemia (AML), acute lymphoblastic
leukemia (ALL) and chronic myeloid leukemia (CML). HIF-2a
overexpression has been demonstrated in both AML and ALL
(Deeb et al., 2011; Frolova et al., 2012; Zhang et al., 2012; Forristal
et al, 2015). Furthermore, roxadustat has been reported to
increase the incidence of lung cancer in male mice and breast
cancer in female mice compared with that in the control group
(Beck et al., 2017). This evidence raises the theoretical concerns
regarding HIF-PHIs and malignancies. Cancers currently known
to be associated with the activated HIF pathway are summarized
in Table 1.

THE LINK BETWEEN WT1 AND CANCER

The WT1I gene, located at chromosome 11p13 (Call et al.,, 1990),
encodes for 10 exons and generates a 3 kb mRNA. There are two
major alternative splicing events. These include splicing of exon 5
(17 amino acids), and of a stretch of nine nucleotides (three
amino acids, lysine, threoine, and serine (KTS)) in the 3’ end of
exon 9. Alternative splicing of these two sites results in four
different protein isoforms designated A, B, C and D, representing
the presence or absence of exon 5 and KTS insert, respectively.
Under normal physiological conditions, the expression of
KTS(+)/KTS(-) ratio is maintained at approximately 2:1
(Haber et al., 1991). The N-terminal domain of WTI is
comprised of proline-glutamine-rich sequences and is critical
for the transcriptional regulatory function of WTI1. The
C-terminal domain of WTI is composed of four zinc fingers,
which allow binding to target DNA sequences but are also
involved in RNA and protein interactions. Through the
C-terminal half of the protein, WTI has been reported to be a
potent transcriptional regulator targeting genes responsible for
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cellular growth and metabolism (Menke et al., 1998; Yang et al.,
2007).

WTT1 in concert with a variety of genes and proteins plays
important roles in tumorigenesis and cancer metastasis. It is
known to transcriptionally activate the proto-oncogene, c-Myc in
human leukemic K562 cells and in several human breast cancer
cell lines (Han et al., 2004). By protein-protein interactions, WT1
interacts with p53 and modulates their ability to transactivate
their respective targets (Maheswaran et al., 1993). The clinical
significance of the interaction between WT1 and p53 has been
demonstrated in ovarian cancers (Carter et al., 2018). In addition,
in solid tumors, WT1 activation has been shown in tumors
originating from tissues that do not express WT1 in adults.
The role of WT1 in controlling the balance between the
mesenchymal and epithelial state of the cells might provide a
critical link between WT1 and EMT, which is a key process for the
metastasis of carcinomas. The two better studied major roles of
WTT1 in cancer development and metastasis are discussed below.

WT1 as an Oncogene
WTTI was originally discovered as a tumor suppressor because of
its loss-of-function mutations in a subset of pediatric renal
neoplasms, known as nephroblastomas or Wilms’ tumors
(Huff et al., 1991). It is well known that WTI is fundamental
to mammalian organ development, including blood vessels, heart,
spleen, liver and genitourinary system (Kreidberg et al., 1993;
Herzer et al., 1999; Moore et al., 1999; Ijpenberg et al., 2007). On
the other hand, although WTI behaves as a tumor suppressor
gene in Wilms’ tumors, increasing data suggest a role for WT1I as
an oncogene in both leukemia and solid tumors (Osaka et al.,
1997; Sera et al., 2008; Desmedt et al., 2009; Brett et al., 2013).
These accumulating data has been summarized in comprehensive
reviews (Yang et al., 2007; Huff, 2011; Chau and Hastie, 2012).
Compared with normal human tissues, WT1 is expressed at a
rather high level in various malignancies including ovarian
(Hylander et al, 2006; Yamamoto et al., 2007; Andersson
et al., 2014), breast (Loeb et al., 2001; McGregor et al., 2018),
uterine (Coosemans et al., 2011; Guntupalli et al., 2013), lung (Oji
et al., 2002; Hayashi et al., 2012), colon (Koesters et al., 2004;
Bejrananda et al, 2010) cancers and malignant pleural
mesothelioma (Cedres et al, 2014). In breast cancer, WT1
upregulates the expression of human epidermal growth factor
receptor 2 (HER2), leading to estrogen-independent tumor
growth and anti-estrogen resistance. Silencing of WT1I inhibits
the growth of MCF-7 cell line (Navakanit et al., 2007; Nasomyon
etal,, 2014). HER2 has been shown to upregulate WT1 expression
through the AKT signaling pathway, promoting breast cancer cell
proliferation and inhibiting cellular apoptosis (Tuna et al., 2005).
In lung cancer, there is a positive feedback loop between WT1 and
AKT-1. Cisplatin treatment downregulates the WT1 expression
through the PI3K/AKT signaling pathway (Wang et al., 2013).
Although the molecular mechanisms that account for the
increased expression of WTI in these cancers are not fully
characterized, it has been reported that the proximal WTI
promoter contains a hypoxia-responsive element (HRE), which
is a binding site of HIF-1 (Wagner et al., 2003). Considering the
relatively low oxygen tensions in rapidly growing tumors (Hockel
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and Vaupel, 2001), it would be reasonable to speculate that
intratumoral hypoxia could lead to enhanced HIF expression,
which transcriptionally activates WTI in these cancers.
Supporting this perspective, the upregulation of both HIFla
and WTI has been reported in patients with myelodysplastic
syndrome (MDS) or acute leukemia (Rosenfeld et al., 2003;
Mpakou et al., 2021).

WT1 Regulates the EMT

Despite mounting evidence demonstrating high levels of WT1
expression in leukemia and solid tumors as described above, the
exact functional implications of increased WT1 expression in
tumorigenesis are not fully understood. Nevertheless, WT1 has
been shown to regulate cell proliferation, apoptosis, and blood
vessels formation (Hartkamp and Roberts, 2008; Scholz et al.,
2009), which all are well known biological processes leading to
tumorigenesis when go awry. Furthermore, WT1 is known to
control the cell transition between the mesenchymal and
epithelial states by transcriptionally regulating major EMT
mediators Snail (Snail) and E-cadherin (Cadhl) during
embryonic development (Martinez-Estrada et al, 2010).
Uncontrolled EMT is a hallmark of various pathologies,
including cancer, while disruption of mesenchymal-to-
epithelial transition has been associated with a number of
developmental abnormalities (Davies et al., 2004; Wessels and
Perez-Pomares, 2004; Hohenstein and Hastie, 2006). Gain-of-
function and loss-of-function approaches have been used to
investigate the role of WT1 and its effect on EMT marker
expression and cancer cell migrations. Silencing of WTI has
been demonstrated to reduce proliferation, chemotaxis and
invasiveness of human malignant mesothelioma cell lines
(Plones et al., 2017). In cultured ovarian cancer cells and
xenograft mouse models, WT1 depletion significantly reversed
EMT, inhibited cell migration and invasion, and prevented
metastasis of cancer cells (Han et al., 2020).

An important observation is that EMT tends to occur in a
hypoxic microenvironment. Exposure of breast cancer cells to a
low-oxygen microenvironment facilitates cell migration by
inducing the upregulation of vimentin and downregulation of
epithelial marker proteins (Lester et al., 2007). This evidence
collectively suggests the crucial roles of HIFs and WT1 in
modulating EMT in cancer hypoxia. The hypothetical roles of
WT1 in the development and progression of cancers with the
activated HIF pathway are depicted in Figure 1. Although the
pathogenesis of each cancer in Figure 1 could be more complex
than depicted, this figure aims to highlight the link between HIFs
and WTTI in these cancers.

WT1 AND ANEMIA

The exact mechanism by which WT1 benefits anemia remains
largely unknown. It has been demonstrated that WtI is required
for the differentiation of the red blood cells. In conditional WtI
knockout mice, diminished extramedullary hematopoiesis within
the red pulp compartment of the spleen was found. In addition,
the WtI-mutant bone marrow cells failed to differentiate into the
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FIGURE 1 | Hypothetic roles of WT1 in the development and progression of cancers with HIF pathway activation. In breast, uterine, ovarian, colon, lung, pleural,
pancreatic and hematologic malignancies, HIF pathway is known to be activated especially in the hypoxic milieu. HIF-PHIs inhibit PHD catalysis and stabilize more HIF.
The increased HIF resulted from either condition will bind to HRE and then transcriptionally activate its downstream genes, including EPO and WT1. Upregulation of WT7
will contribute to tumorigenesis and EMT. The figure was created with BioRender.com.

erythrocyte lineage (Chau et al., 2011). In genetically manipulated
cultured cell models, WT1 was shown to be the transcriptional
activator of the EPO gene (Dame et al., 2006). Recently, by using
WTI conditional knockout mice, Ji et al. demonstrated that WT1
recruits Tet2 to the promoter of EPO, which results in enhanced
5-hydroxymethylcytosine levels and the promotion of EPO
expression (Ji et al., 2021). These important findings shed light
on the potential beneficial role of WT1 in anemia.

STRATEGIES TO TARGET WT1 TO AVOID
CANCER DEVELOPMENT WHILE USING
HIF-PHIS TO TREAT ANEMIA

Currently available data from clinical trials on HIF-PHIs do not
show cancer occurrence. In the phase II study of vadadustat in
CKD patients, there were no reports of cancer (Pergola et al.,
2016). In a study of 252 patients with non-dialysis CKD and 216
patients under dialysis treated with daprodustat, no malignancies
were observed during the study (Holdstock et al., 2019). Recent
data of large clinical trials on roxadustat have not shown the
development of cancer (Chen et al., 2019). However, all these
clinical studies were performed for less than 26 weeks. Long-term
observations in humans will be required to examine the cancer-
related risks of HIF-PHIs. Therefore, the first step of current

strategies for using HIF-PHIs is carefully monitoring the
occurrence of HIF-related cancers. As listed in Table 1,
attention needs to be paid to the development of breast, lung,
colorectal, pancreatic and hematologic malignancies. In addition,
as WT1I is one of the HIF downstream oncogene targets, it will be
mandatory to monitor the development and progression of WT1-
mediated cancers including ovarian, breast, lung, uterine, colon
cancers, pleural mesothelioma and hematologic malignancies. In
addition to monitoring, more research into WT1 inhibition in
these cancers is required. WT1 peptide vaccine is known to
induce clinical responses in MDS, AML, CML, ALL, multiple
myeloma and various types of solid tumors including lung and
breast cancers (Oka et al., 2004; Oka et al., 2017). Further
investigations on the efficacy and safety of the WT1 peptide
vaccine in other WT1-related cancers are required. Besides,
vorinostat and bortezomib have been reported to significantly
inhibit WT1 gene expression in MO7-e and P39 cell lines, which
are in vitro models for leukemia and MDS, respectively
(Galimberti et al., 2008). In addition, curcumin is reported to
decrease 'WT1 expression in patients’ leukemic cells
(Anuchapreeda et al, 2006). Recently, the deubiquitinase
inhibitor degrasyn was reported to promptly induce the
degradation of endogenous and exogenous WTI in pancreatic
ductal adenocarcinoma (Li et al., 2020). However, the therapeutic
potential and the underlying mechanisms of these agents are yet
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to be investigated in ovarian, breast, lung, uterine, pancreatic,
colon cancers, pleural mesothelioma and hematologic
malignancies. More investigations are also required to examine
if WT1 inhibition reduces the survival effects of HIF-PHIs in
these cancers.

CONCLUSION AND PERSPECTIVES

HIF-PHIs activate HIF transcription factors, leading to an
increase in endogenous EPO production and modulation of
iron metabolism. Data on clinical trials has demonstrated their
efficacy and short-term safety. HIF-PHIs have the potential to
revolutionize the treatment of anemia in CKD but careful
monitoring of the development or progression of cancer is
required. Despite the persuasive links between hypoxia, HIF
pathways, EMT and high levels of WT1 expression being
observed in solid tumors, it is still yet to be answered in full
whether WT1 is necessary or its overexpression alone is sufficient
to drive tumorigenesis in human. In the coming era of using HIF-
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PHIs in renal anemia, a better understanding of the link between
HIF and WT1 will help focus on the specific types of cancers to be
monitored. In addition, more research on WT1 inhibition in
ovarian, breast, lung, uterine, pancreatic, colon cancers, and
pleural mesothelioma will contribute to the treatment of HIF-
PHI-induced WT1-mediated cancers.
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