
Perspectives on Mechanisms
Supporting Neuronal Polarity From
Small Animals to Humans
Carlos Wilson*, Ana Lis Moyano and Alfredo Cáceres*

Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA), Instituto Universitario de Ciencias
Biomédicas de Córdoba (IUCBC), Córdoba, Argentina

Axon-dendrite formation is a crucial milestone in the life history of neurons. During this
process, historically referred as “the establishment of polarity,” newborn neurons undergo
biochemical, morphological and functional transformations to generate the axonal and
dendritic domains, which are the basis of neuronal wiring and connectivity. Since the
implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max
Cowan in 1977, the community of neurobiologists has made significant achievements in
decoding signals that trigger axo-dendritic specification. External and internal cues able to
switch on/off signaling pathways controlling gene expression, protein stability, the
assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling
and vesicle trafficking contribute to shape the morphology of neurons. Currently, the
culture of hippocampal neurons coexists with alternative model systems to study neuronal
polarization in several species, from single-cell to whole-organisms. For instance, in vivo
approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents,
have refined our knowledge by incorporating new variables in the polarity equation, such
as the influence of the tissue, glia-neuron interactions and three-dimensional development.
Nowadays, we have the unique opportunity of studying neurons differentiated from human
induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small
animals and propose new ones perhaps specific for humans. Thus, this article will attempt
to review critical mechanisms controlling polarization compiled over decades, highlighting
points to be considered in new experimental systems, such as hiPSC neurons and human
brain organoids.
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THE ROLE OF SYMMETRICAL AND ASYMMETRICAL
STRUCTURES IN LIVING ORGANISMS

The physiological properties of living organisms depend on their three-dimensional conformation
where symmetries and asymmetries play a crucial role. Different types of animals share an
anatomical property named “bilateral symmetry,” reproducing tissues, organs and functions in
both sides of the body. The central nervous system is particularly symmetric; the brain has two
hemispheres narrowly interconnected to integrate and execute functions in response to inner and
outer signals. Similarly, the spinal cord receives and projects afferent and efferent neurons from the
left and right horns to innervate target tissues involved in perception and locomotion. Consequently,
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anatomical symmetries guarantee the proper coordination and
integration of inputs to preserve homeostasis and survival.

Asymmetries are also instrumental for compartmentalization
and functional specialization at various levels of organization,
ranging from single cells to whole organisms. In this regard, brain
asymmetry is a conserved characteristic of the vertebrate nervous
system that contributes to improve its functioning (Levy, 1977).
The habenula, a small brain nucleus connecting the basal
forebrain with the midbrain, has served as a model system for
studying signaling pathways leading to left-right asymmetries in
the brain (Aizawa, 2013). On the other hand, inner regions of the
human brain have asymmetries undetected in other mammals.
For instance, language processing occurs in brain areas
overdeveloped in the right hemisphere, whereas visuospatial
information is mostly processed in the left hemisphere (Toga
and Thompson, 2003). The presence of brain
petalias—protrusions of one hemisphere into the other—are
only seen in the human brain and their physiological
relevance is still a matter of research (Gotts et al., 2013;
Olulade et al., 2020). In fact, lateralization of cognitive
functions is a very unique human condition, especially evident
in the nervous system (Toga and Thompson, 2003). Therefore,
asymmetries are fundamental to confer specialization for higher
biological and cognitive tasks.

In this article we will discuss ancient molecular circuits to
establish and maintain neuronal polarity, one of the most
paradigmatic cases of programmed asymmetry in cells.
Overall, the evidence collected in this article suggests that
independently of animal complexity, molecular switches
driving cell polarity and asymmetries are conserved across cell
types, tissues and species.

Polarization is a Paradigmatic Case of
Asymmetry
The concept polarization is commonly used in biology to
highlight asymmetries at various levels, ranging from
biological molecules to tissues. For example, microtubules
(MT) are intrinsically polarized polymers, exhibiting fast (+)
and slow (-) growing ends in their extremes (Mitchison and
Kirschner, 1984; Kirschner and Mitchison, 1986). At the cellular
level, neurons are paradigmatic cases of polarization and we often
call them “polarized cells.” Nevertheless, it is important to
highlight that symmetrical cells do not exist and this concept
is used to reinforce the absence of macroscopic asymmetries.
Accordingly, intrinsic and extrinsic signals, such as
environmental cues and cell-cell/cell-matrix interactions, will
polarize any cell type in different degrees. Therefore, it is
important to clearly state that cells are intrinsically asymmetric.

At the tissue level, epithelia have been extensively studied
because of their characteristic apicobasal and basolateral
polarities, determined by tight and adherent junctions as well
as extracellular cues (McCaffrey and Macara, 2012). During
central nervous system (CNS) development, embryonic
gradients of morphogens shape the neural tube
(neuroepithelium) into the anterior-posterior (AP) and dorsal-
ventral (DV) axis, creating the coordinates to position the brain

(anterior) and the spinal cord (posterior). Therefore, tissue
morphogenesis is driven by chemical gradients to promote
asymmetries, polarization and functional specialization.

The asymmetries of living organisms have been the focus of
attention for decades, especially during embryonic development.
How does the embryo diversify into multiple cell types from a
single-cell zygote? Although this question still is under research,
at present we know that asymmetric divisions of blastomeres are
critical. During the 1980s several articles reported what we
currently know as Partitioning-defective (Par) genes, a family
of genetic determinants able to polarize the zygote (and any cell
type) into the AP axis. Consequently, daughter cells (blastocysts)
receive cytosolic constituents unequally, diversifying cellular
lineages in the offspring.

Neuronal Polarization
The neuron is a dramatic case of cellular polarization, manifested
by the axonal and dendritic compartments that emerge during
embryonic brain development. It is important to note that there
are dozens of neuronal phenotypes and some of them display
higher levels of polarization than others. In this regard,
hippocampal/cortical pyramidal neurons and cerebellar
Purkinje cells are two of the most polarized neuronal types of
the mammalian brain. Interneurons, mesencephalic neurons, as
well spinal motor neurons and dorsal root ganglion cells (DRGs)
are also asymmetric cells, although with simpler forms and their
polarity has not been studied as deep as in pyramidal neurons.

Neuronal polarization is not just a morphological feature. In
fact, it is a biochemical compartmentalization determining the
transmission of electrochemical currents along the neuron and
consequently their function (Arimura and Kaibuchi, 2007;
Hedstrom et al., 2008; Cáceres et al., 2012; Huang and
Rasband, 2018). Whilst dendrites are highly specialized in
receiving inputs, usually encoded by neurotransmitters and/or
mechanical stimuli, the axon propagates the action potential
anterogradely (from the Soma to the axonal tip) releasing
vesicles containing peptides and neurotransmitters into the
synaptic cleft. Thus, neuronal polarization involves
morphological, biochemical and physiological transformations
supporting the wiring and connectivity of the nervous system.

LESSONS FROM RODENTS: THE
AXON-DENDRITE POLARITY

Most of our knowledge regarding the development and
physiology of neurons comes from observations made in
experimental animal models, including invertebrates such as
worms (C. elegans), the fruit fly (D. melanogaster) and small
mammals like rats (R. norvegicus) andmice (M.musculus) (Kaech
and Banker, 2006; Rolls and Jegla, 2015; Harterink et al., 2016;
Wilson et al., 2020b; He et al., 2020). In the last decade, the
reprogramming of skin fibroblasts into induced pluripotent stem
cells (iPSCs) has opened the possibility of studying human
neuronal polarization in vitro either culturing single-neurons
or brain organoids (Takahashi and Yamanaka, 2006;
Takahashi et al., 2007; Lancaster et al., 2013). Although we are
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far from reproducing human in situ environment precisely,
culturing human iPSC-derived (hiPSC) neurons is a
substantial advance in the field.

The culture of hippocampal neurons isolated from embryonic
rat brains by Gary Banker and Max Cowan in 1977 was a
breakthrough for modern neurobiology in several aspects

(Banker and Cowan, 1977). This model system allowed the
neuroscience community to study CNS neurons at the single
cell level distinguishing subcellular domains and compartments
difficult to visualize using brain and nerve tissues (Bartlett W. P.
and Banker G., 1984a, Bartlett W. and Banker, G. 1984b; Caceres
et al., 1986; Banker, 2018). Moreover, cultured hippocampal

FIGURE 1 | PARs, the polarity complex and their role on neuronal polarity acquisition. (A) Polarization of neurons in vitro—isolated from embryonic murine
hippocampi or brain cortices—occurs through the sequential transformation of rounded postmitotic cells (stage1) to fully polarized neurons able to form synapses with
other neuronal and glial cells (stage 5). (B) Representative multipolar vertebrate motor neuron with dendritic process at the soma and monopolar invertebrate motor
neuron where dendritic branches develop from a thin primary neurite that extends towards the neuropil. (C) Polarization of cortical neurons in situ starts after
neurogenesis in the VZ (ventricular zone) of the developing brain cortex enriched in neural stem cells (NSC). Then, postmitotic neurons adopt a multipolar phenotype and
migrate from the SVZ (subventricular zone) to the IZ (intermediate zone) adopting the front-rear polarity. Dendrites and the axon will emerge from front (leading) and rear
(trailing) processes, respectively. (D) Segregation of PARs in the C. elegans zygote establish a feedforward circuit aiming the maintenance of the AP axis. This circuit is
reproduced across species, cell types and developmental stages to allow cell polarity. For example, PAR-1 phosphorylates PAR-3; a modification that allows PAR-3
anterior segregation. In addition, CHIN-1 is a CDC-42 GTPase located in the posterior domain, preventing CDC-42 activation outside the anterior pole. Thus, PARs
establish mutual exclusion associations to maintain the circuitry. Bidirectional arrows mean interaction/recruitment. (E) Distribution of PARs in polarizing neurons (stage
2–3 transition and stage 3 in vitro) allows axon-dendrite formation in polarizing neurons in vitro. PAR-3, PAR-6, PKC-3, CDC-42 (namely “polarity complex, PC”)
assemble with Tiam1 (Rac’s GEF) and RAC through PAR-3 and PAR-6. RAP1B (CDC-42 activator) and TUBA (CDC-42’s putative GEF) also segregate into the nascent
axon supporting CDC-42 activation (GTP state) and consequently the PC.
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neurons revealed an intrinsic program of morphological
transformations defining the axon and dendrites, a process
referred as the establishment of neuronal polarity (Dotti et al.,
1988; Banker, 2018). In culture, neurons isolated from the rat
embryonic hippocampus (E18) undergo progressive
transformations until reaching a highly polarized morphology
(Figure 1A). Initially described as a 5-stage process, the
acquisition of neuronal polarity must achieve several
milestones (Dotti et al., 1988). First, postmitotic neurons
plated on plastic or glass dishes (precoated with an inert agent
such as poly-L-lysine, PLL) are round cells surrounded by an
actin-rich structure (lamella) (stage 1; first 6 h in culture). Then,
round neurons experience plasma membrane deformations
leading to neurite sprouting, reaching a multipolar
conformation named stage 2. Neurite outgrowth is driven by
actin microfilaments (FA) andMT dynamics (Caceres et al., 1984;
Caceres and Kosik, 1990; Bradke and Dotti, 1999; Conde and
Cáceres, 2009; Stiess and Bradke, 2011). At this stage, neurons are
considered symmetric since neurites are morphologically
equivalent. However, as we will discuss in the following
sections, external and internal signals select one of the neurites
pushing its growth considerably, taking the lead to become the
axon (stage 3; 36–48 h in culture). Far from being a linear
transformation, the axon-like neurite is not completely
committed yet and minor neurites still have time to be re-
specified into the future axon. Accordingly, the extension of
the nascent axon occurs through growth and retraction phases
(Dotti et al., 1988), resembling the dynamic instability of MT; in
fact, both MT and FA are the driving force of neuronal
polarization. A seminal work by Bradke and Dotti (1999)
described that local dismantling of FA in the growth cone of a
minor neurite with cytochalasin D is enough to induce its growth
as the axon. By this time, mitochondria, lysosomes and trafficking
vesicles move into the prospective axon, supporting the delivery
of cellular constituents needed for axonal extension (Bradke and
Dotti, 1997). Overall, axonal specification is a dynamic process
that takes time and meanwhile, any minor neurite can take the
lead under proper growth conditions. Accordingly, during stage
2–3 transition the cellular symmetry is broken and thus it is
considered the most critical stage of polarization (Cáceres et al.,
2012).

Once the axonal domain is defined, minor neurites develop
into future dendrites, experiencing branching and growth (stage
4, 4–7 days in culture). Time-lapse video-microscopy of
hypothalamic or amygdala neurons in culture indicates that
these cells undergo a similar sequence of morphological
transformations to generate a single axon and multiple
dendrites (Díaz et al., 1992; Lorenzo et al., 1992).

Aside from this, it should be kept in mind that at stage 4,
cultured hippocampal neurons are still electrically immature.
Embryonic neurons show notorious differences with mature
stages on handling ion diffusion required for
neurotransmission. For instance, embryonic expression of the
Na+-K+-Cl- symporter elevates intracellular levels of chloride
(Cl−), being gamma aminobutyric acid (GABA) the principal
excitatory signal in immature neurons (Mir et al., 2020; Lombardi
et al., 2021). In this regard, voltage-dependent ion channels and

synaptic proteins are expressed once the axon is specified. In fact,
Nav and Kv channels triggering the action potential are recruited
to the axon initial segment (AIS), an intra-axonal domain
assembled at 7–10 days in culture (stage 5) or after birth in
situ (Galiano et al., 2012; Huang and Rasband, 2018; Leterrier,
2018). Voltage-dependent ion channels are recruited by ankyrins
(AIS proteins), polarizing the flux of the electrical activity
(Hedstrom et al., 2008; Huang and Rasband, 2018). Moreover,
the AIS serves as a physical barrier avoiding free diffusion of
dendritic constituents into the axon. Consequently, dismantling
the AIS leads to the entry of dendritic components that finally
respecify the axon in dendrites (Hedstrom et al., 2008; Galiano
et al., 2012). In contrast, neurons displaying multiple axons,
revealed by Tau-1 staining and expression of presynaptic
markers such as vGLUT1 and synaptophysin, also show
multiple AIS (Muñoz-Llancao et al., 2015). However, the
electrical conductance of these processes remains to be tested.
Finally, both axons and dendrites express the synaptic machinery
required for neurotransmission and there are many common
features but also fundamental differences between vertebrate and
invertebrate neurons (Smarandache-Wellmann, 2016)
(Figure 1B). Thus, polarization has deep consequences for the
wiring and connectivity of the nervous system.

Other model systems, such as cerebellar macroneurons (Caceres
et al., 1992), sympathetic neurons (Higgins et al., 1988) or retinal
photoreceptors (Adler, 1986) (Adler and Madreperla, 1990) have
also been used to study neuronal polarization in culture;
unfortunately, whether or not these cells acquire a full mature
polarized phenotype has remained unexplored. The case of
sympathetic neurons is particularly interesting since dendrite
formation is highly dependent on bone morphogenetic factor 7
(BMP7), a member of the transforming growth factor β (TGF β) -
superfamily; in the absence of this factor these neurons only
elaborate the axon (Lein et al., 1995). Importantly, this study was
one of the first showing that neuronal shape and polarization can be
regulated by specific signals (Higgins et al., 1997).

Similarities and Differences Between In
Vitro and In Situ Polarization
Polarization has also been studied during the development of the
embryonic cerebral cortex in situ, showing similarities and
differences. After neurogenesis, cortical neurons experience
migration and polarization almost simultaneously, moving
from the ventricular zone (VZ) to the cortical surface
(Kriegstein and Noctor, 2004; Barnes and Polleux, 2009;
Namba et al., 2014; Xu et al., 2015) (Figure 1C). During
neurogenesis, the apical radial glia (aRG) located in the VZ
divides and differentiates into basal precursors (BP), which
differentiate into neural stem cells (NSC) and neurons.
Consequently, BPs, NSC and neurons migrate through cellular
interactions with the radial glial cell (RGC) to inhabit the upper
layer of the cortex supporting corticogenesis (Kalebic and
Namba, 2021). Accordingly, a major difference of in situ
polarization is that it occurs simultaneously with neurogenesis
and migration, involving neuron-glia and tissue interactions un-
experienced by isolated neurons in culture.
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Immediately after neurogenesis, newborn neurons sprout
neurites adopting a multipolar phenotype similar to stage
2 in vitro (Kriegstein and Noctor, 2004; Kalebic and Namba,
2021). Then, multipolar neurons develop a front (dendrite) and a
rear (axon) process, clearly evident in the interphase between the
SVZ and the IZ (Kriegstein and Noctor, 2004; Namba et al., 2014;
Kalebic and Namba, 2021) (Figure 1C). The front-rear
polarity—also named bipolar morphology—is characteristic of
in situ polarization and represents a major difference with in vitro
observations (Figures 1A,C). Cellular contacts between the front
and rear process with the RGC allows radial migration of
neurons, working as a track shaping the bipolar morphology
(Xu et al., 2015). In contrast, cultured neurons grow in a
bidimensional matrix lacking RGC interactions. Moreover,
in vitro polarization begins with postmitotic neurons, whilst in
situ it involves asymmetrical divisions of NSC and neurogenesis
leading newborn neurons (Kriegstein and Noctor, 2004).
Collectively, these examples reinforce the importance of the
environment in shaping neurons beyond their intrinsic
polarizing program; in this regard, N- cadherin, a cell
adhesion molecule, and Reelin, a large extracellular matrix
molecule, play pivotal roles in regulating cortical neuronal
migration and polarization (Gärtner et al., 2015; Santana and
Marzolo, 2017).

The neuronal lineage derives from the embryonic
neuroepithelium, which in turn emerges when the neural tube
is developed (Govek et al., 2011). This tissue holds epithelial
properties such as the apicobasal polarity and extends to the
plasma membrane with different protein and lipid compositions
that seems to determine the establishment of neuronal polarity
(Bonifacino, 2014). For example, neurogenesis starts in the VZ of
the brain cortex, which anatomically corresponds to the apical
zone of the telencephalon; the anterior portion of the primitive
embryonic brain (Govek et al., 2011). Thus, the apicobasal
polarity observed in epithelia is reproduced along brain
development and particularly the brain cortex. In this regard,
front-rear polarity resembles apicobasal polarity, showing a
leading neurite (front; dendrite) and a trailing process (rear;
axon). It seems that developing neurons recapitulate polarizing
events of the embryo through a sort of “polarity memory.” On
this matter, a recent article discusses about the inheritance of cell
polarity and its role on brain development (Kalebic and Namba,
2021). Authors hypothesize that polarization of neurons has an
inheritable component relaying on the asymmetric divisions of
aRG and BP in the brain cortex. Moreover, enlargement and
complexity of the human brain cortex could be the result—at least
in part—of additional mitotic cycles experienced by BPs before
neurogenesis and glial differentiation (Kalebic and Namba, 2021).

INTRINSIC PROGRAMS SUPPORTING
POLARIZATION

Although in vitro and in situ polarization have differences (i.e.:
axon-dendrite vs. front-rear polarity, respectively), it is
evident that neurons hold a cell-autonomous program of
differentiation. The repertoire of polarizing molecules is

vast, including trophic factors, neurotransmitters,
hormones, peptides, lipids, nucleotides, ions and more.
Thus, polarity acquisition is the result of a dynamic balance
between positive (propolarizing) and negative (antipolarizing)
external and internal signals (Takano et al., 2019).
Accordingly, polarization is a step-by step rather than a
linear transformation, and neurons can redefine polarity in
early stages. Most of the external ligands are decoded by
plasma membrane receptors regulating molecular circuits to
allow polarization. Particularly, the polarity complex is an
ancient and evolutionary conserved group of genes/proteins
aiming the development and maintenance of cellular
asymmetries, controlling vital processes in all metazoans,
from embryo development to neuronal polarization.

The Polarity Complex is a
Genetically-Encoded Machinery Driving
Asymmetries
The polarity complex (PC) was described in C. elegans by
Kenneth Kemphues, James Priess, Diane Morton and
Niansheng Cheng in 1988 when studying embryo and tissue
development using the worm as a model system (Kemphues et al.,
1988) (Figure 1D and Table 1). By introducing deleterious
mutations in a large set of genes, they found a subset of
mutants unable to partition blastocysts during the first mitosis
of the zygote; collectively, these genes were called Partitioning-
defective (Par genes). Par genes encode a molecular circuit
promoting polarity in virtually all cells and tissues, aiming the
formation of asymmetries at different levels, ranging from
embryogenesis to neuronal polarization (Böhm et al., 1997;
Brazil and Hemmings, 2000; Kemphues, 2000; Jan and Jan,
2001; Shi et al., 2003; Brajenovic et al., 2004).

Overview of PAR Proteins in C. elegans
There are 10 PAR proteins in C. elegans, namely PAR-1 to
PAR-6, PKC-3, CDC-42, CHIN-1 (CHImaeriN [RAC-
GTPase-activating protein] homolog), and LGL-1 (lethal
giant larvae) (Etemad-Moghadam et al., 1995; Tabuse et al.,
1998; Gotta et al., 2001; Beatty et al., 2010; Hoege et al., 2010;
Kumfer et al., 2010; Lang and Munro, 2017). Excluding PAR-2,
only expressed in worms, remaining PARs are relatively
conserved in all metazoans. PAR-1 and PAR-4 are Ser/Thr
kinases (Guo and Kemphues, 1995; Watts et al., 2000), whereas
PAR-2 is a RING finger protein stabilizing cell polarity (Boyd
et al., 1996; Hao et al., 2006; Beatty et al., 2010; Lang and
Munro, 2017). Of note, RING finger domains mediate
ubiquitin transfer and consequently protein stability
(Joazeiro and Weissman, 2000). In addition, PAR-3, PAR-5
and PAR-6 modulate protein-protein and membrane-protein
interactions (Hung and Kemphues, 1999). For instance, PAR-3
holds three PDZ domains and works as a scaffold protein
recruiting PAR-6 (Hung and Kemphues, 1999). Moreover,
PAR-5 contains 14-3-3 domains and binds to a large variety
of proteins such as PAR-1, supporting the establishment of the
AP axis (Benton et al., 2002; Morton et al., 2002). Finally, PAR-
6 is an adaptor protein, holding PDZ and CRIB domains
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(CDC-42/Rac interacting binding domains) interacting with
PAR-3 and CDC-42 (Hung and Kemphues, 1999; Aceto et al.,
2006).

Another member of PARs is CDC-42, a GTPase belonging to
the subfamily of small Rho GTPases together with Rac and RhoA,
among others (Hall, 1990, 1998; Ridley and Hall, 1992).
Pioneering work by Allan Hall and collaborators established
that Rho proteins modulate FA dynamics, with Rac and CDC-
42 promoting lamellipodia and filopodia formation, respectively,
and RhoA actin stabilization and stress fiber formation (Hall,
1990, 1998). Since then, Rho GTPases have been implicated in a
wide variety of functions including a crucial role in the
establishment of neuronal polarity exerting local control of FA
and MT dynamics required for axonal formation and navigation
(Gonzalez-Billault et al., 2012).

In addition, the GTPase activating protein (GAP) CHIN-1
also belongs to PARs and balances CDC-42 and Rac activities
(Kumfer et al., 2010). Finally, the family is completed with the
Ser/Thr kinase PKC-3 and the tumor suppressor protein LGL-1
(Tabuse et al., 1998; Hoege et al., 2010).

The Interdependence of PARs,MT and FA to
Establish the AP Axis
Immediately after fecundation PARs are uniformly distributed in the
zygote together with RhoA and Myosin II. However, PAR-3, PAR-6,
CDC-42 and PKC-3 segregate to the anterior zone (aPARs, for
anterior) by mechanisms not clearly identified yet. In contrast,
PAR-1, PAR-2, CHIN-1 and LGL-1 remain in the posterior
domain (pPARs, for posterior) (McCaffrey and Macara, 2012;
Lang and Munro, 2017). Several lines of evidence suggest that the
site of sperm entry into the oocyte defines the posterior pole of the
zygote (Goldstein and Hird, 1996; O’Connell et al., 2000; Sadler and
Shakes, 2000). Accordingly, the sperm would supply the centrioles
that assemble with the pericentriolar material of the oocyte to
constitute the centrosome, defining the posterior domain and
suggesting a role for MT (Cuenca et al., 2003; Bienkowska and
Cowan, 2012). In addition, sperm-derived inhibitory cues (localized
in the posterior domain) would reduce RhoA activity leading to
actomyosin cortical flows supporting AP segregation (Munro et al.,
2004; Motegi and Sugimoto, 2006). Therefore, the site of fecundation
has a positional value defining the organization center for MT as well
as early FA dynamics promoting the AP axis.

Anterior and Posterior PAR Proteins
Establish a Feed-Forward Circuit
PAR-2 recruits PAR-1 to the posterior domain of the zygote. In
turn, PAR-1 phosphorylates PAR-3 avoiding its self-
oligomerization and hence promoting its anterior segregation
(Figure 1D). In addition, active CDC-42 (GTP bound) also
localizes in the anterior domain and its activity seems to be
downregulated by the GAP CHIN-1, mostly localized in the
posterior pole, a distribution narrowly dependent on PKC-3.
In this regard, the anterior localization of PKC-3 is achieved by
the binding to PAR-3, PAR-6 and CDC-42. Finally, PAR-4 and
PAR-5 are uniformly distributed in the zygote and their
suppression disrupts the AP axis, affecting asymmetric cell
divisions and polarization of the zygote (McCaffrey and
Macara, 2012; Lang and Munro, 2017).

PARs are expressed in all metazoans (Table 1). For example,
the Baz gene in D. melanogaster encodes Bazooka; the fly
homologue of PAR-3 that assembles with PAR-6 and aPKC
(Brazil and Hemmings, 2000; Jan and Jan 2001). The
mammalian PAR-3 (mPAR-3) was firstly named aPKC specific
interacting protein (ASIP) (Izumi et al., 1998; Brazil and
Hemmings, 2000). As in flies, mPAR-3 distributes in the
anterior pole of dividing stem cells, neuroblasts and sensory
organ precursor (SOP) cells. PAR-3 orthologues share three
conserved regions (CR1-3); CR2 holds PDZ domains for PAR-
6 and aPKC recruitment (Izumi et al., 1998; Lang and Munro,
2017), whereas CR3 allows PAR-3/PAR-6/aPKC assembly
(Soriano et al., 2016). Accordingly, CR3 phosphorylation by
aPKC disassembles PAR-6 and aPKC (Ohno, 2001).

Overall, PARs establish a molecular circuit aiming the
formation of asymmetries and cellular polarity (Figure 1D).
As expected, they also play a crucial role in the establishment
of neuronal polarity by controlling axon-dendrite formation. In
the following sections we will analyze the circuitry established by
PARs and their molecular partners to decode signals driving axon
formation.

The Polarity Complex Supports Neuronal
Polarization and Axon Formation
In 2003, Shi and colleagues reported the expression and axonal
segregation of PAR-3 and PAR-6 in cultured hippocampal
neurons isolated from embryonic rat brains (Shi et al., 2003).

TABLE 1 | Par genes and PAR proteins in C. elegans and mammals.

Protein C. elegans (description) Mammals Zygote* Neuron

PAR-1 Ser/Thr K MARKs pPAR Unknown
PAR-3 Scaffold mPAR-3 aPAR Enriched axon—Soma Shi et al. (2003)
PAR-4 Ser/Thr K LKB1 equivalent Axon
PAR-5 14-3-3 protein 14-3-3 proteins equivalent Unknown
PAR-6 Scaffold mPAR-6 aPAR Enriched axon—Soma Shi et al. (2003)
PKC-3 Ser/Thr K aPKC-3 aPAR Unknown
CDC-42 Small GTPase CDC42 aPAR Enriched axon—Soma Schwamborn and Püschel, (2004)
CHIN-1 GAP Unknown pPAR Unknown
LGL-1 Tumor suppressor Unknown pPAR Unknown

Summarizes name and localization of PARs, in the worm and mammals according to the references discussed in the main text. * (McCaffrey and Macara, 2012; Lang and Munro, 2017).
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This was the first of a series of articles published in the 2000s
reporting the contribution of the PC to axon-dendrite formation.
Accordingly, authors reported that PAR-3 and PAR-6 are
enriched in the tip of the growing axon in stage 2–3 neurons
(Figure 1E), although they are also detectable in the cell body to a
lesser extent. In situ, the axon of polarizing cortical neurons grows
towards the VZ, the anterior domain of the embryonic
neuroepithelium (Govek et al., 2011). Thus, axonal enrichment
of PAR-3 and PAR-6 resembles the anterior segregation observed
in C. elegans zygote. However, distribution of PARs has not been
assessed in the murine brain in situ.

The atypical protein kinase C (aPKC; PKC-3 in C. elegans) is a
principal component for the polarization of hippocampal
neurons in culture. Accordingly, pharmacological blockade of
aPKC arrest neurons in a multipolar phenotype (stage 2),
restraining axonal growth (Shi et al., 2003). However,
distribution of aPKC in polarizing neurons remains to be
evaluated. In C. elegans, PKC-3 phosphorylates the CR3
domain of PAR-3, supporting anterior segregation of PAR-3
and PAR-6 (Izumi et al., 1998; McCaffrey and Macara, 2012;
Lang and Munro, 2017). In culture, stage 3 neurons show an
axonal enrichment of phosho-aPKC (Thr 403/410), although
native aPKC distribution remains to be tested (Shi et al.,
2003). Overall, this data suggests that active aPKC, PAR-3 and
PAR-6 segregate into the nascent axon of polarizing neurons.

The Cross-Talk of Rho GTPases and the
Polarity Complex
CDC-42, Rac and RhoA belong to the Rho family of small
GTPases, molecular switches cycling between inactive (GDP-
bound) and active (GTP-bound) states controlling cytoskeletal
dynamics, cell contractility, migration and polarity (Hall, 1990,
1998; Ridley and Hall, 1992; Gonzalez-Billault et al., 2012). Their
activities depend on the exchange of GDP by GTP catalyzed by
guanine exchange factors (GEFs) proteins. Although Rho
proteins can hydrolyze GTP into GDP to return to their basal
state, this is enhanced by GTPase activating proteins (GAPs).
Currently, there is a global consensus on the role of Rho proteins
in the establishment of neuronal polarity (Gonzalez-Billault et al.,
2012). In general terms, both Rac1 and CDC-42 favors
polarization and axon formation by promoting FA dynamics
required for axon extension and guidance. In fact, local instability
of actin in the growth cones of developing neurites allows its
specification and elongation as an axon (Bradke and Dotti, 1999).
By contrast, RhoA counteracts their activities by promoting FA
stabilization through the activation of downstream effectors like
ROCK and CRMP-2 (Sayas et al., 2002; Conde et al., 2010; Xu
et al., 2015; Dupraz et al., 2019; Wilson et al., 2020a). GSK3β,
which is also activated by RhoA, is a major regulator of
neurogenesis, polarization and cytoskeletal organization acting
during asymmetric cell division, neuronal migration, polarization
and axon extension. Several excellent reviews have addressed in
detail the role of GSK3 signaling in neuronal development (Li,
2005; Hur and Zhou, 2010; Seira and Del Río, 2014).

Activation of CDC-42 and Rac1 is achieved by two
simultaneous mechanisms. On one hand, they are recruited in

the axon by the CRIB domain of PAR-6 (Brazil and Hemmings,
2000). On the other hand, PAR-3 binds to the Rac-specific GEF
Tiam1, leading to Rac1 activation (Nishimura et al., 2005). As
PAR-3 and PAR-6 establish a complex, Rac1 meets Tiam1
promoting polarization and axonal growth (Kunda et al., 2001;
Kawauchi et al., 2003; Nishimura et al., 2005). Hence, Rac1
activity in polarizing neurons depends on the assembly of the PC.

Whilst worm CDC-42 localizes in the anterior domain of the
zygote, cultured rat neurons show a preferential distribution in
the nascent axon and growth cone of stage 2–3 neurons. As it
occurs with aPKC, the activity of CDC-42 is locally regulated. In
fact, the small GTPase Rap1b, an upstream activator of CDC-42 is
enriched in the axonal tip of stage 3 neurons, suggesting a local
regulation (Schwamborn and Püschel, 2004). Along this line of
evidence, a recent article reported that the dynamin-binding
protein (DNMBP) TUBA segregates into the axon working as
GEF for CDC-42 (Urrutia et al., 2021). Collectively, these
observations suggest local regulations favoring CDC-42
activation in axons.

Reinforcing this concept, the GTPase Rac1 is uniformly
distributed in minor neurites of stage 2 cultured neurons.
However, the Rac1-specific GEF Tiam1 shows a preferential
distribution into the nascent axon and the axonal growth
cone, exerting a local control of Rac1 (Kunda et al., 2001). By
contrast, stage 2 and early stage 3 neurons display a polarized
activity of the GTPase RhoA, being highly active in minor
neurites (and their growth cones) and almost inactive along
the growing axon (Conde et al., 2010; Wilson et al., 2020a)
(Figure 1E). Hence, this data supports the notion that small
GTPases provide positive and negative signals balancing
cytoskeletal dynamics required for the polarization of central
neurons (Conde and Cáceres, 2009; Cáceres et al., 2012; Wilson
et al., 2020a). Rac1 and Tiam1 are important regulators of the
neuronal PC and although they were not initially considered as
part of the central core (as PAR proteins do), current evidence
supports their inclusion as members of the neuronal PC.

THE POSTERIOR PAR PROTEINS IN
POLARIZING NEURONS
MARK2, Mammal Orthologue of PAR-1,
Impairs Neuronal Polarization
Pyramidal rat neurons express orthologues of the worm pPARs.
For instance, the microtubule affinity regulating kinase 2
(MARK2), human orthologue of PAR-1 (Böhm et al., 1997),
determines the acquisition of polarity (Chen et al., 2006). MARK2
is a protein kinase targeting Doublecortin (DCX), MAP1B,MAP2
and Tau; all of them microtubule-associated proteins (MAPs)
conferring MT stability required for axon extension (Conde and
Cáceres, 2009). Consequently, phosphorylation of MAPs by
MARK2 reduces their MT affinity, leading to instability and
catastrophic events ultimately inhibiting axonal growth.
Moreover, this phenotype is rescued when aPKC
phosphorylates MARK2 at Thr 595 (Suzuki et al., 2004). In
neurons, either MARK2 deletion or kinase-dead expression
lead to multiple axon formation, displaying two or more Tau-
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1 positive neurites (Chen et al., 2006), a dephosphorylated epitope
of Tau enriched in the distal axon (Mandell and Banker, 1996).
Accordingly, Tau-1 levels increase after MARK2 suppression,
suggesting a negative cross-talk between aPKC and MARK2.
Along this line of evidence, overexpression of MARK2
increases Tau phosphorylation at Ser 262, reducing Tau-1
detection in the prospective axons and blocking the
acquisition of polarity; a phenotype that is only rescued by the
simultaneous expression of aPKC, PAR-3 and PAR-6 (Chen et al.,
2006). Thus, neurons express both anterior and posterior PARs
establishing a fluid crosstalk needed to break the symmetry of
developing neurons.

LKB1, Mammal Orthologue of PAR-4,
Favors Axon Formation
Rat neurons express the Ser/Thr kinase LKB1 (also STK11), a
mammal orthologue of the worm PAR-4 (Watts et al., 2000;
Benkemoun et al., 2014) involved in the establishment of
epithelial polarity of D. melanogaster and X. laevis (Martin
and Johnston, 2003; Ossipova et al., 2003).

LKB1 establishes a complex with STRAD and MO25 to
promote axon initiation and radial migration of rat cortical
neurons (Barnes et al., 2007; Shelly et al., 2007). Suppressing
LKB1 in cultured neurons prevents axon specification and
extension, whilst overexpression drives to multiaxonic
neurons. In situ, genetic suppression of LKB1 restrain axon
formation, severely affecting cortical migration. In particular,
genetic ablation of LKB1 shows a clear reduction of callosal
and corticofugal axons, reinforcing the concept that LKB1 is a
propolarizing protein (Barnes et al., 2007).

In culture, LKB1 shows a selective accumulation in one of the
neurites of stage 2 neurons (12 h in vitro), as well as in axons of
stage 3 (48 h in vitro) (Shelly et al., 2007) (Figure 1E). In this
regard, the protein kinase dependent of cyclic AMP (PKA)
phosphorylates LKB1 at Ser 431 enhancing its stability and
promoting axonal segregation (Barnes et al., 2007).
Consequently, phospho-LKB1 targets downstream effectors
such as the polarity proteins SAD-A/B kinases, AMPK and
AMPK-related kinases, such MARKs 1-4 (Lizcano et al., 2004;
Barnes et al., 2007). LKB1 phosphorylates the T-loop Ser residue
present in MARK2/3, which is conserved in all AMPK and
AMPK-like proteins, including MARKs.

DECODING EXTRINSIC SIGNALS: THE
ROLE OF TRK RECEPTORS, PI3K AND PIP3

Extracellular signals feed the circuitry of the polarity complex.
There is a wide consensus on the classification of these factors
into positive and negative signals, promoting or restraining
polarization. For instance, BDNF, insulin, IGF-1 and TFG-ß,
among others, bind to their plasma membrane receptors
triggering activation of intracellular signaling pathways
favoring polarization (Sosa et al., 2006; Arimura and Kaibuchi,
2007; Yi et al., 2010; Nakamuta et al., 2011; Takano et al., 2019;
Rozés-Salvador et al., 2020). Most polarizing signals—if not

all—are transduced by tyrosine kinase receptors (TRK) located
at the plasma membrane, triggering the activation of the
phosphatidylinositol 3 kinase (PI3K) and conversion of
phosphatidylinositol 4,5 bi-phosphate (PIP2) into
phosphatidylinositol 3,4,5 tri-phosphate (PIP3).

Polarizing neurons produce neurotrophins such as BDNF and
NT3, transduced by TrkB and TrkC receptors leading to PI3K
activation and further conversion of PIP2 into PIP3 (Nakamuta
et al., 2011). Accordingly, neurons expressing the plasmid PH-
Akt-GFP, holding the PH domain of Akt for PIP3 binding, show
an enrichment of PIP3 in the axolemma (Ménager et al., 2004).
Similarly, by expressing the reporter PH-Tiam1-GFP it was
confirmed that both PIP3 and Tiam1 are enriched in the axon
(Wang et al., 2002; Ménager et al., 2004). Remarkably, initial
observations reporting these interactions were done in different
models of study, including rat neurons, neutrophils and the
amoebae D. discoideum, reinforcing the idea that the PC is
conserved across species.

BDNF phosphorylates LKB1 to promote axon growth (Shelly
et al., 2007), feeding the activating loop of proteins that form the
PC. Similarly, the IGF-1 peptide is transduced by the IGF-1R, a
TRKmembrane receptor promoting the establishment of polarity
(Sosa et al., 2006). Although neurons do not naturally produce
IGF-1, insulin binds and activates IGF-1R, triggering the
synthesis and axonal enrichment of PIP3, supporting the
recruitment of Tiam1, PAR-3, PAR-6 and small GTPases in
the axon (Wang et al., 2002; Nishimura et al., 2005; Sosa
et al., 2006). Together, these findings support the notion that
external signals converge into common pathways supporting the
acquisition of polarity by producing local domains of PIP3 in the
axolemma. Hence, PIP3 works as a rheostat that recruits polarity
proteins. Other lipids like ceramides are also instrumental for
recruiting polarity proteins such as aPKC and CDC-42 in neural
precursors, although their precise role in the axonal and/or
dendritic compartments remains to be tested (Wang et al.,
2008). Furthermore, a detailed characterization of lipid
composition in developing axon and dendrites is missing.

Rho GTPases Bridge the Polarity Complex
With MT and FA
MT and FA are usually referred to as the driving force supporting
neuronal polarization (Bradke and Dotti, 1999; Conde and
Cáceres, 2009; Stiess and Bradke, 2011; Schelski and Bradke,
2017). On one hand, MT assembly/stabilization and MT-based
transport of Golgi-derived vesicles allow axonal extension (Conde
and Cáceres, 2009; Quiroga et al., 2018), while FA confers
navigation capacity to the growth cone of the nascent axon,
shaping and orientating the growth in response to attractive and
repulsive cues.

The reorganization of the growth cone cytoskeleton is crucial
for axon formation (Bradke and Dotti, 1999; Kunda et al., 2001).
Accordingly, MTs represent a platform mediating the cross-talk
between the PC, small Rho GTPases and FA. An illustrative
example is the case of Tiam1. In stage 2–3 neurons Tiam1 is
enriched at the tip of growing axons colocalizing with PAR-3/6,
but also binds to a subset of dynamic MT by interacting with
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MAP1B (Kunda et al., 2001; Montenegro-Venegas et al., 2010;
Henríquez et al., 2012). The association with MAP1B targets
Tiam1 to the tip of the nascent axon, activating Rac1 and
consequently promoting axonal growth. Hence, cultured
neurons isolated from MAP1B-deficient mice accumulate
Tiam1 in the Soma, reducing Rac activity in axons, and
restraining axonal growth (Montenegro-Venegas et al., 2010).
Together, these results extend the functions of Tiam1; it not only
interacts with the PC and small GTPases, but also works as a
linker between MT and actin dynamics for axon development
(Shi et al., 2003; Montenegro-Venegas et al., 2010). We envision a
scenario where growing MT containing MAP1B and Tiam1
protrude within the central and peripheral growth cone
domains of the prospective axon, leading to the interaction
between Tiam1 and Rac mediated by PAR-3, PAR-6 and
CDC-42 (Nishimura et al., 2005).

Interestingly, other GEFs required for neuronal polarity
regulate MT dynamics. This is the case of DOCK7, a GEF
selectively localized at the axon able to stimulate Rac to
inactivate Stathmin, a MT-destabilizing factor, promoting axon
formation (Watabe-Uchida et al., 2006). By contrast Lfc, a MT-
bound GEF, activates RhoA afterMT depolymerization leading to
axon growth inhibition (Conde et al., 2010; Wilson et al., 2020a).
Thus, MT are both signaling platforms and targets of Rho
GTPases during neuronal polarization.

In addition, GTPases seem to be the convergence point of
several biological process shaping neurons. For instance,
physiological levels of reactive oxygen species (ROS) derived
from the NADPH oxidase (NOX) complex are needed to
polarize neurons and extend the axon (Wilson and González-
Billault, 2015; Wilson et al., 2015, 2016, 2018). In neurons, NOX
is a plasma membrane complex of 5 subunits: gp91phox, p47phox,
p67phox, p40phox and the small GTPase Rac (Wilson et al., 2015;
Wilson and González-Billault, 2015). Accordingly, the active
form of Rac allows the activation of NOX, maintaining ROS-
dependent signaling needed for axon formation (Wilson et al.,
2016). Although further research is needed to link both the PC
and NOX complex, this example illustrates the role of small
GTPases as bridges between different layers of regulation for
polarity acquisition.

THE SHADOWS OF NEURONAL POLARITY

Molecular mechanisms here discussed are mostly focused on
protein-dependent signaling pathways. Recently, new layers of
regulation have emerged controlling the acquisition of neuronal
polarity, including genetics, epigenetics and biophysics. In this
section, we will highlight new-old concepts usually underexplored
that are instrumental to understand mechanisms shaping neurons.

Gene Regulation: Emerging Roles of
Epigenetics for Axon-Dendrite Formation
Genetic regulation shape the nervous system, but its role on the
establishment of neuronal polarity has been largely unexplored
(Wilson and Cáceres, 2021). Looking back the historical context

in which neuronal polarization was described, parallel to the
Human Project and sequencing era, the genetic regulation of
polarity remained unexplored. Currently, it is known that
epigenetics plays a determinant role for axonal growth by
controlling the supply of gene products in time and space.

Epigenetics comprehends all mechanisms controlling gene
expression by modifying the DNA, chromatin and/or
transcripts without affecting DNA sequence, including DNA
methylation, histone post-translational modifications and RNA
stability/editing, among others. For instance, a proper balance of
methylation/demethylation of histone (H) amino acid residues,
such as H3K9, H3K20, H3K27 and H4K20 regulates the
expression of the actin remodelers WASP and CDC-42,
controlling axon extension and guidance of PVQ interneurons
of C. elegans (Kleine-Kohlbrecher et al., 2010; Mariani et al., 2016;
Riveiro et al., 2017; Abay-Nørgaard et al., 2020). Histone post-
translational modifications (PMT) also impact on the
polarization and axon formation of mammals in health and
disease. For instance, the genetic supply of components of the
RhoA-dependent signaling pathway depends on the bi-
methylation of H3K9 (H3K9me2), promoting polarization
(Wilson et al., 2020a). In fact, removing the H3K9me2 label
blocks the transition from the multipolar to the polarized
phenotype (stage 2–3) in vitro and in situ. Moreover, it leads
to an overexpression of the RhoA GEF Lfc, inducing a gain of
function of the RhoA/ROCK pathway; a strong inhibitor of axon
formation by targeting actin dynamics (Wilson et al., 2020a).
Although enzymes remodeling histones have phylogenetic
differences across species, the H3K9me2 mark emerges as a
common signature needed to shape axons in worms and
rodents. In both species, H3K9me2 represses genes encoding
actin remodelers such as CDC-42 and Lfc; all of them promoting
cell and neuronal polarity.

Axonal determinants are also regulated by miRNAs (small
non-coding RNAs) that control gene expression in different types
of animals (Bartel, 2018). Many studies revealed that miRNAs
regulate neural development and local translation of proteins in
the somatodendric and axonal compartments (Cuellar et al.,
2008; Dajas-Bailador et al., 2012; Iyer et al., 2014). Among
several highly expressed miRNAs in the nervous system, miR-
219 inhibits the translation of cell polarity regulators PAR-3,
PAR-6, and aPKC (Hudish et al., 2013, 2016). In addition, miR-
219 localizes differentially between the soma and the axon of
neurons (Kye et al., 2007) and specifically binds to the 3′-UTR
region of Tau, one of the MAPs implicated in neuronal
polarization (Caceres and Kosik, 1990; Santa-Maria et al.,
2015). Although miR-219 is an important regulator of neural
and glial development (Zhao et al., 2010; Hudish et al., 2013,
2016; Wang et al., 2017), it is unknown whether it also regulates
axo-dendritic development in neurons.

Using retinal ganglion cells of X. laevis it has been shown that
pre-miRNAs (precursor miRNAs) are transported from the soma
to the distal axon through a vesicle-based system depending on
endosomal/lysosomal trafficking. This pool of pre-miRNAs is
processed into mature miRNAs in response to a repulsive cue
degrading the class III tubulin mRNA and reducing MT stability
(Corradi et al., 2020). In line with these observations, miRNA-182
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also regulates axonal guidance through a Slit2-dependent
mechanism targeting the mRNA of the actin remodeler
Cofilin-1, a key cytoskeleton regulator (Bellon et al., 2017).
Finally, several reports showed that miRNAs also control FA
and MT spatiotemporal dynamics of neuronal polarity by
regulating MAP1B, Doublecortin, ROCK and GSK3β, among
others (van Spronsen et al., 2013; Li et al., 2019; Lucci et al., 2020).

In addition, DNA methylation, alternative splicing and RNA
editing are instrumental for shaping neurons during polarization,
although downstream mechanisms are more elusive and further
research is needed to unveil the precise targets that control axon-
dendrite formation.

Biophysical Factors Supporting Polarization
Currently, one of the most understudied fields controlling the
polarization of neurons are the biophysical properties of the cell.
For example, the anterior and posterior polarity proteins in the
one-cell stage zygote of C. elegans are helpful to partially
understand asymmetric divisions of blastocysts. However,
several questions about this process still lack sound answers.
For instance, it is still a matter of debate the primary signal that
polarizes the zygote into the AP axis. The fusion of sperm and
oocyte’s cytoplasm is one of the most relevant phenomena at
this stage of development and it could be the polarizing sign
defining the AP axis of the C. elegans one-cell zygote.
Nevertheless, biophysical forces involved are just starting to
be explored mostly by live-cell and super-resolution imaging
techniques.

In addition to cellular and molecular factors, anisotropical
forces driven by the environment might be relevant to explain the
establishment and maintenance of neuronal polarity. In vitro
axon elongation can be experimentally induced by applying
tension to the tip of the growth cone trough “microelectrode
towing” stretching it into the longitudinal axis at the single-cell
level or integrated axon tracts (Bray, 1984; Pfister et al., 2004).
Moreover, neurons show selective adhesion towards in vitro
substrates exhibiting different stiffness, highlighting the
relevance of mechanical forces during neuronal polarization
(Anava et al., 2009; Ferrari et al., 2011). Studies using
advanced biophysical methods have extended these
observations (Nötzel et al., 2018) but still is unknown how can
be integrated to understand how extrinsic physical factors
determine neuronal polarity in vivo.

Neurons are highly compartmentalized with the cytoskeleton
being a determining factor in the mechanical properties of their
axons and the formation of subcellular compartments (Conde
and Cáceres, 2009). Across to the axon, a periodic arrangement of
actin ring-like structures separated by spectrin assemble the
membrane-associated periodical skeleton (MPS) (Xu et al.,
2013). These structures are also present in the AIS, which acts
as a permeable diffusional barrier between the somatodendric and
axonal compartments (Leterrier, 2018). In this regard, one of the
most intriguing questions is what are the driving forces that
spatiotemporally assemble and maintain these supramolecular
structures. The intracellular milieu is a highly crowded
environment and the formation of molecular condensates
through liquid–liquid phase separation might be crucial in

shaping and maintaining these assemblies (Hernández-Vega
et al., 2017; Hayashi et al., 2021). Further studies are needed
to integrate these concepts and explore how these observations
could help us understand the establishment and maintenance of
neuronal polarity.

Polarization of Human Neurons
Currently it is possible to study the polarization of human
neurons using induced pluripotent stem cells (hiPSC),
obtained from reprogrammed skin fibroblasts isolated from
human donors (Takahashi and Yamanaka, 2006; Takahashi
et al., 2007) (Figure 2). Moreover, brain organoids can be
produced from hiPSC as a 3D culture system that
recapitulates different cell layers that are generated during
human brain development (Lancaster et al., 2013). Although
early works with human neuroblastoma cells have been
instrumental to characterize biochemical mechanisms,
morphological and cellular properties are notoriously different
compared to primary neurons isolated from animal tissues.
Moreover, some biological mechanisms are not broadly
conserved among species and significant differences might
arise through studies based on hiPSC-derived neurons (Rolls
and Jegla, 2015; Kshirsagar et al., 2019). Therefore, these novel
models will allow us to assess whether conserved mechanisms
discussed here also shape the architecture of human neurons in
health and disease.

hiPSC-derived neurons and brain organoids are being
extensively used in disease modeling since they could
recapitulate many aspects of human diseases (Shi et al., 2017;
Penney et al., 2020). The ability to generate any CNS cell type
in vitro from hiPSC is particularly relevant in neurobiology due to
limited access to primary cells from human CNS. Moreover, the
implementation of 3D culture brain organoids from patient-
derived hiPSC will unravel the complexity and
pathophysiological relevance of cell–cell interactions in brain
diseases. A broad range of applications have been already
assessed including drug discovery and development, toxicology
and virology (Rivetti di Val Cervo et al., 2021). However, and with
some exceptions, only a few studies focus on central questions
about the biology of neural development including the
establishment and maintenance of neuronal polarity.

Two recent reports examine how hiPSC neurons polarize with
similarities and differences compared to murine neurons in vitro
(Lindhout et al., 2020, 2021). For example, the timing of polarity
acquisition is significantly slower. Whilst rat cultured neurons
take approximately 36 h in defining the axonal compartment,
human cultured neurons require several days (Figure 2A). In this
regard, rat and hiPSC neurons show differences. For instance, the
rat culture begins with postmitotic neurons isolated from E18.5
hippocampi. In contrast, hiPSC neurons are obtained from NSC
differentiation in vitro; consequently, NSC need at least a couple
of days to turn off the stem phenotype to generate neurons. In
addition, the culture of hiPSC neurons is heterogenous; although
mainly enriched in neurons, it also contains non-neuronal cells
even after several weeks (Figures 2A–D, red arrows). By contrast,
the culture of rat neurons is highly pure (over 95% of cells are
neurons).
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Despite differences mentioned above, hiPSC and rat cultured
neurons share common morphologies. For example, in both
models, neurons develop a pyramidal phenotype (Figures
2B1,C3) showing the classical distal enrichment of Tau-1 in
the axon (Figure 2E, arrows). In addition, bipolar morphologies
are also detected (Figures 2B,C4). Thus, our first approaches
culturing hiPSC neurons suggest differences and similarities that
need consideration. Significantly, culture and differentiation
protocols will require standardization across laboratories to
successfully apply hiPSC-based models for future studies
uncovering the fundamentals of neurobiology in health and
disease.

MAIN CONCLUSION AND PERSPECTIVES

In this article we attempted to do a critical review on the most
fundamental mechanisms supporting the polarization of neurons.
Undoubtedly, the PC exerts a deep influence on shaping neurons as
well as on polarizing cells and tissues of all animals. Phylogenetic
preservation of Par genes reinforces their importance as a
genetically-encoded system to develop asymmetries as a
mechanism to gain functional specialization throughout
development beyond species and evolution. Cell-context
dependent mechanisms will determine the outcome of
polarization and there are intrinsic and extrinsic elements

FIGURE 2 | In vitro morphological stages of hiPSC neuronal polarization. (A–D) hiPSC-derived neurons at 3, 7, 14 and 21 DIV expressing Doublecortin (DCX;
postmitotic neuronmarker). Scale: 50 µm. Insets 1-2 (7 DIV) and 3-4 (14 DIV) are shown to visualize mainmorphologies detected in culture. (B1,2, C3,4)Magnification on
insets in B and C images. Insets B1 and C3 were rotated at 90° left for aesthetic purposes. Scale: 20 µm. (E)Molecular polarization of neurons visualized by the axonal
enrichment of the Tau-1 epitope (arrows). Representative image showing a 15 DIV hiPSC neuron exhibiting the proximo-distal gradient of the Tau-1 epitope as it
occurs in rat neurons. Scale: 50 µm. hiPSCs from skin fibroblasts generated using the Yamanaka factors were gently provided by Dr. Fernando Pitossi (Fundación
Instituto Leloir, FIL-CONICET, CABA, Argentina). They were differentiated into cortical neurons following established protocols (Casalia et al., 2021).
Immunofluorescence and confocal microscopy was performed using established protocols (Wilson et al., 2020b).
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switching on/off the PC. In neurons, this circuitry is modulated by
external signals such as neurotrophic factors, TrK receptors at the
membrane and cell-cell interactions, among others. Intrinsically, the
repertoire of neuron-specific proteins should also be carefully
analyzed. Unfortunately, a detailed proteomic analysis of
polarizing neurons is missing, which would be instrumental to
understand the orchestration of protein networks during
development. For example, DRG neurons express a specific
splicing variant of Tau protein [named high-molecular weight
(HMW) Tau], which includes the exon 6 (skipped in central
neurons) (Mavilia et al., 1993). However, the role of this variant
on MT stability, morphology and function remains unknown.
Similarly, transcriptomic-based studies have been also elusive,
although recent works are considering these approaches. Thus,
the transcriptomic and proteomic landscapes should be
considered to fully understand mechanisms supporting neuronal
polarity.

After revisiting seminal paperswe noticed that cell biology is not
enough to explain (by itself) the polarization of cells and tissues,
including neurons. In other words, protein-protein interactions
and intracellular signaling solve a part of a complex problem. Novel
hypotheses are beginning to include the genetic regulation and
nuclear events into the polarity equation, filling gaps and enriching
previous mechanisms. In addition, biophysics—unfortunately one
of the most underexplored dimensions of neuronal polarity—will
be critical to understand the contribution of the cytoplasm and
membranes in shaping neurons. Moreover, culturing human
neurons is an opportunity to evaluate the contribution of
ancient molecular systems such as the PC, which would
reinforce their evolutionary relevance in shaping cellular
morphologies independent of species. Thus, mixing old and

new hypotheses, emerging and classical experimental models
and involving complementary disciplines will be needed to
unveil secrets supporting the polarization of neuronal and non-
neuronal cells.
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