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Epithelial–mesenchymal interaction is required for normal growth, morphogenetic
patterning, and cellular differentiation in developing lungs. Various signaling pathways
have been defined in establishing the patterning of this branched organ. The
phosphoinositide-3-kinase (PI3K) signaling plays an important role in disease
pathogenesis but remains largely uncharacterized in embryonic development. In this
study, we activated a specific catalytic subunit of PI3K catalytic enzymes, Class IA
p110α (p110α), in the embryonic lung mesenchyme using the Dermo1-Cre mouse.
Activation of p110α promoted branching morphogenesis and blocked club cell
differentiation in both proximal and distal airways. Mechanistically, the LIM
homeodomain gene Islet-1 (Isl1), fibroblast growth factor 10 (Fgf10), and SRY (sex-
determining region Y)-box9 (Sox9) were found to be downstream targets of p110α. The
significantly increased expressions of Isl1, Fgf10, and Sox9 resulted in the stimulation of
branching in mutant lungs. Activation of p110α-mediated signaling also increased the
expression of phosphatase and tensin homolog deleted on chromosome 10 (Pten) and
hairy/enhancer of split 1 (Hes1), which in turn blocked club cell differentiation. Thus, the
signaling pathway by which PI3K/p110α-regulated epithelial–mesenchymal interactions
may entail Isl1–Fgf10–Sox9 and Pten–Hes1 networks, which consequently regulate
branching morphogenesis and club cell differentiation, respectively.
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INTRODUCTION

During embryogenesis, the mammalian lung is derived by branching morphogenesis to form an
effective gas exchange organ. Traditionally, the development of the bronchopulmonary tissue has
been defined in five histological stages: embryonic, pseudoglandular, canalicular, saccular, and
alveolar stages (Metzger et al., 2008; Mullassery and Smith, 2015). In the mouse, the specification of
the lungs starts around embryonic day (E) 9.0. By E9.5, evagination of the epithelium forms the
trachea and two lung buds (Cardoso, 2001; Morrisey and Hogan, 2010). The trachea separates from
the esophagus in the embryonic stage (E9.5–E12.5) (Boggaram, 2009; Morrisey and Hogan, 2010). In
E12.5–E16.5, to establish a tree-like airway network, the lung buds conduct a strictly regulated
branching process. In E16.5–postnatal day 5 (canalicular and saccular stages), the branch terminuses
develop alveolus to form a large surface area in preparation for air exchange to the blood at birth. In
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P0–P14 (alveolarization stage), the alveolus is fully matured
(Frank et al., 2016). Through all stages, signaling pathways act
in concert with one another between the endodermal epithelium
and mesenchyme, contributing to normal growth,
morphogenetic patterning, and cellular differentiation in the
developing lung (Kolobaric et al., 2021).

After the early budding of the foregut endoderm to form the
main bronchi, the airway tips rapidly grow into the surrounding
mesenchyme to establish the tree-like branching structure.
Branching morphogenesis is mediated by changes in cell
behaviors, such as cell size, shape, division, and motility (Zhu
and Nelson, 2012). These cellular effects are highly regulated by
various signaling pathways, including the FGF (fibroblast growth
factor), Wnt, Shh (sonic hedgehog), and BMP (bone
morphogenetic protein) pathways (Cardoso and Whitsett,
2008). Although the mechanisms involved in forming new
branch points are still not identified, the present literature has
documented that the signaling networks in epithelial and
mesenchymal cells are required by both branching
morphogenesis and cell differentiation. FGF10, a member of
the FGF superfamily, originates from the distal lung
mesenchyme and is regulated by the SHH and BMP4
pathways (Ohuchi et al., 2000). Disruption of FGF10 in mice
blocked lung development below the trachea (Kato and Sekine,
1999). In contrast to FGF10, SHH is present in the lung
epithelium, with a most profound expression in the distal tips.
Deletion of SHH inmice also showed an abnormal patterned lung
(Litingtung et al., 1998) and extension of FGF10 expression
(Pepicelli et al., 1998). Similar to SHH, BMP4 is also highly
expressed in the epithelial cells around the distal tips.
Overexpression of BMP4 results in lung hypoplasia and
distension of terminal airspaces (Bellusci et al., 1996). The
FGF10–Shh and FGF10–BMP4 interactions suggest that a
complex signaling network in the epithelium and mesenchyme
controls branch formation and outgrowth.

During branching, the lung endoderm starts to make cell fate
decisions and differentiates into specialized cell types along a
proximal–distal axis. The Sry-related HMG box proteins, SOX2
and SOX9, define the proximal–distal patterning. SOX2 is located
in the proximal epithelium, whereas SOX9 is strictly expressed in
the distal epithelium (Gontan et al., 2008; Rockich et al., 2013).
The specific distribution of Sox2 and Sox9 leads to proper cell
proliferation and differentiation (Okubo et al., 2005). When the
SOX2+ progenitors give rise to airway secretory cells,
neuroendocrine cells, mucosal cells, and ciliated cells, the
SOX9+ progenitors differentiate into alveolar type I and type
II cells (Tompkins et al., 2011; Herriges and Morrisey, 2014).
Although multiple studies have shown that signaling from the
mesenchyme plays a critical role in the airway epithelial cell
differentiation, neither the heterogeneity of the SOX2+ and
SOX9+ progenitor populations nor the molecular mechanisms
underlying their formation and differentiation are fully identified.

PI3Ks (phosphatidylinositol 3-kinases) are a family of lipid
kinases and can be divided into three subclasses based on their
specificity in structure and regulations (Noorolyai et al., 2019).
The important role of the PI3K signaling network has been
defined in many physiological processes, including cell growth,

proliferation, differentiation, motility, and survival (Martini et al.,
2014). Among the three subclasses, Class I PI3Ks contain a p110
catalytic subunit (p110α, β, or p110γ), and a p85 regulatory
subunit (Zhao and Vogt, 2008). In the past decades, substantial
advances in understanding the importance of PI3K in human
cancer have been obtained by analyzing Class I PI3Ks and,
specifically, the p110α isoform (Fruman et al., 2017). It is now
appreciated that PI3K is also a major player in controlling normal
organogenesis including branching morphogenesis in the
mammary gland, kidneys, salivary gland, and prostate (Zhu
and Nelson, 2012). Evidence from mouse embryonic lung
culture experiments has suggested that the disruption of PI3K
decreased the number of buds, the diameter of the developing
airways, and epithelial cell proliferation (Srinivasan et al., 2009).
Although the PI3K pathway is important for lung development,
various roles are still needed to be systematically examined.

In this study, we investigated the role of PI3K in embryonic
lung development by generating mice that constitutively express
an active p110α (p110*) in mesenchymal cells via a Dermo1-Cre
driver mouse line. The results show that PI3K signaling via p110α
regulates branching morphogenesis and club cell differentiation.
Isl1, Fgf10, and Sox9 expressions were stimulated in mutant lungs,
which in turn were associated with increased branches. The
expansion of airway epithelial progenitors in the mutant lung
led to an impeded club cell differentiation in both proximal and
distal airways through Pten-regulated Hes1 expression. To the
best of our knowledge, our work provides the first comprehensive
evidence that impacts PI3K signaling via p110α on
epithelial–mesenchymal interactions that are required for
embryonic lung development.

MATERIALS AND METHODS

Experimental Animals
P110* mice were generated as previously described (Srinivasan
et al., 2009) and purchased from Jackson Laboratory (strain
name: C57BL/6-Gt(ROSA)26Sortm7(Pik3ca*,EGFP)Rsky/J, stock
number: 012343, also known as R26StopFLP110*). In these
mice, the R26StopFLP110* conditional allele is targeted to the
Gt(ROSA) 26Sor locus and has a loxP-flanked Neo-STOP cassette
preventing transcription of P110α and EGFP. These mice allow
an inducible expression of activated PIK3 heterodimer activity.
Dermo1-Cre and ROSAmTmG mice were gifts from Dr. Parviz
Minoo (University of Southern California, United States). P110*/
* mice were crossed with Dermo1-Cre mice to obtain P110*/+;
Dermo1-are mice. All animals were housed up to the standard
protocol approved by the Beijing Association on Laboratory
Animal Care (Beijing, China), and all animal studies were
conducted according to the protocol (AW81801202-3-2) from
China Agriculture University.

Embryonic Lung Isolation
Timed-pregnant mice were sacrificed on E12.5, E15.5, and E17.5.
The embryos were released from the uterus and lungs and
removed under a 3D dissecting microscope (DUMONT, 0208-
5-PO) and fixed with 4% PFA for 4 h for histological analyses or
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collected in RNase-free centrifuge tubes for RNA and protein
analyses.

Histology and Immunohistochemistry
For the preparation of paraffin sections, all dissected lung tissues
were fixed in 4% PFA. Hematoxylin–eosin (H&E) staining was
performed according to the standard procedures for
morphological examination. Immunofluorescence (IF) staining
was performed as previously described (Sridurongrit et al., 2008).
IHC kits were purchased from ZSGB-BIO, China (PV-9001).
Primary antibodies used in the experiments are listed in
Supplemental Table S1.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA from lung tissues was extracted with the TRIzol reagent
(Invitrogen, Life Technologies, China). Reverse transcription was
conducted according to the manufacturer’s instructions (Vazyme,
R333-01, China). Real-time PCR analysis was performed by using
2xM5 HiPerSYBR Premix EsTaq with Tli RNaseH (Mei5
Biotechnology, China) and a Light Cycler 480 real-time PCR
system (Roche). The expression of β-actin was used to normalize
target gene expression. The sequence of primers is listed in
Supplementary Table S2.

Western Blot
Lung tissues were collected and frozen in liquid nitrogen. Total
proteins were extracted by using a RIPA reagent kit (Beyotime,
China) containing 1 mM PMSF (Beyotime, China) and a
PhosSTOP EASY kit (Roche, Switzerland). An equal amount
of proteins from each sample was loaded and separated using
SDS/PAGE gels, then transferred to Immobilon-P transfer
membranes, and stained with primary antibodies. Antibodies
against the target proteins are listed in Supplemental Table S1.

Cell Apoptosis
The apoptotic cells were detected using a TUNEL Apoptosis
Assay Kit (Beyotime Biotechnology Co., Shanghai, China).
Images were captured with a fluorescence microscope.

Cell Counting
After immunostaining, images were taken by using an Olympus
BX53 microscope. The cells were quantified with ImageJ software
or Adobe Photoshop (CC 2019). More than 10 random areas per
section were counted under the ×20 objective.

Mesenchymal Cell Isolation
Lungs from mutant or control mice were dissected at E12.5 and
treated with Dispase (50 U/ml, Beyotime Biotechnology Co.,
Shanghai, China) at 4°C for 20 min. Mesenchymal cells around
the distal lung tips were removed with tungsten needles and
collected for protein extraction.

Statistical Analysis
Data are presented as mean ± SD as indicated. p-values were
calculated using SPSS 16.0 software. A p value <0.05 was

considered significant, whereas >0.05 was assigned as NS.
Statistical significance between the two groups was carried out
by using an unpaired two-tailed Student’s t-test.

RESULTS

Mesenchymal-Specific Activation of p110α
in Murine Lungs
P110α, the catalytic subunit of PI3K, plays a key role in cell
survival, growth, and proliferation, as well as differentiation,
regeneration, hypertension, and development of cancer
(Klippel et al., 1996). In order to study the regulation of
mesenchymal PI3K signaling during embryonic lung
development, we generated P110*/+; Dermo1-cre mice by
crossing P110*, a mouse line that allows conditional
expression of a constitutively active form of p110α (Srinivasan
et al., 2009), with Dermo1-cre mice (Figure 1A). Dermo1 (also
called Twist2) encodes a basic helix–loop–helix transcription
factor and is highly expressed in mesodermal cells in mice
(Figure 1B) (Fang et al., 2019). As the compound mutant
mice expressing P110* in mesenchymal cells died before birth
(E20.5) (Figure 1C), possibly due to overall defects of embryonic
development, the lung phenotype analysis in this study is limited
to the embryonic stages. Western blot analysis showed the
activation of PI3K signaling in P110*/+; Dermo1-cre lungs
(Figure 1D). By immunostaining, increased expression of
p110α was found in mesenchymal cells with an antibody to
P110α (Figure 1E). Surprisingly, phosphorylation of the
protein kinase B (AKT), the direct downstream target of PI3K,
was decreased in both the mesenchyme and epithelium in lungs
from mutant mice (Figure 1D and Supplemental Figure S1),
suggesting that the effects of PI3K signaling on embryonic lungs
might not act through the well-established PI3K-AKT pathway.

To characterize the phenotypes, lungs from E12.5, E15.5, and
E17.5 control and P110*/+; Dermo1-cre mice were isolated.
Histologically, H&E stained sections of lungs from E12.5,
E15.5, and E17.5 mutant embryos were nearly identical to the
controls (Supplemental Figure S2). However, in E12.5 embryos,
the overall size of the lungs of the mutant mice was consistently
larger compared to that of controls. Although these lungs
contained the same number of lobes, the size of the individual
lobes was larger and contained more branches (Figure 2 and
Supplemental Figure S3). Interestingly, this difference was
decreased in E15.5 and E17.5 lungs (Supplemental Figure S4).

Activation of p110α Promotes Branching in
the Early Embryonic Stage Through
Isl1-Fgf10 Signaling
To further examine the morphological effect of p110α activation
on branching, we analyzed the lung tissues of E12.5 in the early
stages of development. During branching morphogenesis, the
epithelial airways undergo branching and outgrowth into the
surrounding mesenchyme, which is regulated by signaling
pathways such as FGF10, Shh, BMP4, the Wnt pathway, and
others (Swarr and Morrisey, 2015). In the embryonic lungs of the
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mutant mice, no significant changes were observed in the ligands
and mediators of the Shh and BMP4 signaling pathways
(Figure 3A). In contrast, increased expressions of Fgf10 and
its upstream regulator, Isl1, were observed (Figure 3A). The
western blot analysis showed that the levels of FGF10 and
ISL1 were higher in isolated E12.5 P110*/+; Dermo1-cre
mesenchymal cells (Supplemental Figure S5) as compared to
wild-type mesenchymal cells.

In E10.5–E12.5, Fgf10 is strictly expressed in the distal
mesenchymal cells where branching occurs and is essential to
regulate airway epithelial cell proliferation (Yuan et al., 2018). To
determine whether the increased branching morphogenesis in the

lungs from mutant mice was due to increased cell proliferation or
a decreased cell apoptosis, we examined Pcna by
immunohistochemistry (Figure 3B) and real-time PCR
(Supplemental Figure S6) for cell proliferation, and TUNEL
staining (Figure 3B) and Fn expression (Supplemental Figure
S6) for apoptosis. The results demonstrated that Pcna was
significantly increased in E12.5, E15.5, and E17.5 P110*/+;
Dermo1-cre lungs (Figure 3B, Supplemental Figure S7).
Meanwhile, compared with controls, no change in cell
apoptosis was found in the lungs of the E12.5, E15.5, and
E17.5 P110*/+; Dermo1-cre mice (Figure 3B, Supplemental
Figures S6,8).

FIGURE 1 | Generation of P110*/+; Dermo1-cre mice. (A). P110*/+; Dermo1-cre was generated by crossing P110*/* with Dermo1-Cre mice. (B). An IF staining
analysis showed GFP-labeled mesenchymal cells in Dermo1-Cre; ROSAmTmG mice. Scale bar: 50 μm. (C). Gross morphology of E20.5 control and P110*/+; Dermo1-
cre embryos. Scale bar: 1 cm. (D). The expression of p110α and phosphorylated AKT at E12.5 were analyzed by using western blot. The western blot result for p110α
was quantified with ImageJ software. (E). Immunolocalization of P110α in E17.5 control and P110*/+; Dermo1-cre lungs. Scale bar: 50 μm.
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To determine the impact of mesenchymal-specific p110α
activation on early embryonic lung development, we analyzed
the expression of NKX2.1 and PDGFR, markers of epithelial and
mesenchymal progenitors, respectively. By
immunohistochemistry and real-time PCR, no alteration was
found in the lungs from E12.5 P110*/+; Dermo1-cre mice as
compared to controls (Figure 3C).

Reduced Club Cell Numbers in P110*/+;
Dermo1-Cre Lungs
To study the potential impacts on the differentiation of
mesenchymal cells in the later embryonic stage, we examined
mesenchymal cell marker α-SMA (α-smooth muscle actin) in
E17.5 lungs. Immunostaining and reverse transcription PCR
(RT-PCR) analyses showed that α-SMA expression remained
unaltered in P110*/+; Dermo1-cre lungs, suggesting that
mesenchymal cell differentiation was not affected
(Figure 4A,B). In the mouse lung, the epithelium is composed
of functional compartments along a proximal–distal axis. The
major differentiated cell types include club cells, ciliated cells, and
neuroendocrine cells in the airways, and type I and type II cells in
the alveoli. To investigate whether the mesenchymal activation of
p110α signaling causes abnormalities in the composition of the
lung epithelium, cell-specific markers for club, ciliated,

neuroendocrine, and alveolar type I and type II cells were
analyzed by immunostaining and real-time PCR. In the lungs
from E17.5 P110*/+; Dermo1-cre mice, club cell numbers were
significantly reduced as compared to control airways, as shown by
CC10 staining and real-time PCR (Figure 4C,D). In contrast, the
levels of Nkx2.1 in the lungs of E17.5 mice were not significantly
altered (Figure 4D). PTEN, a multifunctional tumor suppressor,
was initially identified as an epithelial cell-enriched phosphatase
(Li et al., 1997). Previous studies have shown that the deletion of
Pten in lung epithelial cells increases the number of club cells
(Xing et al., 2010), and Hes1 determined club cell differentiation
(Ito et al., 2000). Consistent with the reduced number of club
cells, in the lungs from E17.5 P110*/+; Dermo1-cre mice, the
expression of Pten was significantly upregulated, whereas Hes1
expression was reduced (Figure 4D). Interestingly, the overall
expression of PTEN was increased in both the mesenchyme and
epithelium in mutant lungs (Figure 4E). We propose that
alteration in club cell numbers is due to the increased PTEN
expression in the epithelium. However, the possibility that the
PTEN signaling in the mesenchyme may participate in Hes1
regulation or the emergence of club cells requires further
validation. By direct cell counting, the percentage of club cells
over the total number of airway cells was reduced in mutant
lungs, whereas the ratios of ciliated cells and neuroendocrine cells
were not altered (Supplemental Figure S9). Antibodies to T1α

FIGURE 2 | Activation of p110α promotes an early bifurcation of embryonic lungs.Whole lung and individual lobes of control and P110*/+; Dermo1-cre lungs. Scale
bar: 50 μm.
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and SPC were used as an alveolar type I and type II cell markers,
respectively. Compared with control lungs, the expression of T1α
and SPC were not altered in mutant lungs (Figure 4D;
Supplemental Figure S10). Therefore, the activation of p110α
in the mesenchyme affects club cell differentiation, but not
ciliated, neuroendocrine, and alveolar cells.

Activation of PI3K in Mesenchymal Cells
Blocks Differentiation of SSEA1+ Progenitor
Cells Into Club Cells
SSEA1 (stage-specific embryonic antigen-1) is a marker of mouse
embryonic stem (ES) cells, and its expression is turned off upon
the differentiation of ES cells (Henderson et al., 2002). SSEA1 is

specifically expressed in airway epithelial progenitors (Xing et al.,
2010). To identify whether the reduced number of club cells in the
mutant airway was due to impaired progenitor differentiation, we
used anti-SSEA1 and anti-CC10 or anti-β-tubulin antibodies to
distinguish various airway epithelial populations at distinct
differentiation status in E17.5 lungs. These included SSEA1-
positive (SSEA1+) progenitor cells; SSEA1-and CC10-positive
differentiating club cells (SSEA1+/CC10+); CC10-positive
(CC10+) terminally differentiated club cells; SSEA1-and β-
tubulin-positive (SSEA1+/β-tubulin+) differentiating ciliated
cells; and β-tubulin-positive (β-tubulin+) terminally
differentiated ciliated cells (Figure 5A). Compared with the
lungs of control mice, an increased number of SSEA1+ cells
and reduced number of CC10+ cells were found to be

FIGURE 3 | Detection of branching morphogenesis-related genes in early embryonic development. (A). Real-time PCR analysis of branching morphogenesis-
related gene expression in E12.5 control and P110*/+; Dermo1-cre lung. (B). IF staining and cell counting for cell proliferation and apoptosis in E12.5 control and P110*/
+; Dermo1-cre lung. (C). IF staining analysis and real-time PCR analysis of Nkx2.1 and Pdgfrα in E12.5 control and P110*/+; Dermo1-cre lungs. The bars represent the
mean ± SD. N > 3. *p < 0.05, **p < 0.01. Scale bar: 50 μm.
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localized along the airways in the mutant mice, whereas the
percentage of ß-tubulin-positive cells remained unchanged
(Figure 5B,C). The levels and patterns of SSEA1 expression
were not significantly different between the mutant and
control lungs at E12.5 and E15.5. However, at E17.5, SSEA1
levels were largely increased in the mutant lungs (Figure 5D).
These results show that the mesenchymal activation of p110α
affects bronchiolar epithelial progenitor cell differentiation.

Activation of PI3K in Mesenchymal Cells
Promotes Expansion of SOX9 but not SOX2
Sox9 and Sox2 regulate the branching morphogenesis and
epithelial cell differentiation along a proximal–distal axis

during lung development (Danopoulos et al., 2018). To
determine whether mesenchymal-activated PI3K signaling
disrupted airway branching through Sox9 and (or) Sox2, we
analyzed Sox9 and Sox2 expression during lung development.
As shown in Figure 6A, SOX9 was highly expressed in the distal
epithelium, whereas SOX2 was restricted to the proximal
epithelial in the lungs from both control and P110*/+;
Dermo1-cre mice. Consistent with the increased branching, a
larger number of SOX9-positive distal airway tips were observed
in the mutant lungs (Figure 6A). In addition, Sox9 transcript
levels were also significantly increased in E12.5, E15.5, and
E17.5 P110*/+; Dermo1-cre lungs (Figure 6B). In contrast to
Sox9, the expression of Sox2 in the lungs of mutant mice appeared
unchanged (Figure 6B).

FIGURE 4 | Activation of p110α resulted in a decrease in the number of club cells. Real-time PCR analysis (A) and IF staining analysis (B) of α-SM cells in E17.5
control and P110*/+; Dermo1-cre lungs. (C). IF staining analysis of CC10, ß-tubulin, and PGP9.5 in E17.5 control and P110*/+; Dermo1-cre lungs. (D). Real-time PCR
analysis of CC10, β-tubulin, PGP9.5, Spc, T1α, Nkx2.1, Pten, and Hes1 in E17.5 control and P110*/+; Dermo1-cre lungs. (E). Immunolocalization analysis of PTEN in
E17.5 control and P110*/+; Dermo1-cre lungs. The bars represent the mean ± SD. N > 3. *p < 0.05, **p < 0.01 Scale bar: 50 μm.
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Initial assessment of the E17.5 P110*/+; Dermo1-cre lungs
showed that the airway epithelial cells were arrested at the
SSEA1+ progenitor state (Figure 5). To identify the
distribution of SSEA1+ cells along the distal and proximal
airways, antibodies to SOX9 and SOX2 were used to label
SSEA1+ cells, respectively (Figure 7). In the lungs of E12.5
and E15.5 mice, the SSEA1+ cells in the proximal airway were
labeled by SOX2, whereas in E17.5 lungs, the SSEA1+ cells were
labeled by SOX2 and SOX9 in the proximal and distal airways,
respectively (Figure 7A,B). The ratio of each group of cells over
the total number of distal or proximal airway cells was calculated
by cell counting. Consistent with the increased Sox9 expression
and branching, the percentage of SOX9+ cells (57.78%), including
SOX9+/SSEA1+ cells (29.76%) and SOX9+/SSEA1- cells (28.02%),
was significantly higher in the lungs from themutant mice than in
those control animals (49.21%) (Figure 7C). Surprisingly,
although the total percentage of SOX2+ cells was not altered
(88.31% in mutant vs. 88.08% in control lungs), around 13%

more SOX2+/SSEA1+ cells were detected in the mutant lungs than
in those from control lungs where SOX2-labeled SSEA1- cells in
the mutant lungs was 13.44% less than in the control lungs
(Figure 7D). The ratios of SSEA1+ cells in the distal (31.1% in
mutant vs. 27.7% in control lungs) and proximal airways (76.4%
in mutant vs. 62.6% in control lungs) were increased, suggesting
that the blockage of SSEA1+ progenitor cell differentiation was
not restricted to a certain region(s).

DISCUSSION

The purpose of this study was to investigate the accurate role of
mesenchymal-specific PI3K in lung development. The choice of
PI3K signaling was based on the diverse outcomes it generates in
the development of branched tissues, including proliferation,
motility, growth, survival, and cell death (Zhu and Nelson,
2012). The mammalian lung represents an attractive model as

FIGURE 5 | Activation of p110α inhibits the differentiation of epithelial progenitor cells. (A). Double IF staining analysis of CC10, SSEA1, and ß-tubulin in E17.5
control and P110*/+; Dermo1-cre lungs. (B,C). The percentages of CC10, CC10/SSEA1, ß-tubulin, ß-tubulin/SSEA1, and SSEA1 cells in total E17.5 airway cells were
counted onmultiple random fields. (D). IF staining analysis and real-time PCR analysis of SSEA1 in E12.5, E15.5, and E17.5 control and P110*/+;Dermo1-cre lungs. The
bars represent the mean ± SD. N > 3. *p < 0.05, **p < 0.01***p < 0.001 Scale bar: 50 μm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8802068

Dai et al. Effects of PI3K/p110α Signaling on the Lungs

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


it consists of millions of airway branches and more than 40
distinct specialized cell varieties. We found that the mesodermal
activation of p110α resulted in abnormal lung morphogenesis
characterized by increased branching and cell proliferation in the
E12.5 lungs. As development progressed, these phenotypes
evolved into enlarged lungs in E12.5 and later stages. An
examination of cell differentiation revealed a marked reduction
of club cells in the p110α mutant lungs. These results provide
novel evidence that signaling through PI3K-p110α plays a role as
a mediator of epithelial–mesenchymal interactions in branching
morphogenesis and cell differentiation, potentially mediated via
the Isl1–Fgf10–Sox9 and Pten–Hes1 pathway networks,
respectively (Figure 8).

The PI3K signaling pathway is complex. It is generally thought
that AKT is a common downstream target of PI3K signaling and

is considered a master regulator mediating cell proliferation,
motility, and survival (Liu et al., 2014). In the mouse lung, the
level of AKT phosphorylation is the highest at E12 and gradually
decreases thereafter (Wang et al., 2005), implying that AKT
regulates an early stage of lung development (E9.5–E12.5).
Surprisingly, examination of AKT phosphorylation in p110α
mutant lungs showed a significant reduction. This may be
explained by several potential mechanisms. First, it is well
established that PTEN serves as a negative regulator of PI3K
signaling by dephosphorylating PIP3. The current study revealed
that the activation of the PI3K pathway via p110α overexpression
resulted in an increased PTEN expression. This indicates that a
negative feedback mechanism may exist in the embryonic lung to
counteract the overactivation of the PI3K pathway via PTEN.
Since PTEN inhibits AKT phosphorylation, it is likely that the

FIGURE 6 |Mesenchymal activation of p110α affects the SOX9 expression in the distal epithelium. IF staining analyses (A) and real-time PCR analyses (B) of Sox2
and Sox9 expression in E12.5, E15.5, and E17.5 control and P110*/+; Dermo1-cre lungs. The bars represent the mean ± SD. N > 3. *p < 0.05, **p < 0.01 Scale bar:
50 μm.
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PTEN activation in response to p110α overexpression eventually
led to decreased AKT phosphorylation. Alternatively, other
classes of PI3K enzymes or other class I catalytic isoforms
may be involved in the regulation of AKT phosphorylation in
the lung mesoderm. Overexpression of the p110 subunit alone
may interfere with the expression or function of other PI3k
subunits and consequently lead to reduced AKT activation.
The third possibility may involve other upstream regulators of
AKT phosphorylation. Previous studies have highlighted a
diverse group of tyrosine (AckI/TNK2, Src, and PTK6) and
serine threonine (TBKI, IKBKE, and DNAPKcs) kinases that
activate AKT directly to promote its pro-proliferative signaling
functions (Mahajan and Mahajan, 2012). Overexpression of
p110a may disrupt the action of the latter AKT regulators.
Further examination of the latter possibilities may reveal novel
mechanisms of PI3K signaling which is essential to many key
cellular activities. Although it is difficult to identify the reduction
of AKT phosphorylation present in the epithelial or mesenchymal
compartments, it appears that there may be other upstream
regulators of AKT phosphorylation.

PTEN acts as a principal negative regulator to modulate the
effects of the PI3K pathway during embryonic development.
Homozygous PTEN deletion mice die between E6.5 and E9.5

FIGURE 7 | Analyses of epithelial progenitor cell differentiation. (A,B). Double IF staining analyses of SOX2, SOX9, and SSEA1 expression in E17.5 control and
P110*/+;Dermo1-cre lungs. (C). Percentages of SOX9, SOX9/SSEA1, and SSEA1 cells in the total E17.5 distal airway cells were counted onmultiple random fields. N >
3. (D). Percentages of SOX2, SOX2/SSEA1, and SSEA1 cells in the total E17.5 proximal airway cells were counted on multiple random fields. The bars represent the
mean ± SD. N > 3. **p < 0.01***p < 0.001. Scale bar: 50 μm.

FIGURE 8 | A simplified model illustrating PI3K/p110α signaling in
mesenchymal lung development. Mesenchymal activation of PI3K/p110α
promoted branching morphogenesis through the Isl1–Fgf10–Sox9 pathway,
and regulated club cell differentiation by the Pten-Hes1 pathway.
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(Cristofano et al., 1998). By crossing PTENfl/fl mice with Nkx2.1-
cre mice, epithelial-specific ablation of PTEN leads to club cell
hyperplasia but does not disrupt branching morphogenesis
(Tiozzo et al., 2009; Xing et al., 2010). Thus, the upregulated
branching morphogenesis in p110αmutant lungs may not be due
to the increased Pten expression. The findings in the present
study are consistent with the interpretation that Pten serves as a
key factor for club cell differentiation.

Isl1 encodes a transcription factor associated with
multipotency of human cardiac progenitors (Cai et al.,
2003; Bu et al., 2009). Isl1 null mice die at E10.5 due to
severe heart problems (Ahlgren et al., 1997). In Isl1−/−
mice, the hearts no longer express certain Bmp or Wnt
family members, FGF8 or FGF10. In addition, a novel
enhancer, which contains a highly conserved ISL1
consensus binding site, is identified within the FGF10 first
intron (Golzio et al., 2012). In the developing lung, both the
epithelium and mesenchyme of the trachea express Isl1 at
E11.5, and Isl1 expression remains high only in the ventral
epithelium and mesenchyme of the trachea but low in the
epithelium of the budding tips at E13.5. At E14.5, Isl1 is
expressed in the mesothelium and becomes undetectable in
the epithelium (Chang et al., 2013). In the present studies, the
expression of Isl1 and Fgf10 was stimulated, and the branch
number and cell proliferation were also increased in E12.5
p110α mesenchymal activation lungs. The direct regulation of
FGF10 by ISL1 has previously been demonstrated (Golzio
et al., 2012). Thus, the current data support the notion that,
during branching morphogenesis, PI3K/p110α signaling
regulates the expression of Isl1 and the downstream target,
Fgf10, in mesenchymal cells around the distal lung epithelial
tips, which is then transmitted to Fgfr2, the Fgf10 receptor, in
the developing endoderm. However, precisely how the p110α-
ISL1–FGF10 pathway mediates the p110α functions during
lung branching morphogenesis remains to be further
elucidated.

Sox family members have been shown to mediate the
specification and differentiation of a variety of cell types.
Among them, the expression of SOX2 and SOX9 marks
distinct cell lineages along the lung endoderm proximal–distal
axis (Herriges and Morrisey, 2014). The SOX9+ progenitors
located in the distal tips of the endoderm receive the signals
and promote branching (Chang et al., 2013). FGF10 has been
identified to be the major mesenchymal signal that promotes
distal airway branching. As the branches grow distally, the
proximal airway cells downregulate Sox9 expression and
upregulate Sox2 expression and, eventually differentiate into
the club, ciliated, and secretory cells. In the current study, we
demonstrated that a mesenchymal-specific overexpression of
p110α resulted in increased FGF10 and SOX9 levels,
accompanied by increased airway branching in E12.5 lungs.
This indicates that the activation of the PI3K pathway
increases FGF10 expression which promotes expansion and
branching of Sox9+ distal airway epithelial progenitors. In
contrast, neither Sox2 expression nor SOX2+ cell numbers
were altered by p110α overexpression.

Interestingly, overexpression of p110α increased the levels of
embryonic stem cell marker SSEA1 in both the SOX9+ and
SOX2+ populations, as represented by an increased number of
SOX9+/SSEA1+ and SOX2+/SSEA1+ cells in the p110α mutant
lungs. Since SSEA1 expression is associated with the stem vs.
differentiation status of ES cells (Henderson et al., 2002), the PI3K
signaling pathway appears to play an important role in cell fate
determination of both proximal and distal airway progenitors.
This is supported by the fact that there is a significant increase of
SOX2+/SSEA1+ cells and reduced club cell differentiation in
p110α mutant lungs.

In sum, our findings suggest that, during the embryonic lung
branching morphogenesis and cell differentiation, PI3K signaling
via p110α plays important roles in mediating
mesenchymal–epithelial interactions through pathways that
involve the Isl1–Fgf10–Sox9 and Pten–Hes1 networks.
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