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Transient receptor potential vanilloid 1 (TRPV1) is a protein that is susceptible to cell
environment temperature. High temperatures of 40-45°C can activate the TRPV1 channel.
TRPV1 is highly expressed in skeletal muscle and located on the sarcoplasmic reticulum
(SR). Therefore, TRPV1 activated by high-temperature stress releases Ca®* from the SR to
the cytoplasm. Cellular Ca?* accumulation is a key event that enhances TRPV1 activity by
directly binding to the N-terminus and C-terminus. Moreover, Ca®* is the key messenger
involved in regulating mitochondrial biogenesis in skeletal muscle. Long-term activation of
TRPV1 may promote mitochondrial biogenesis in skeletal muscle through the Ca*-
CaMKII-p38 MAPK-PGC-1a signaling axis. The discovery of the TRPV1 channel
highlights the potential mechanism for high-temperature stress improving muscle
mitochondrial biogenesis. The appropriate hot stimulus in thermal environments might
be beneficial to the muscular mitochondrial adaptation for aerobic capacity. However, the
investigation of TRPV1 on mitochondrial biogenesis is at an early stage. Further
investigations need to examine the role of TRPV1 in response to mitochondrial
biogenesis in skeletal muscle induced by different thermal environments.

Keywords: transient receptor potential vanilloid 1 (TRPV1), high temperature, Ca?*, mitochondrial biogenesis,
skeletal muscle

INTRODUCTION

Heat is a stress source of cells, and mitochondrial function is affected by heat. Skeletal muscle
temperature is in the range of 35-36°C in normal conditions in humans, and high muscle
temperature can be defined when temperatures exceed 40°C or even 42°C (Fiorenza et al., 2019).
Mitochondria, as the most abundant organelles in skeletal muscle, are affected by temperature.
Previous studies have found that high temperature can induce mitochondrial biogenesis in skeletal
muscle, which is beneficial to mitochondrial oxidative phosphorylation (OXPHOS) in skeletal
muscle (Liu and Brooks, 2012; Zoladz et al., 2016). Mitochondrial oxidation ability depends on
sufficient mitochondria, so mitochondrial biogenesis is an important part for the mitochondrial
function in skeletal muscle. Mitochondrial biogenesis requires mitochondrial DNA replication and
transcription, as well as protein synthesis. Given that the OXPHOS system is located in the
mitochondrial inner membrane, increased mitochondrial biogenesis adaptation in skeletal
muscle ensures the enhancement of OXPHOS, which ultimately increases ATP production
(Joseph et al., 2006).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1

April 2022 | Volume 10 | Article 882578


http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.882578&domain=pdf&date_stamp=2022-04-05
https://www.frontiersin.org/articles/10.3389/fcell.2022.882578/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.882578/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.882578/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.882578/full
http://creativecommons.org/licenses/by/4.0/
mailto:binghong.gao@hotmail.com
https://doi.org/10.3389/fcell.2022.882578
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.882578

Xu et al.

Transient receptor potential vanilloid 1 (TRPV1) is a six
transmembrane protein located on the sarcoplasmic reticulum
(SR), which can be activated by high temperature (>40°C), as well
as capsaicin and acid poisoning (Nilius and Flockerzi, 2014).
Another study also confirmed that 45°C activates TRPV1 in
mouse skeletal muscle cells, which proves its sensitive response
to high temperature (Lotteau et al, 2013). Activated TRPV1
releases Ca>" into the cytoplasm, and increased intracellular Ca**
regulates cascade signaling and upregulates mitochondrial
biogenesis in tissues.

TRPV1 has been proved to exist in skeletal muscle (Obi et al.,
2017). TRPV1 may be a key protein in response to
mitochondrial biogenesis by high muscle temperature. The
purpose of this review is to examine the roles of TRPVI in
high temperature-induced mitochondrial biogenesis and
highlight the potential mechanism for understanding the
relationship between high temperature and mitochondrial
biogenesis in skeletal muscle.

OVERVIEW ON TRPV1
Protein Structure of TRPV1

Transient receptor potential (TRP) cation channels are cellular
sensors for a wide spectrum of physical and chemical stimuli,
and mammalian species possess 28 TRP channels (Zheng,
2013). All TRP channels have six transmembrane segments
(S1-S6), such as voltage-gated potassium channels; both the
N and C termini are intracellularly located (Benemei et al.,
2015). TRPV1 is one of the TRP cation channels that can be
activated by heat (Zheng, 2013). The TPRV1 structure can be
divided into three parts: the N- and C-termini in cells, and the
six transmembrane segments with pore loop region formed
between S5 and S6 (Judrez-Contreras et al., 2020). The
N-terminus of TRPV1 contains calmodulin and ATP binding
sites, which modulate the activation of the channel (Cao et al.,
2013; Lee and Zheng, 2015). Sites on the N-terminus are capable
of phosphorylation by protein kinases with S116 proposed to be
the most critical phosphorylation site for PKA-dependent
reduction of desensitization (Mohapatra and Nau, 2003). A
linker domain connects the N-terminus to the transmembrane
region via the pre-helical segment (pre-S1) and connects TPRV1
subunits together (Liao et al., 2013).

The C-terminus contains protein kinase C (PKC)
phosphorylation sites and sites for binding calmodulin and
phosphatidylinositol-4,5-bisphosphate ~ (PIP2), which can
modulate the activation of the C-terminus (Jara-Oseguera
et al, 2008). In addition, the C-terminus region of TRPV1 as
a physiologically important Ca**- CaM-binding site is implicated
in TRPV1 desensitization (Lau et al., 2012). Furthermore, the
thermal sensing domain is localized within the C-terminus
(Brauchi et al., 2007).

The transmembrane region of the TRPV1 subunit comprises
six helical segments (S1-S6), in which S1-S4 contribute to the
voltage-sensing domain, and S5-S6 contribute to the pore-
forming domain (Liao et al., 2013). S1-S4 are connected to
S5 and S6 through the connecting segment and act as a
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foundation, which allows the linker segment to move,
contributing to pore opening and TRPVI1 activation. The
transmembrane region also contains binding sites for several
ligands (Cao et al., 2013).

TRPV1 Location in Skeletal Muscle

TPRV1 is highly permeable to Ca®" by cloning the genes
expressed in dorsal root ganglion and overexpressed in
human embryonic kidney cells in 1997 (Caterina et al,
1997). TRPV1 is highly expressed in brain stem, midbrain,
hypothalamus, and limbic system in central tissues and widely
expressed in heart, fat, and skeletal muscle in peripheral tissues
(Edwards, 2014). Myofibers from skeletal muscles are generally
categorized into glycolytic type II (fast twitch muscle fiber) and
oxidative type I (slow twitch muscle fiber); there are more
TRPV1 in the oxidative type I than in the glycolytic type II
(Luo et al., 2012). The intracellular localization of TRPV1 is
different between tissues. For example, TRPV1 is present in
both the SR and mitochondrial outer membrane in
cardiomyocytes (Randhawa and Jaggi, 2015; Judrez-
Contreras et al., 2020), whereas TRPV1 in skeletal muscle
cells is localized on the SR (Xin et al., 2005). TRPV1 is enriched
in longitudinal SR but not in the mixture of longitudinal SR
and terminal cisternae, which is drawn from Western blot
results from protein samples prepared by sucrose step gradient
centrifuge (Lotteau et al., 2013). Moreover,
immunofluorescence observation confirmed the localization
of TRPV1 on the SR membrane rather than on the sarcolemma
(Lotteau et al., 2013).

TRPV1 FUNCTION IN SKELETAL MUSCLE

TRPV1 is susceptible to the cell environment temperature. High
temperatures of 40-45°C can activate the TRPV1 channel
(Venkatachalam  and  Montell, 2007). High muscle
temperature can activate TRPV1 channels on the
longitudinal SR. The Ca** leak from the SR to the cytoplasm
might occur in two phases. In the first phase, activated TRPV1
releases Ca®* from the SR to the cytoplasm (Vanden Abeele
etal,, 2019). In the second phase, elevated cytosolic Ca®" triggers
the activation of RyR1, which results in more prominent SR
Ca®* release (Lotteau et al., 2013).

TRPV1 channels are involved in the detection of cell
environment temperature and play an important role in
thermoregulation (Castillo et al., 2018). Studies have
confirmed that the C-terminus of TRPV1 and the membrane
proximal domain of its N-terminus are essential components of
the temperature sensing machinery (Brauchi et al., 2006; Yao
et al,, 2011). Additionally, studies using pharmacological tools
have revealed clear and highly reproducible effects of TRPV1 on
thermoregulation (Garami et al, 2011). TRPV1 signals in the
peripheral nerve system tonically suppress general locomotor
activities, which may help bring down the body temperature
(Garami et al,, 2011). Therefore, TRPV1 channels are tonically
active in vivo and regulate body temperature to prevent excessive
elevation of body temperature.
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FIGURE 1 | Signaling axis of TRPV1 is activated to improve mitochondrial biogenesis. Long-term activation of TRPV1 releases Ca2* from the SR to the cytoplasm,
and the increase in Ca®* may induce PGC-1a expression through the activation of CaMKIl. The activation of PGC-1a increases the expression of nuclear-encoded
mitochondrial genes and upregulates mitochondrial DNA transcription and replication via TFAM (Islam et al., 2018).
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Sustained TRPV1 Activation Promotes

Mitochondrial Biogenesis
Long-term activation of TRPV1 promotes mitochondrial
biogenesis. Ca®" is a general intracellular messenger and plays
an important role in various physiological and biochemical
reactions of cells (Chin, 2010). Maintaining intracellular Ca®"
homeostasis is essential for cell function. The expression of
TRPV1 and cytosolic Ca®* concentration in skeletal muscle
cells increased in mice fed with capsaicin for 4 months, which
increased the expression of peroxisome proliferator-activated
receptor gamma coactivator-la (PGC-1a), a master regulator
in promoting mitochondrial biogenesis, and enhanced aerobic
endurance capacity (Luo et al., 2012). The sustained activation of
TRPV1 by injecting 10 uM capsaicin twice a day for 13 days
promoted the release of SR Ca** and induced the mitochondrial
biogenesis of skeletal muscle in mice (Ito et al., 2013).
Long-term activation of TRPV1 may promote mitochondrial
biogenesis through the Ca**-CaMKII-p38 MAPK-PGC-la
signaling axis (Figure 1). The sustained activation of TRPV1
by feeding mice with diet containing 0.01% capsaicin for 16 weeks
upregulated PGC-la expression and promoted mitochondrial
biogenesis in kidney cells, which improved glomerular
mitochondrial function (Wei et al, 2020). Luo et al. (Luo
et al, 2012) subjected C57BL/6] wild-type mice and
TRPV1 knock-out mice to the dietary intervention of 0.01%

capsaicin for 4 months. The results showed that sustained
activation of TRPV1 by dietary capsaicin upregulated PGC-1a
and increased mitochondrial content and ADP-stimulated
respiratory functions of skeletal muscle in C57BL/6 ] wild-type
mice but not in TRPV1 knockout mice. Moreover, high TRPV1
expression in TRPVI-transgenic mice increased PGC-la
expression, oxidative fiber ratio, and exercise endurance.
Therefore, chronic activation of TRPV1 in skeletal muscle can
increase cytosolic Ca** concentration and PGC-la contents,
which can promote mitochondrial biogenesis and aerobic
endurance capacity. In addition, studies have found that
mitochondrial biogenesis is suppressed after TRPV1 inhibition.
In septic mice, 30 mg/kg TRPA1 antagonist A-967079 inhibited
the expression of TRPV1 in kidney cells; 1 week later, PGC-1a
and mitochondrial transcription factor A (TFAM) protein levels
were decreased by 68.3 and 53.15%, respectively, indicating that
inhibition of TRPV1 reduced mitochondrial biogenesis signals
(Zhu et al., 2018). PGC-1a in muscle is an essential regulator of
mitochondrial biogenesis. High expression of PGC-1a in skeletal
muscle of transgenic mice resulted in the increase of
mitochondrial biogenesis and oxidative muscle fibers (Rowe
et al.,, 2013), whereas the deletion of PGC-1a and PGC-1p in
muscle led to a significant decrease in mitochondrial respiration,
electron transport chain (ETC)/OXPHOS gene expression, and
aerobic exercise performance (Terada et al, 2005). The above
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evidence showed that TRPV1 activation for a long period can
promote mitochondrial biogenesis by upregulating PGC-la
expression in a Ca®*-dependent manner.

TRPV1-mediated Ca*" release may induce PGC-1a expression
through the activation of CaMKIL The activation of CaMKII
enhances the phosphorylation level of p38 MAPK, which then
initiates the transcription of PGC-la, thereby promoting
mitochondrial biogenesis (Akimoto et al, 2005). Kidney cells
isolated from mice fed with 0.01% capsaicin for 16 weeks
exhibited increased expression of TRPV1, CaMKII, and the
phosphorylation levels of CaMKII (Wei et al, 2020). The
activation effect of TRPV1 on 5 AMP-activated protein kinase
(AMPK) was abolished by knocking down CaMKIIL, but the
inhibition of AMPK did not affect CaMKII phosphorylation by
TRPV1 (Wei et al, 2020). These results indicated the presence of
a TRPV1-Ca**-CaMKII signaling axis. Therefore, chronic activation
of TRPV1 may promote mitochondrial biogenesis through the Ca**-
CaMKII-p38 MAPK-PGC-1a signaling axis.

Desensitization

Ca®" concentration is one of the key regulators of TRPV1
desensitization because the persistent exposure of TRPV1 to Ca**
stimulation can attenuate its responses (Zhao and Tsang, 2017). High
intracellular Ca®* concentration reduces TRPV1 activity through
negative feedback and dynamically adjusts intracellular Ca**
concentration (Shuba, 2020). Dephosphorylation by Ca®-
dependent phosphatase calcineurin is also involved in regulating
TRPV1 desensitization (Bevan et al, 2014). Phosphorylation
mediated by CaMKII, PKA, and PKC at several consensus sites
has been reported to decrease Ca**-mediated desensitization of
TRPV1 (Vyklicky et al, 2008). Therefore, TRPVI-mediated
CaMKII activation may serve as positive feedback to amplify the
signal. The biological significance of calmodulin-mediated reduction
of TRPV1 activity and CaMKII-mediated reduction of TRPV1
desensitization is to regulate repeated stimulations of TRPV1 and
maintain intracellular Ca** concentration.

CONCLUSION

TRPV1 is sensitive to the temperature of the cell environment,
and high temperatures of 40-45°C can activate the TRPV1
channel. Ca®" is the key messenger regulating mitochondrial
biogenesis in skeletal muscle by TRPV1. Long-term activation
of TRPV1 may promote mitochondrial biogenesis through the
Ca’*-CaMKII-p38 MAPK-PGC-1a signaling axis in skeletal
muscle. Moreover, cellular Ca®>* concentration is one of the
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