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The diversification of B-cell receptor (BCR), as well as its secreted product, antibody, is a
hallmark of adaptive immunity, which has more specific roles in fighting against pathogens.
The antibody diversification is from recombination-activating gene (RAG)-initiated V(D)J
recombination, activation-induced cytidine deaminase (AID)-initiated class switch
recombination (CSR), and V(D)J exon somatic hypermutation (SHM). The proper repair
of RAG- and AID-initiated DNA lesions and double-strand breaks (DSBs) is required for
promoting antibody diversification, suppressing genomic instability, and oncogenic
translocations. DNA damage response (DDR) factors and DSB end-joining factors are
recruited to the RAG- and AID-initiated DNA lesions and DSBs to coordinately resolve
them for generating productive recombination products during antibody diversification.
Recently, cohesin-mediated loop extrusion is proposed to be the underlying mechanism of
V(D)J recombination and CSR, which plays essential roles in promoting the orientation-
biased deletional end-joining . Here, we will discuss the mechanism of DNA damage repair
in antibody diversification.
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INTRODUCTION

The B-cell receptor (BCR) and antibody comprise two pairs of immunoglobulin heavy (IgH) and
light (IgL) chains (Hwang et al., 2015). The N-terminal regions of IgH and IgL are the variable
regions, which form the antigen-binding domain of BCR. The C-terminal region of IgH is the
constant region that specifies the antibody effector function (Figure 1A) (Alt et al., 2013). In
developing B cells, V(D)J recombination generates highly diverse antigen receptor repertoires by
assembling the numerous IgH germline VH (variable), D (diversity), and JH (joining) gene segments
in different combinations (Figure 1B). Also, IgL variable region exons are subsequently assembled by
joining VL and JL segments (Ebert et al., 2015; Outters et al., 2015). In a given developing B cell, the
unique IgH and IgL chains generate sets of mature B cells that express a highly diverse repertoire of
BCR. In peripheral lymphoid organs, mature B cells can be activated by encountering antigens to
undergo IgH class switch recombination (CSR) (Figure 1C) and V(D)J exon somatic hypermutation
(SHM) (Figure 1D) to further diversify BCR/antibody affinity and function, enhancing antigen
elimination (Methot and Di Noia, 2017; Yeap and Meng, 2019).

Themouse IgH locus spans 2.7 Mb withmore than 100 functional VHs in the 2.4 Mb distal region,
a 100 Kb intervening region, and a 60 Kb region with multiple Ds followed by 4 JHs (Figure 2A)
(Ebert et al., 2015). V(D)J recombination is initiated by the Y-shaped recombination-activating gene
(RAG) endonuclease (Liu et al., 2021). RAG is recruited to the V(D)J recombination center (RC),
which includes the JH-proximal DQ52, 4 JHs, and the intronic enhancer iEμ (Teng and Schatz, 2015).
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RAG binds and cleaves the recombination signal sequences
(RSSs) (Kim et al., 2015; Ru et al., 2015; Kim et al., 2018; Ru
et al., 2018) that flank VH, D, and JH gene segments (Figure 2B).
The two blunt RSS ends are fused by classical non-homologous
end-joining (C-NHEJ) directly to generate RSS joins as excision
cycles, while the two coding ends are fused by C-NHEJ to
generate the coding joins after DNA-PKcs and Artemis-
mediated removal of coding end-associated hairpins (Figures
2C–H) (Zhao et al., 2020). V(D)J recombination is ordered, with
Ds joining to JHs, prior to VHs joining to DJH intermediates to
form V(D)J exons (Figure 1B) (Alt et al., 2013).

After V(D)J recombination is completed, immature B cells
migrate to some peripheral lymphoid organs such as the spleen
and further develop to become mature B cells (Nagasawa, 2006).
Without stimulation or antigen activation, naïve B cells express
the recombined V(D)J exon and its proximal Cμ exons that
specify the IgM antibodies. Upon activation, mature B cells
undergo CSR to replace the donor Cμ with one of the six sets
of constant region exons (CHs) that lie 100–200 kb downstream,
to change the antibody isotype with different pathogen-
elimination functions (Figure 1C) (Yeap and Meng, 2019).
Each CH has an inducible (I) promoter exon, long (1–12 kb)
repetitive switch (S) region, and several CH exons (Hwang et al.,
2015). Activation-induced cytidine deaminase (AID)
(Muramatsu et al., 2000) initiates CSR by generating
deamination lesions at frequent short DNA target motifs
within donor Sμ, and a downstream acceptor S region (Hwang
et al., 2015). The lesions are converted into DNA double-strand

breaks (DSBs) by co-opting DNA damage repair factors. The
upstream Sμ DSB ends are end-joined to the downstream
acceptor S region DSB ends to complete CSR by C-NHEJ and
alternative end-joining (A-EJ) (Boboila et al., 2012; Methot and
Di Noia, 2017).

The switched and non-switched mature B cells can enter
the lymphoid germinal centers (GCs), where they are further
matured by introducing somatic hypermutation (SHM) into
the V(D)J exons (Figure 1D) (Pilzecker and Jacobs, 2019;
Roco et al., 2019). In response to antigen activation, AID
targets the same deamination motifs in V(D)J exons that are
mainly converted into mutational outcomes in GC B cells
(Hwang et al., 2015). The mutated V(D)J exons that have
higher binding affinity to the antigen are selected and
expanded (Lau and Brink, 2020). This SHM process allows
cellular selection to promote BCR/antibody affinity
maturation.

V(D)J RECOMBINATION

RAG Initiates DNA Breaks for V(D)J
Recombination
RAG endonuclease is a Y-shaped heterotetramer, which contains
two units of RAG1 catalytic enzymes and two units of RAG2
regulatory co-factors (Kim et al., 2015; Ru et al., 2015; Kim et al.,
2018; Ru et al., 2018). Both RAG1 and RAG2 are required for the
physiological V(D)J recombination (Schatz et al., 1989; Oettinger

FIGURE 1 | V(D)J recombination, class switch recombination, and V(D)J exon somatic hypermutation-mediated antibody diversification. (A) Schematic structure of
antibody which is composed of two pairs of immunoglobulin heavy (IgH) and light (IgL) chains. The blue box indicates the antibody variable region which binds to
antigens. The green box indicates the antibody constant region, where the class switch recombination occurs. The red box indicates the mutated region including CDR1,
CDR2, and CDR3 within the V(D)J exon; the yellow dots indicate the mutation sites. (B) Two-step process of RAG-initiated V(D)J recombination in progenitor (pro)
B cells. (C) Process of AID-initiated class switch recombination (CSR) in mature B cells before entering the germinal center (GC), termed as pre-GC cells. (D) Process of
AID-initiated V(D)J exon somatic hypermutation (SHM) in non-switched and switched GC B cells.
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et al., 1990). RAG1 has the DNA binding and cleaving activity to
cut the heptamer of RSSs to generate blunt RSS ends and hairpin-
associated coding ends (Figures 2B–D) (McBlane et al., 1995; van
Gent et al., 1995; Alt et al., 2013). RAG1 interacts with numerous
nucleolar proteins to modulate recombination activity in the
nucleus (Brecht et al., 2020), and the N-terminal region of
RAG1 regulates the efficiency and pathways of synapsis for
V(D)J recombination (Beilinson et al., 2021). RAG2 has no
DNA cleavage activity, but it is required to enhance RAG1
catalytic activity. RAG2 binds to DNA by recognizing
trimethylation of lysine 4 on histone H3 (H3K4me3), which is
a histone marker of active chromatin including promoters and
enhancers (Matthews et al., 2007; Teng et al., 2015). The
abundance of RAG2 protein is cell cycle-dependent which
undergoes ubiquitin-dependent degradation when lymphocytes
transit from G1 to the S phase (Li et al., 1996; Teng and Schatz,
2015). Also, RAG2 interacts with RAG1 to abolish RAG1
aggregation to initiate V(D)J recombination during the G1
phase (Brecht et al., 2020; Gan et al., 2021). The regulation of
RAG2 promotes RAG-mediated V(D)J recombination in B cells
during the G1 phase; meanwhile, it suppresses the generation of

undesired DSBs and translocations to ensure the genome
stability.

Loop Extrusion-Mediated RAG Scanning
Promotes V(D)J Recombination
RAG not only binds the bona fide RSSs flanked by the V, D, and
J gene segments for physiological V(D)J recombination but
also can capture and cut cryptic targets besides RSSs at a low
frequency (Hu et al., 2015), which might lead to translocations
related to B- and T-cell lymphoma (Mahowald et al., 2008).
RAG can generate robust recombination between Dβ1 and
Jβ1-1 when the Dβ1 and Jβ1-1 segments of T-cell receptor β
(TCRβ) are inserted into the c-Myc locus (c-Myc-DJβ
cassette). Meanwhile, the c-Myc-DJβ cassette insertion
activates RAG activity to capture and cut the cryptic targets
(convergent-orientated “CAC” motifs) linearly. Interestingly,
RAG cryptic targets are restricted to the 1.8 Mb c-Myc domain
anchored by CTCF binding elements (CBEs). Also, RAG
cryptic activity within a domain also applies to other
domains across the genome (Hu et al., 2015). Moreover,

FIGURE 2 | Classical non-homologous end-joining (C-NHEJ) joins RAG-initiated recombination signal sequence (RSS) breaks to complete V(D)J recombination.
(A) Schematic structure of the IgH locus in mice. There are over one hundred VH segments, 9–12 D segments, and 4 JH segments in mouse IgH locus. Each VH is
downstream flanked by 23RSS. Each D is flanked by 12RSS on both sides. Each JH is upstream flanked by 12RSS. (B) Schematic structure of RAG endonuclease,
12RSS (blue triangles), and 23RSS (red triangles). RAG cleaves the heptamer of RSS sequences. (C–H) C-NHEJ-mediated end-joining process during D to JH
recombination. RAG andHMGB1 bind to a pair of D and JH segments for cleavage, and the synapsis of D and JH segments is promoted by loop extrusion-mediated RAG
scanning process (C). RAG cuts the synapsed RSSs associated with the D and JH segments to generate a pair of blunt RSS ends and a pair of hairpin-associated coding
ends (D). Ku70/Ku80 complex binds to the RAG-initiated DSBs and recruits DNA-PKcs-Artemis complex to open the coding end-associated hairpins (E). RAG-initiated
breaks can further be processed by DNA polymerase λ/μ and terminal deoxynucleotidyl transferase (TdT) (F). XRCC4 and ligase 4 are recruited to the breaks to ligate the
processed DNA breaks, and other redundant C-NHEJ factors including XLF, PAXX, and ERCC6L2 are also involved in the ligation step (G).Final D to JH recombination
products include the coding join and RSS join (H).
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RAG extends its activity to the cryptic targets outside of a
domain by deleting the CBE-mediated boundaries (Hu et al.,
2015; Zhang Y. et al., 2019). This evidence suggests that RAG
scans linearly to capture and cut the convergent-orientated
CAC motifs within a domain.

The RAG scanning process can also explain the
physiological D to JH recombination and VH to DJH
recombination. The plasmid-based studies indicate that the
RSS sequence, not RAG scanning, determines the utilization of
D-RSSs (Gauss and Lieber, 1992), while the high-throughput
HTGTS-V(D)J-seq analysis of large amounts of D-RSS-
inverted v-Abl progenitor (pro)-B-cell lines supports that
RSS orientation, not the RSS sequence, plays a key role in
deletional D to JH recombination, indicating that RAG
scanning promotes the utilization of the downstream
D-RSSs during physiological D to JH recombination
(Figure 2C) (Zhang Y. et al., 2019). JH-RSS-bound RAG
initiates scanning from RC to the upstream D segments
until aligning and cutting one downstream D-RSS with
JH-RSS, leading to the generation of DJH recombination
products (Figures 2C–H) (Zhang Y. et al., 2019). After DJH
recombination, DJH-RSS-bound RAG initiates scanning to the
upstream VH segments and cuts a convergent-orientated
VH-RSS with DJH-RSS to complete the VH to DJH
recombination, which is supported by the VH inversion
experiments in mice (Hill et al., 2020; Dai et al., 2021). The
VH region inversion eliminates VH utilization and increases
the utilization of newly formed CACmotifs within the inverted
region, which strongly supports that RAG scanning promotes
the capture of convergent-orientated VH-RSS in the
physiological VH to DJH recombination (Dai et al., 2021).

D to JH joining occurs within the loop domain anchored
upstream by the two divergent CBEs-formed IGCR1 between
D and VH and downstream by the ten tandem CBE-formed
super anchor (3′CBEs) (Guo et al., 2011; Alt et al., 2013). VH to
DJH recombination needs the neutralization of IGCR1 anchor
and VH-associated CBEs, which allows RAG scanning to the
upstream VHs (Guo et al., 2011; Alt et al., 2013; Jain et al.,
2018). The depletion of CTCF in v-Abl pro-B cells increases the
utilization of distal VHs, indicating that RAG scans through
the CBEs after removing CTCF-mediated anchors in v-Abl
pro-B cells (Ba et al., 2020). Moreover, the depletion of Wapl, a
cohesin unloader, in v-Abl pro-B cells also increases the
utilization of distal VHs (Dai et al., 2021), which is
consistent with the downregulation of Wapl in normal pro-
B cells. It is likely that downregulated Wapl might neutralize
CBE-mediated blocks to enhance RAG scanning to the
upstream VHs, leading to the generation of more diverse
antibody repertoires during physiological V(D)J
recombination. RAG activity mainly focuses on the targets
within the dynamic chromatin impediments including the
CTCF-bound chromatin, highly transcribed chromatin,
RAG-bound chromatin, and even catalytic-dead Cas9-
bound chromatin (Zhang Y. et al., 2019; Zhang et al., 2022).
The aforementioned evidence strongly supports that cohesin-
mediated loop extrusion is the underlying mechanism of RAG
scanning-mediated V(D)J recombination.

DSB Response Factors Have Modest or No
Effects on V(D)J Recombination
Intrinsic and extrinsic stress-induced DSBs are the most harmful
DNA lesions to genome integrity, which trigger DNA damage
response (DDR) by recruiting DDR factors to the DSBs for
repairing. ATM and its downstream phosphorylated targets
(H2AX, 53BP1, and MDC1) are the key DDR factors, which
play crucial roles in repairing general DSBs and maintaining
genome stability (Weitering et al., 2021).

RAG-initiated DSBs also recruit DDR factors during V(D)J
recombination. ATM and ATM-phosphorylated p53 are recruited
to the RAG-initiated DSBs to surveil the intermediates in V(D)J
recombination, protecting against the potentially aberrant oncogenic
translocations (Perkins et al., 2002). Also, coding joining is decreased
with more un-joined coding ends in ATM-deficient pre-B cells,
indicating that ATM stabilizes RAG-initiated DSBs during V(D)J
recombination (Bredemeyer et al., 2006). 53BP1-deficient mice have
relatively normal B-cell compartments and no substantial block in
V(D)J recombination (Manis et al., 2004), while 53BP1-deficiency is
also found to impair the distal V to DJ joining at the TCRα locus,
suggesting a specific role of 53BP1 in maintaining genomic stability
during long-range joining of DSBs (Difilippantonio et al., 2008).
H2AX is recruited to the RAG-initiated DSBs at the TCRα locus
(Chen et al., 2000), while it is not required for coding join formation
or lymphocyte development (Bassing et al., 2002), suggesting that it
only functions as a general surveillance machinery to prevent
translocations during V(D)J recombination (Yin et al., 2009).
MDC1-deficiency has no major block for V(D)J recombination
or lymphocyte development (Lou et al., 2006). The recently
identified shieldin complex, composed of MAD2L2/REV7,
SHLD1, SHLD2, and SHLD3, is also dispensable for V(D)J
recombination and lymphocyte development (Ghezraoui et al.,
2018; Ling et al., 2020). Altogether, DDR factors have relatively
modest or no effect on V(D)J recombination, suggesting the
redundant roles of these DDR factors with others during V(D)J
recombination (more discussion in the next section).

C-NHEJ Exclusively Joins RAG-Initiated
Breaks During V(D)J Recombination
Intrinsic and extrinsic stress-induced DSBs are mainly repaired
by homologous recombination (HR) and C-NHEJ. HR mainly
functions in the late S and G2 phases, which uses sister
chromatids as templates for error-free DNA repair. C-NHEJ
repairs almost all DSBs outside of S and G2 phases and is the
major DSB repair pathway in both dividing and non-dividing
cells (Zhao et al., 2020).

RAG-initiated DSBs are exclusively repaired by C-NHEJ,
resulting from the synapsis of breaks held by the RAG post-
cleavage complex (PCC) (Figure 2D) (Teng and Schatz, 2015;
Libri et al., 2021). RAG2 truncations or charge-neutralizing
mutations switch the DSB repair pathway from C-NHEJ to
alternative end-joining (A-EJ) and HR (Corneo et al., 2007;
Coussens et al., 2013; Gigi et al., 2014). RAG interacts with the
core NHEJ factors Ku70/Ku80 (Figure 2E) (Raval et al., 2008), and
Ku70 suppresses A-EJ in G1-arrested pro-B cells (Liang et al., 2021).
The deficiency of Ku70 has a severe combined immunodeficiency
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(SCID) phenotype and severely impairs the formation of coding
joins and RSS joins (Gu et al., 1997; Ouyang et al., 1997). The
deficiency of Ku80 arrests lymphocyte development at early
progenitor stages and induces a profound impairment in V(D)J
recombination (Nussenzweig et al., 1996; Zhu et al., 1996). The
Ku70/80 complex recruits another two core C-NHEJ factors,
namely, XRCC4 and ligase 4, to the DSBs for end joining
(Figure 2G). XRCC4 is a scaffolding protein to stabilize ligase 4
to form the ligation complex for ligating the DSB ends. XRCC4- or
ligase 4-deficient mice die during the late embryonic development,
resulting from the p53-dependent apoptosis (Barnes et al., 1998;
Frank et al., 1998; Gao et al., 1998). Deleting p53 in XRCC4-deficient
or ligase 4-deficient mice rescues the lethality, while has no rescues
for the impairedV(D)J recombination and lymphocyte development
(Frank et al., 1998; Gao et al., 2000). So the four core C-NHEJ factors
are absolutely required for V(D)J recombination.

In addition to the conserved core C-NHEJ factors, there are
several other C-NHEJ factors including DNA-PKcs, Artemis, XLF,
and PAXX. DNA-PKcs is recruited to the RAG-initiated coding ends
(Lieber, 2010) and phosphorylates Artemis to activate its
endonuclease activity, leading to the removal of the coding end-
associated hairpins (Figure 2E) (Ma et al., 2002). Before the DNA-
PKcs-Artemis-processed coding ends get joined, DNA polymerases
(Polμ, Polλ) and terminal deoxynucleotidyl transferase (TdT)-
mediated nucleotide additions can further increase the junction
diversity (Figure 2F) (Zhao et al., 2020). DNA-PKcs not only
play roles in processing coding ends for coding joins, but also
functions in RSS joins. The deficiency of DNA-PKcs and DDR
factors severely impairs RSS joins, suggesting DNA-PKcs has
redundant roles with DDR factors in RSS joins (Gapud et al.,
2011; Zha et al., 2011b). In contrast to other C-NHEJ factors,
XLF seems to be dispensable for V(D)J recombination as the
deficiency of XLF has no measurable impact on V(D)J
recombination (Li et al., 2008), while V(D)J recombination is
almost abrogated by the deficiency of both XLF and ATM or one
of its downstream DDR factors, suggesting functional redundancy of
XLF with DDR factors during V(D)J recombination (Zha et al.,
2011a; Liu et al., 2012; Oksenych et al., 2012). PAXX, a paralog of
XLF, is also dispensable for V(D)J recombination, but the deficiency
of both PAXX and XLF almost abrogates V(D)J recombination
(Kumar et al., 2016). The new identified ERCC6L2 interacts with
other C-NHEJ factors and plays functionally redundant roles with
XLF during V(D)J recombination (Figure 2G) (Liu et al., 2020).
These aforementioned C-NHEJ factors have relatively less influence
onV(D)J recombination than the core C-NHEJ factor, resulting from
the functional redundancy with DDR factors or other unknown
factors.

CLASS SWITCH RECOMBINATION AND
SOMATIC HYPERMUTATION
AID-Initiated DNA Lesions for CSR and V(D)
J Exon SHM
AID is essential for both CSR and SHM (Muramatsu et al., 2000).
As a paralog of the RNA-cytosine deaminase APOBEC family,
AID is originally proposed to be an RNA editing enzyme

(Muramatsu et al., 1999; Muramatsu et al., 2000), while large
amount of evidence supports that AID functions as a DNA
deaminase to deaminate deoxycytidine (dC) to deoxyuridine
(dU) (Feng et al., 2020). AID preferentially targets the dC in
short DGYW (D = A/G/T, Y=C/T, W = A/T) motifs within the
V(D)J exons (Figure 3A) and S regions (Figure 4A) for SHM and
CSR, respectively (Rogozin and Diaz, 2004). AID-initiated dU
causes the mismatch with deoxyguanine (dG), which can be
converted into the point mutation or DSB by base excision
repair (BER) and mismatch repair (MMR) during SHM and
CSR (Figures 3C, 4A) (Hwang et al., 2015; Methot and Di Noia,
2017).

BER and MMR are two complex DNA repair processes
which can function as error-free repair and error-prone repair
(Figures 3B,C) (Hwang et al., 2015; Methot and Di Noia,
2017). BER repairs the AID-initiated dU from the recognition
and excision of dU by UNG. APE cleaves the DNA to generate
a nick at the UNG-initiated abasic site. The nick is further
processed to generate a gap, which is filled by DNA polymerase
β and sealed by DNA ligase 1/3. MMR repairs the AID-
initiated dU from the recognition of the mismatch by
MSH2/6, which further recruits MLH1 and PMS2. Exo1
excises the DNA sequences adjacent to the mismatch to
generate a gap, which is filled by DNA polymerase δ and
sealed by DNA ligase 1. Instead of accurate repair by BER and
MMR (Figure 3B), mutagenic repair frequently occurs after
AID-initiated dU during CSR and SHM (Figures 3C, 4A).
Recent studies indicate that FAM72a influences the usage of
error-prone vs. error-free DNA repair by regulating UNG2
abundance during CSR and SHM (Figures 3B,C, 4A) (Feng
et al., 2021; Rogier et al., 2021).

DDR Factors Play Essential Roles for
AID-Initiated CSR
DDR factors can also be recruited to the AID-initiated DNA
lesions, and these DDR factors are required for CSR as the
deficiency of the individual ATM, H2AX, or 53BP1 decreases
the CSR frequency (Reina-San-Martin et al., 2003; Lumsden et al.,
2004; Manis et al., 2004; Reina-San-Martin et al., 2004; Franco
et al., 2006; Reina-San-Martin et al., 2007; Bothmer et al., 2010).
53BP1 and H2AX are the downstream targets of ATM, but
53BP1-deficiency has a much more dramatic effect than that
of ATM- or H2AX-deficiency (Dong et al., 2015; Panchakshari
et al., 2018). RIF1 is a downstream factor of 53BP1 to inhibit DSB
end resection and RIF1-deficiency significantly decreases CSR
(Chapman et al., 2013; Di Virgilio et al., 2013). The shieldin
complex functions downstream of 53BP1-RIF1 pathway and the
deficiency of shieldin components have similar phenotype as that
of 53BP1-deficiency (Xu et al., 2015; Dev et al., 2018; Ghezraoui
et al., 2018; Gupta et al., 2018; Noordermeer et al., 2018). This
53BP1 pathway can compete with MRN/CtIP activity to protect
DNA ends during CSR (Mirman and de Lange, 2020). The
deficiency of these DDR factors variably increases the
resection of AID-initiated DSBs and increases the utilization
of longer microhomology for end joining (Dong et al., 2015;
Panchakshari et al., 2018). This evidence indicates that DDR

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8848735

Luo et al. DNA Repair in Antibody Diversification

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


factors inhibit resection to maintain the integrity of AID-initiated
DSBs for the efficient C-NHEJ pathway (Figure 4B), while the
deficiency of DDR factors switches the end joining from C-NHEJ
to the less efficient A-EJ which is prone to use longer
microhomology (Figure 4C).

End Joining of the AID-Initiated DSBs
During CSR
The core C-NHEJ factor deficiency completely abolishes V(D)J
recombination and blocks lymphocyte development, while core
C-NHEJ factor-deficiency only decreases but not abrogates CSR,
suggesting other less efficient end-joining pathways can join the
AID-initiated breaks when C-NHEJ is absent during CSR (Yan
et al., 2007; Boboila et al., 2012). This less efficient end-joining
pathway is identified as A-EJ (Boboila et al., 2012) (Figure 4C).

C-NHEJ is the major DSB end-joining pathway during CSR
(Figure 4B). The deficiency of the individual core C-NHEJ factor,
Ku70, Ku80, XRCC4, or ligase 4, impairs CSR (Casellas et al.,
1998; Manis et al., 1998; Pan-Hammarstrom et al., 2005; Yan
et al., 2007; Han and Yu, 2008; Panchakshari et al., 2018). In
addition to the core C-NHEJ factors, DNA-PKcs and Artemis are
also necessary for joining AID-initiated DSBs during CSR
(Franco et al., 2008). The deficiency of XLF impairs CSR (Zha

et al., 2011a), while deficiency of PAXX, a paralog of XLF, has no
influence on CSR (Kumar et al., 2016). ERCC6L2 is identified as a
new NHEJ factor and ERCC6L2-deficiency impairs CSR.
Surprisingly, ERCC6L2 deficiency does not increase the
resection of AID-initiated break ends, but it significantly
increases the inversional end joining during CSR (Liu et al.,
2020). ERCC6L2 regulates the orientation-biased end joining
without affecting the DSB end resection via an unprecedented
mechanism during CSR.

A-EJ is activated when C-NHEJ or DDR factors are absent
during CSR (Figure 4C). The deficiency of ligase 4 shares some
similar features as that of DDR factor deficiency, including the
increase of DSB resection, utilization of longer microhomology,
and decrease of CSR frequency (Panchakshari et al., 2018). A-EJ
is relatively less intelligible than C-NHEJ. PARP1 can respond
to DNA damage and bind to the break sites during A-EJ (Wei
and Yu, 2016). Then ligase 1 and ligase 3, the key joining factors
of the A-EJ pathway, play redundant roles in joining AID-
initiated DSBs during CSR (Lu et al., 2016; Masani et al., 2016).
Several exonucleases and endonucleases can also enhance DSB
resection and promote A-EJ during CSR (Bai et al., 2021; Sun
et al., 2021). Further studies are required to figure out the whole
picture of the A-EJ pathway in CSR and other physio-
pathological processes.

FIGURE 3 |Overview of DNA damage repair process during SHM. (A) AID targets the dC to generate dU within V(D)J exon. (B) FAM72a downregulation promotes
base excision repair (BER)- andmismatch repair (MMR)-mediated error-free DNA repair. (C) FAM72a upregulation promotes BER- andMMR-mediated error-prone DNA
repair, leading to the mutation of V(D)J exon during SHM.
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Loop Extrusion-Mediated CSR
AID-initiated CSR occurs within the ~200 kb constant region of the
IgH locus in mature B cells. Chromatin loop extrusion is proposed to
be the underlyingmechanism of CSR, which promotes the formation
of the CSR center, transcriptional activation of acceptor S regions,
synapsis of donor Sμ and an activated acceptor S region, and
deletional joining of AID-initiated DSBs during CSR (Figure 4D)

(Zhang X. et al., 2019; Zhang et al., 2021; Zhang et al., 2022). In
addition to the physiological CSR process, the loop extrusion-
mediated CSR model can also explain some abnormal switching
events within the CSR center, including the IgH locus suicide
recombination between Sμ and 3′RR (Peron et al., 2012), the
ectopic S region switching after CBE insertion in the IgH constant
region (Zhang X. et al., 2019) or 3′CBEs deletion (Zhang et al., 2021)

FIGURE 4 | Overview of DNA damage repair process during CSR. (A) FAM72a regulates the error-prone vs. error-free DNA repair during AID-initiated CSR. AID-
initiated breaks are converted into double-strand breaks (DSBs) upon high level of FAM72a during CSR. (B) Overview of the DNA damage response (DDR) factors and
C-NHEJ in promoting direct end joining during CSR. (C)Overview of the alternative end joining (A-EJ) in promoting DSB end resection andmicrohomology-mediated end
joining during CSR. (C–H) Loop extrusion-mediated CSR model. Loop extrusion promotes CSR center formation (D), acceptor S region activation (E), Sμ–Sx
synapsis (F), and deletional end joining (G–H).
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and the Sμ-Sγ3 switching after inserting Sμ, Sγ3, and core 3′RR in the
Igκ locus (Le Noir et al., 2021).

In resting B cells, cohesin is loaded onto either the active iEμ-
Sμ region or the downstream 3′RR enhancer region to initiate
loop extrusion. Cohesin-mediated loop extrusion brings these
two active regions, namely, iEμ-Sμ and 3′RR into proximity to
form a basal loop, in which the iEμ-Sμ and 3′RR serve as dynamic
loop anchors. This basal loop is termed as a dynamic CSR center
(Zhang X. et al., 2019). When B cells get activated, loop extrusion
brings the primed acceptor S region into the CSR center, where it
gets transcriptionally activated by 3′RR. Then, the activated
acceptor S region loads cohesin to initiate loop extrusion to
bring the donor Sμ into close proximity with the activated
acceptor S region, leading to the synapsis of two S regions in
the CSR center (Zhang X. et al., 2019).

AID can target different locations of the synapsed donor Sμ
and acceptor S region at different times within the CSR center.
Once AID initiates a DSB within an S region, the DSB ends will be
pulled toward the opposite direction by loop extrusion and stalled
by the associated cohesin rings. The two pairs of ends held by
cohesin rings will be joined deletionally to generate the
productive CSR products (Zhang X. et al., 2019). The
disruption of the synapsis structure by inserting CBEs that
have a convergent orientation to 3′CBEs between donor Sμ
and acceptor Sα significantly increases the inversional joining
without influencing DSB end resection, which means that the
loop extrusion-mediated perfect synapsis of the donor Sμ and
acceptor S region is required for the deletional end-joining during
CSR (Zhang X. et al., 2019). Loop extrusion-mediated deletional
end-joining is consistent with the cohesin accumulation at DSBs
(Kim et al., 2002; Strom et al., 2004). Loop extrusion is also
proposed to be the underlying mechanism of DNA damage
repair. Loop extrusion-mediated ATM scanning along the
chromatin adjacent to the DSB site phosphorylates H2AX
until reaching the loop anchor to form DNA damage repair
foci (Arnould et al., 2021), which shares some similar features to
the loop extrusion-mediated deletional end-joining during CSR
(Zhang X. et al., 2019). Loop extrusion might have more general
roles in DNA damage repair, DSB end joining, and
recombination processes.

The Roles of DDR Factors in AID-Initiated
SHM in GC B Cells
Upon activation by antigens, mature B cells can undergo CSR and
SHM. CSR occurs prior to the mature B cells entering GC, where
the V(D)J exons get mutated (Roco et al., 2019). Unlike the
critical roles of DDR factors in CSR, ATM, 53BP1, and H2AX are
dispensable for the V(D)J exon SHM. The deficiency of the
individual ATM, 53BP1, or H2AX has no effect on the SHM
frequency of the V(D)J exon (Reina-San-Martin et al., 2003;
Manis et al., 2004; Reina-San-Martin et al., 2004). On the
other hand, the checkpoint signaling via the ATR/Chk1 axis is
downregulated by the transcription factor Bcl-6 in GC B cells,
suggesting that negative regulation of the ATR/Chk1 axis is

required for efficient SHM in vivo (Ranuncolo et al., 2007;
Polo et al., 2008; Frankenberger et al., 2014; Bello and
Jungnickel, 2021). However, Chk2 has opposite effects to Chk1
in the regulation of SHM. The deficiency of Chk2 decreases the
SHM frequency, resulting from the defects of C-NHEJ and
increase of the Chk1 activity (Davari et al., 2014). So, the
ATR/Chk1/Chk2-mediated checkpoint signaling of the DNA
damage response is crucial for the physiological SHM.

CONCLUSION

BCRs and antibodies play vital roles in protecting against
antigens. The diversification of BCRs and antibodies from
RAG-initiated V(D)J recombination, AID-initiated CSR, and
V(D)J exon SHM is crucial for efficient elimination of
antigens. However, the mechanisms of these complicated
antibody diversification processes are still not well
understood. The immunoglobulin genes must be tightly
regulated to generate the large amounts of highly efficient
antibodies, meanwhile, suppress the generation of undesired
translocations or mutations. So, there are still many puzzling
questions: how do B cells minimize the off-target effects of
RAG and AID during antibody diversification and what are
the mechanisms of their specificities? How DNA repair
factors/pathways are differentially regulated for the general
DNA damage and immunoglobulin gene recombination?
Whether cohesin-mediated loop extrusion plays more roles
in antibody diversification? Answers to these questions
provide not only insights into the understanding of
antibody diversification during B-cell development but also
the basis for understanding the immune-related diseases.
Moreover, the mechanism of antibody diversification has a
wide range of applications for drug development of related
diseases such as COVID-19 and HIV.
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