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The epithelial-mesenchymal transition (EMT) is an important process that drives
progression, metastasis, and oncology treatment resistance in cancers. Also, the
adjacent non-tumor tissue may affect the biological properties of cancers and have
potential prognostic implications. Our study aimed to identify EMT-related genes in
LGG samples, explore their impact on the biological properties of lower grade gliomas
(LGG) through the multi-omics analysis, and reveal the potential mechanism by which
adjacent non-tumor tissue participated in the malignant progression of LGG. Based on the
121 differentially expressed EMT-related genes between normal samples from the GTEx
database and LGG samples in the TCGA cohort, we identified two subtypes and
constructed EMTsig. Because of the genetic, epigenetic, and transcriptomic
heterogeneity, malignant features including clinical traits, molecular traits, metabolism,
anti-tumor immunity, and stemness features were different between samples with C1 and
C2. In addition, EMTsig could also quantify the EMT levels, variation in prognosis, and
oncology treatment sensitivity of LGG patients. Therefore, EMTsig could assist us in
developing objective diagnostic tools and in optimizing therapeutic strategies for LGG
patients. Notably, with the GSVA, we found that adjacent non-tumor tissue might
participate in the progression, metastasis, and formation of the tumor
microenvironment in LGG. Therefore, the potential prognostic implications of adjacent
non-tumor tissue should be considered when performing clinical interventions for LGG
patients. Overall, our study investigated and validated the effects of EMT-related genes on
the biological properties from multiple perspectives, and provided new insights into the
function of adjacent non-tumor tissue in the malignant progression of LGG.
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HIGHLIGHTS

• The 1184 EMT-related genes summarized in the public
databases were used to identify the EMT-related genes in
LGG samples.

• Based on 121 differentially expressed EMT-related genes,
we identified two distinct expression patterns of these genes
and clustered LGG samples into two subtypes.

• Biological properties like immune and stemness features,
clinical and molecular traits, metabolism, and prognosis
were significantly differed between the subtypes. These
variations could be attributed to alterations in genetic,
epigenetic, and transcriptomic features.

• Based on EMTsig and GSVA techniques, we revealed the
potential functions that adjacent non-tumor tissue might
potentially perform during the process of EMT formation
and the malignant progression of LGG.

• EMTsig was suggestive for the sensitivity of chemotherapy
(including TMZ), ICB therapy, and molecular targeted drug
therapy, extending the clinical application prospects of
EMTsig.

1 INTRODUCTION

The central nervous system (CNS) controls most of the physical
and basic life activities. About 80% of the malignant tumors in the
CNS are gliomas, which are characterized by easy metastasis,
aggressiveness, highmortality, and are hard to be treated (Ostrom
et al., 2014). In this study, we focused on WHO grade II/III
gliomas and designated them by lower grade gliomas (LGG)
(Suzuki et al., 2015). Compared with glioblastoma (GBM), LGG
has a relatively better prognosis, accounting for approximately

one-third of CNS malignancies (Ostrom et al., 2020). With the
improved understanding of LGG, it was not mere tumor tissue
but a chronic central nervous system disease with progressive and
aggressive properties. LGG can migrate along with the white
matter and eventually inevitably progress to GBM with a higher
degree of malignancy (Buckner et al., 2017). Therefore, an in-
depth understanding of the mechanisms of tumorigenesis and
progression of LGG can help us to more comprehensively
understand the heterogeneity of biological properties between
patients and thus improve their clinical outcomes through
individualized treatment.

The essence of epithelial-mesenchymal transition (EMT) is the
developmental process by which resting cells acquire the ability to
migrate (Greenburg and Hay, 1982). In the context of cancer, the
EMT process is often reactivated, which leads to a rise in the
invasive and metastatic capacity of cancer cells (Rhim et al., 2012;
Krebs et al., 2017). EMT has a profound impact on the biological
properties of cancers. For example, EMT is associated with the
acquisition of stem cell characteristics of breast cancer cells (Mani
et al., 2008). Also, EMT-related cancer stem cell transformation is
often accompanied by resistance to oncology treatment (Zhou
et al., 2017; Singh et al., 2018). In addition, EMT transcription
factors (EMT-TFs) can induce resistance to chemotherapy or
radiotherapy through various mechanisms such as resistance to
apoptosis and altered drug metabolism (van Staalduinen et al.,
2018). Therefore, the impact of EMT must be considered when
developing individualized treatment plans. Similarly, EMT is
involved in the formation of the immunosuppressive
microenvironment, resulting in impaired anti-tumor
immunity. For example, EMT can lead to disruption of
immune synapses, eventually leading to impaired T cells CD8-
mediated cellular immunity (Akalay et al., 2013). Moreover, EMT
can upregulate the expression of immune checkpoints, which is

Graphical Abstract | The mechanism of how EMT-related genes affected the biological properties of LGG and the predictive capability of EMTsig.
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related to immune escape and the sensitivity of immunotherapy
(Chen et al., 2014; Lou et al., 2016; Ramesh et al., 2020). Thus,
EMT appears to be involved in all aspects of cancer progression
and is a huge challenge for oncology treatment. Notably, adjacent
non-tumor tissue may play a specific role in cancer progression,
EMT processes, and regulation of anti-tumor immunity (Jin et al.,
2013; Aran et al., 2017; Wu et al., 2019; Yang et al., 2020; Gong
et al., 2021). Therefore, it is necessary to explore the potential
function of adjacent non-tumor tissue in the malignant
progression of LGG. This can bring novel therapeutic
opportunities for LGG patients in clinical applications. In
addition, previous studies have attempted to reveal the
prognostic impact of EMT on glioma. For example, Tao et al.
constructed an EMT-related lncRNAs prognostic model based on
glioma samples and explored the predictive capability of EMT-
related lncRNAs for the immune features (Tao et al., 2021).
However, this study has not fully explored the correlation of their
prognostic model with genetic features, epigenetic modifications
of DNA and RNA, stemness features, metabolism, the efficiency
of radiotherapy and TMZ chemotherapy, and sensitivity to
immune checkpoint blockade (ICB) therapy in LGG. To fill
these gaps and identify a novel multifunctional EMT-related
biomarker, we designed this study.

In this study, we identified 121 differentially expressed EMT-
related genes between normal samples from the GTEx database and
LGG samples in the TCGA cohort. Next, LGG samples in the TCGA
cohort were clustered into two subtypes. We found malignant
features including EMT levels, prognosis, clinical traits, molecular
traits, metabolism, anti-tumor immunity, and stemness features
significantly differed between samples with C1 and C2. Next,
through multi-omics and functional enrichment analysis, we
investigated the correlations of variations in genomes,
transcriptomes, molecular functions, and cancer signaling
pathways with EMT-related genes and elucidated the underlying
genetic and epigenetic mechanisms. Furthermore, to quantify the
individual variations, EMTsig was constructed. The activity of
cancer-related molecular functions and signaling pathways varied
across high and low EMTsig subgroups in both normal samples and
LGG samples in the TCGA cohort. This not only pointed out that
adjacent non-tumor tissue might participate in the malignant
progression of LGG but also indicated that EMTsig was
suggestive of the evolving trend of malignant features. In
addition, EMTsig could predict the sensitivity of multiple
chemotherapeutic agents, molecular targeted drugs, and immune
checkpoint blockade (ICB) therapy. In summary, our study
identified a new prognostic model based on EMT-related genes
with comprehensive and accurate instructions on the biological
features, clinical outcomes, and selection of individualized
therapeutic strategies for LGG patients.

2 MATERIALS AND METHODS

2.1 Preparation of Data
2.1.1 Download Data
The multi-omics data involved in our study were obtained from
public databases or Supplementary Material from the published

studies. From the TCGA database, we downloaded RNA-seq
matrices, copy number variation (CNV) information, clinical
data, and somatic mutation profiles (Varscan) for all LGG
samples (https://portal.gdc.cancer.gov/). The somatic mutation
information of TCGA samples was obtained from the UCSC
Xena database (http://xena.ucsc.edu/) (Goldman et al., 2020). The
supervised DNA methylation clusters, molecular subtypes, and
immunophenotype profiles of TCGA samples were obtained
from the Supplementary Material of relevant studies (Brat
et al., 2015; Ceccarelli et al., 2016; Malta et al., 2018). From
the CGGA database, we selected three cohorts: mRNA-array_
301, mRNAseq_325, and mRNAseq_693, and downloaded the
relevant RNA-seq matrices and clinical data (http://www.cgga.
org.cn/). RNA-seq matrices for normal cortical samples were
obtained from the GTEx database (https://gtexportal.org/)
(Consortium, 2013). From the GEO database, we obtained a
cohort (GSE107850) containing LGG samples treated with TMZ
(https://www.ncbi.nlm.nih.gov/geo/). This dataset provides
RNA-seq matrices and progression-free interval (PFI)
information for GEO samples. The gene sets used for the gene
set variation analysis (GSVA) were downloaded from the GSEA
database (http://www.gsea-msigdb.org/gsea/index.jsp).

2.1.2 Preprocessing of Data
Firstly, we consolidated data from the same sources. A total of 509
TCGA samples simultaneously have clinical data, gene
expression, and mutational information. As for the CGGA
cohort, a total of 592 LGG samples had both gene expression
and clinical information. In the GEO cohort, a total of 99 samples
received TMZ treatment. In addition, 207 normal cortical
samples were screened from the GTEx samples. The
“normalizeBetweenArrays” function in the “limma” package
was used to normalize the RNA-seq matrix before performing
multi-database analysis so that subsequent results would be
comparable.

2.2 Identification of Subtypes With
EMT-Related Genes
The dbEMT 2.0 database contains 1,184 EMT-related genes (http://
www.dbemt.bioinfo-minzhao.org/) (Zhao et al., 2019). We used the
thresholds of |logFC| > 1and FDR < 0.05 and screened for differential
expressed EMT-related genes by using the “edgeR” package
(Robinson et al., 2010). In the TCGA cohort, after removing
genes that were completely unexpressed in the LGG samples, a
total of 121 EMT-related genes were differentially expressed
between normal and LGG samples. Non-negative matrix
factorization (NMF) can compress huge data by decomposing a
large non-negative matrix into two small non-negative matrices
representing the number of data and data characteristics, which is
an effective strategy for dimensionality reduction. Since the gene
expression profiles are essentially non-negative matrices, the NMF
method is widely used for the identification of molecular patterns for
high-dimensional genomic data. In this paper, this part is performed
with the “NMF” package. Based on 121 differentially expressed EMT-
related genes, two reliable subtypes were clustered in the TCGA
cohort, which were named C1 and C2.
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2.3 ssGSEA, CIBERSORT, and ESTIMATE
The ssGSEA allows the definition of enrichment scores that indicates
the absolute enrichment of gene sets in each sample within the given
data sets. Our study involves multiple gene sets which represent
immune functions, metabolism, epithelial-mesenchymal transition
(EMT), extracellular matrix (ECM), and cancer signaling pathways.
These gene sets were obtained from public databases or
Supplementary Material from published studies (http://
matrisome.org/; https://www.immport.org/; https://www.
rndsystems.com/) (Naba et al., 2016; Bhattacharya et al., 2018;
Mariathasan et al., 2018). With the “GSVA” package, we
calculated the ssGSEA score levels for these gene sets.

Essentially, both the CIBERSORT and ESTIMATE algorithms
are extensions of ssGSEA. The CIBERSORT algorithm was used
to forecast the infiltration of 22 kinds of immune cells, and the
main program and gene sets of immune cells were obtained from
GitHub and the Supplementary Material of the related study
(https://github.com/) (Newman et al., 2015). ESTIMATE
algorithm is based on the “estimate” package for evaluating
the tumor purity (Yoshihara et al., 2013).

2.4 WGCNA
Weighted correlation network analysis (WGCNA) can be used to
identify gene sets with highly synergistic changes, and the
“WGCNA” package is required for its implementation
(Langfelder and Horvath, 2008). The principle of WGCNA is
to compress multiple gene reactions into a minimum number of
gene modules using the unsupervised clustering method. Based
on the assumption that highly correlated genes within modules
are involved in common biological processes, Eigengenes (the
first principal component within modules) are used to quantify
the correlation between selected indices and modules. In this
study, we aimed to identify differentially expressed immune and
stemness-related genes between the C1 and C2 subtypes.
Similarly, with the “edgeR” package, we identified 1,912
differentially expressed genes (DEGs) between C1 and C2
samples (|logFC| > 1, FDR < 0.05). We chose the ESTIMATE
score, mDNAsi, and mRNAsi as the immune stemness indices,
and constructed the weighted network in combination with
DEGs. Next, a scale-free topology system was constructed by
using the optimal R2 = 0.88 and a soft threshold (β = 4). Based on
the “TOMSimilarity” function, the proximity matrix was
converted into a topology overlap matrix. Next, by hierarchical
clustering, we calculated the module Eigengenes (MEs). By
combining modules with overall gene counts <30 and MEs
correlation coefficients > 0.75, a total of nine modules were
finally retained. MEbrown, MEgreen, and MEturquoise
modules were the main modules of the mDNAsi, mRNAsi,
and ESTIMATE score respectively. We screened for
Eigengenes in the three main modules. Genes meeting the
threshold (Gene Significance (GS) > 0.5 and Module
Membership (MM) > 0.7) were retained as Eigengenes of the
corresponding modules.

2.5 Functional Enrichment Analysis
Before the analysis, the “org.Hs.eg.db” package was used to
convert the gene symbols into ensemble IDs. Gene Ontology

(GO) and the Kyoto Protocol Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analyses were
performed with the “clusterProfiler” package (Yu et al., 2012).
Only GO and KEGG pathways with p < 0.05 were retained. GSVA
is performed based on the “GSVA” package, and the input files
include the RNA-seq matrix and the relevant gene set files for the
GO and KEGG pathways downloaded from GSEA (https://www.
gsea-msigdb.org/gsea/).

2.6 Genetic Variation Analysis
For the analysis of CNV, we used the “limma” package for the
variance analysis of CNV types and frequencies of EMT-
related genes between samples with C1 and C2. The
interaction relationships between genes were obtained
from the String database (https://string-db.org/). The
“RCircos” package was used to plot the RCircos plot
containing information about gene positions, CNV
frequencies, gene expression, and interactions between
EMT-related genes. In addition, some specific CNV events,
such as Chr7 gain, Chr10 loss, Chr19/20 co-gain, EGFR
amplification, PDGFRA amplification, and CDKN2A/B
homozygous deletion have a significant impact on the
prognosis of gliomas. Therefore, in the TCGA cohort, we
verified whether these events were differentially distributed
between the C1 and C2 subtypes. Information on Chr7 gain,
Chr10 loss, and Chr19/20 co-gain was obtained from
published studies (Ceccarelli et al., 2016). information on
EGFR amplification, PDGFRA amplification, and CDKN2A/
B homozygous deletion was obtained from the CNV
information downloaded from the TCGA database.

As for the analysis of somatic mutation information, we used
the “maftools” package in this part (Mayakonda et al., 2018).
Firstly, the information about deletion (DEL), insertion (INS),
single-nucleotide variants (SNV), single-nucleotide
polymorphism (SNP), somatic mutation counts, and variant
allele fraction (VAF) was extracted from the somatic mutation
profile. The Mann-Whitney U test was used to analyze the
variation of these indices between the C1 and C2 subtypes.
Waterfall plots were plotted by using the “oncoplot” function.
The lollipop plots were painted with the “lollipopPlot” function.
Mutation patterns between the C1 and C2 subtypes were
compared with Fisher’s exact test, and the differences in the
15 most frequently mutated genes were plotted by using the
“forestplot” function. Correlations of 30 top mutated genes were
obtained by Fisher’s exact test by using the CoMEt algorithm
provided by the “somaticInteractions” function. Identification of
driver genes was performed by the “oncodrive” function. The
enrichment levels and activities of cancer signaling pathways were
visualized by the “OncogenicPathways” function.

2.7 Driver Genes for DNA Methylation
We downloaded the DNAmethylation profiles of TCGA samples
from the UCSC Xena database (https://xena.ucsc.edu/). The
“MethylMix” package was used to identify the driver genes for
DNA methylation (Gevaert, 2015). The threshold for the driver
genes was |cor| > 0.3 and FDR < 0.05. A total of 617 driver genes
were identified.
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2.8 Construction of EMTsig
Based on 121 differentially expressed EMT-related genes, overall
survival (OS) time, and OS status, EMTsig was constructed with
the least absolute shrinkage and selection operator (LASSO)
regression. Firstly, we equally divided the TCGA samples into
the train and test sets. After examination, there was no difference
in clinical traits between the training and test sets. Next, based on
the train set, the 10-fold cross-validation was used to determine
the best penalty coefficient (log(λ) = −2.7). With this λ value, only
four genes had nonzero coefficients. Therefore, these genes were
identified as the characteristic variables (principal components)
of 121 differentially expressed EMT-related genes. After being
validated by univariate and multivariate Cox analysis, all these
four genes retained prognostic significance. Therefore, EMTsig
was constructed according to the following equation:
EMTsig � ∑n

i�1Coef(genei)p exp(genei). Notably, the “Coef”
represented the coefficients corresponding to these four genes
at log(λ) = −2.7, and the “exp” represented the expression of these
four genes. As for the CGGA cohort, the GEO cohort, and normal
samples, we calculated the EMTsig for each sample with the
identical formula.

2.9 Sensitivity of Oncology Treatment
The relationship of chemotherapeutic agents and molecular
targeted drugs with gene expression was obtained from the
CellMiner database (https://discover.nci.nih.gov/cellminer/
home.do) (Reinhold et al., 2012). In our study, we selected
only drugs with p < 0.05 and FDA approval. In addition, to
more accurately determine the correlation between EMTsig and
the sensitivity of ICB therapy, we used two analytical tools from
the websites. The ImmuCellAI algorithm was used to predict the
infiltration levels of 24 types of lymphocytes in tumor tissue
(http://bioinfo.life.hu-st.edu.cn/web/ImmuCellAI/) (Miao et al.,
2020). The TIDE algorithm can predict the degree of impaired
anti-tumor immunity and the infiltration levels of several
immunosuppressive cells (http://tide.dfci.harvard.edu./) (Jiang
et al., 2018). Combined with the relationship of EMTsig with
TMB, infiltration levels of lymphocytes, and the expression of
immune checkpoints, the effect of EMTsig on the sensitivity of
ICB therapy can be accurately determined.

2.10 Software and Statistical Methods
Since only two subtypes were identified in LGG samples in our
study. Therefore, the Mann-Whitney U test was used to compare
differences between subtypes or subgroups. Correlations between
variables were verified with the Spearman correlation analysis. The
survival analysis was based on the Kaplan-Meier (K-M)method and
the log-rank test. The Cox analysis was used to elucidate the
correlation between variables and the prognosis of patients. The
univariate Cox analysis was used to detect whether the variables were
risk factors for prognosis, while the multivariate Cox analysis was
used to determine whether the variables could be used as
independent prognostic biomarkers. The accuracy of prognostic
biomarkers was determined with ROC curves and the area under the
curves (AUC). The net benefit on survival of LGG patients between
different prognostic biomarkers was determined with decision curve
analysis (DCA).

This study was conducted based on R version 4.1.1. The
“pheatmap” package was used for plotting heatmaps.
“ggplot2”, “ggpubr”, “ggExtra”, “plyr”, and “reshape2”
packages could be used for plotting multiple figures, such as
box plots, bar plots, and scatter diagrams. Forest plots were
painted with the “forestplot” package, and ROC curves were
plotted by the “timeROC” program. Principal component
analysis (PCA) was implemented with the “limma” package
and could be visualized with the “ggplot2” package. The
prognostic network for selected writers of post-transcriptional
RNA modification patterns were created with the “igraph” and
“psych” packages. The upset plot was generated with the “upsetR”
package. The nomogram was developed based on the “regplot”
package. The “rms” package was required for the generation of
calibration curves. K-M curves were plotted by the “survival” and
“survminer” packages. The DCA and creation of decision curves
were based on the “ggDCA” package. In addition, Perl scripts
participated in the pre-processing of data (Strawberry-Perl-
5.32.1.1).

3 RESULTS

3.1 Identification of Subtypes Based on
EMT-Related Genes
A total of 1,184 EMT-related genes were used in this study. By
removing genes that were completely unexpressed in LGG
samples and using |logFC| > 1and FDR < 0.05 as the threshold,
121 differentially expressed EMT-related genes between
normal samples from the GTEx database and LGG samples
in the TCGA cohort were identified (Figure 1A;
Supplementary Table 1). NMF rank survey suggested that
the optimal rank value was 2 (Supplementary Figure S2A).
According to the rank value, LGG samples in the TCGA cohort
were clustered into two subtypes which were labeled as C1 and
C2 (Figure 1B; Supplementary Table 2). As expected, the
principal component significantly differed between samples
with C1 and C2 (Figure 1C). Thus, LGG samples could be
reliably clustered into two subtypes.

Next, we explored the differences in EMT levels between
samples with C1 and C2. Compared to C1, the expression of
TGF-β (TGFB1) was significantly higher in samples with C2
(Figure 1D). The EMT process is mediated by EMT-TFs such
as Snail (SNAI1), slug (SNAI2), and TWIST1/2, and they were
equally highly expressed in samples with C2 (Figure 1E). In
addition, EMT is often accompanied by the remodeling of the
extracellular matrix (ECM). Among the matrix
metalloproteinases (MMPs), like MMP2/3/9 are closely
related to the decomposition of the basement membrane
and remodeling of the ECM (Miyoshi et al., 2004). These
three genes were highly expressed in samples with C2
(Supplementary Figure S2B). Also, Figure 1F indicated
that the ECM-related molecular functions were significantly
hyper-activated in samples with C2. Notably, the rise in cell
motility is often accompanied by alterations in adhesion
molecules and the cytoskeleton. In samples with C2, the
expression of E-cadherin (CDH1) was downgraded, and
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N-cadherin (CDH2) was significantly highly expressed
(Supplementary Figure S2C). Moreover, vimentin (VIM)
mainly maintains cytoskeletal integrity and is important for
cell motility and metastatic spread (Costigliola et al., 2017).
Similarly, VIM was highly expressed in samples with C2
(Supplementary Figure S2D). Finally, we found that score
levels of EMT-related gene sets, such as Pan-F-TRBS,
angiogenesis, and EMT1/2/3 were higher in samples with
C2 (Figure 1G). However, the score levels corresponding to
WNT signaling pathways and FGFR3-related gene sets were
slightly lower in samples with C2, which might be attributed to
the activation of the potential negative feedback regulatory
mechanism against the EMT process. In summary, among
these two EMT-related subtypes, multiple pieces of evidence
suggested that samples with C2 had higher EMT levels.

3.2 The Relation of Subtypes With the
Prognosis and Malignant Features of LGG
Further, we explored and validated the prognostic implications of
EMT-related genes. The K-M curves showed that the median OS
of samples with C2 was less than 3years, much lower than
8.2 years in samples with C1 (Figure 2A). After eliminating
the non-disease mortality, samples with C2 still had a worse
prognosis (Figure 2B). Therefore, obtained the C2 subtype
always indicated adverse clinical outcomes in LGG patients.
To further investigate the mechanism behind it, we next
verified the differential distribution of malignant features of
LGG, including clinical traits, molecular traits, and metabolic
status between EMT-related subtypes.

As for clinical traits, there was no difference in susceptibility to
EMT between genders, but samples of senior (>52 years) and high

FIGURE 1 | The heatmap of differential expressed EMT-related genes between normal and LGG samples (A). Consensus matrix of NMF clusters (B). Differences in
principal components between the C1 and C2 subtypes (C). Differences in TGF-β (TGFB1) (D), SNAI1/2 and TWIST1/2 (E), expression between samples with C1 and
C2. Differences in ssGSEA score levels of gene sets related to the remodeling of extracellular matrix between samples with C1 and C2 (F). Differences in ssGSEA score
levels of gene sets related to oncology molecular functions between samples with C1 and C2 (G). Notes for abbreviations: homologous recombination (HR);
mismatch repair (MR). The identification of differentially expressed genes was based on the “edgeR”method. In the box plots, p < 0.05 was indicated by “*”, p < 0.01 was
indicated by “**”, p < 0.001 was indicated by “***”, and the statistical analysis was performed by the Mann-Whitney U test.
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grade (G3) were more likely to acquire the C2 subtype (Figures
2C–E). Next, we evaluated the correlations between molecular traits
between molecular traits and EMT-related subtypes. Astrocytomas
occupied 63% of the C2 samples, much higher than 26% in C1
(Figure 2F). Epidemiological evidence suggests that astrocytomas
have a lower 5-year survival rate compared with oligoastrocytomas
and oligodendrogliomas (Ostrom et al., 2014). Next, among the six
supervised DNA methylation clusters, a total of 97% samples with
C1 had G-CIMP-high and Codel, while Mesenchymal-like was

almost exclusively present in samples with C2 (Figure 2G).
Compared to the other four subtypes, samples with G-CIMP-
high and Codel have the best prognosis (Ceccarelli et al., 2016).
Also, the high proportion of Mesenchymal-like subtypes further
confirmed that C2 samples had higher EMT levels. As for the three
molecular subtypes, IDHwt is a risk factor for the prognosis, but
IDHmut-codel is a protective factor (Brat et al., 2015). IDHwt and
IDHmut-codel accounted for 54% and 3% of samples with C2,
compared to 3% and 44% of samples with C1 (Figure 2H). Thus,

FIGURE 2 | K-M curves for the overall survival (OS) (A) and disease-specific survival (DSS) (B) between samples with C1 and C2. Differences in the composition
ratios of age (C), gender (D), grade (E), histology (F), supervised DNA methylation clusters (G), and molecular subtypes (H) between samples with C1 and C2.
Differences in ssGSEA score levels of gene sets related to the metabolism between samples with C1 and C2 (I). Differences in the expression of HIF1A and HIF1AN
between samples with C1 and C2 (J). In the box plots, p < 0.05 was indicated by “*”, p < 0.01 was indicated by “**”, p < 0.001 was indicated by “***”, and the
statistical analysis was performed by the Mann-Whitney U test.
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samples with C2 tended to have clinical and molecular traits with a
worse prognosis.

Furthermore, the metabolic abnormality is one of the hallmarkers of
cancers (Hanahan andWeinberg, 2011). Figure 2I presented the activity
ofmetabolism-relatedmolecular functions between samples with C1 and
C2. Lipids are essential nutrients for glioma cells (Gimple et al., 2019).
Thus, hyper-activated lipid metabolism in samples with C2 was more
favorable for the progression of LGG. Similarly, In C2 samples, the
carbohydratemetabolic activity did notmatch the activity of tricarboxylic
acid (TCA)andenergymetabolism.Thismightbeattributed to thehigher
degree of hypoxia in samples with C2, which led to a further shift in the
metabolic model of LGG cells toward aerobic glycolysis. In fact, hypoxia-
inducible factor 1-alpha inhibitor (HIF1AN) was under-expressed in
samples with C2 (Figure 2J). In addition, vitamin cofactors, such as

NADPHmay limit the proliferation of cancer cells (VanderHeiden et al.,
2009). Thus, elevated activity of vitamin cofactor metabolism might
indicate a more vigorous proliferation of cancer cells. In summary,
samples with C2 owned more severe metabolic abnormality. The
accumulation of multiple risk factors might be related to the poor
prognosis of samples with C2.

3.3 The Variations in Immune and Stemness
Features Between Samples With Different
Subtypes
Previous studies have pointed out that EMT is potentially
correlated with the remodeling of anti-tumor immunity and
stemness features (Mani et al., 2008; Akalay et al., 2013; Chen

FIGURE 3 |Differences in ssGSEA score levels of gene sets related to immune functions between samples with C1 and C2 (A). Differences of infiltration ratios of 22
immune cells (CIBERSORT) (B) and 24 lymphocytes (ImmuCellAI) (C) between samples with C1 and C2. Differences in the expression of immune checkpoints (D) and
dysfunction score (E) between samples with C1 and C2. Differential distribution of the immunophenotypes between samples with C1 and C2 (F). Differences in the
expression of 12 glioma stem cells (GSCs) markers between samples with C1 and C2 (G). In the box plots, p < 0.05 was indicated by “*”, p < 0.01 was indicated by
“**”, p < 0.001 was indicated by “***”, and the statistical analysis was performed by the Mann-Whitney U test.
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et al., 2014; Lou et al., 2016). Also, the EMT-related genes may
additionally affect other biological properties which can
significantly affect the prognosis of LGG patients. Therefore,
we further investigated the variations in immune and stemness
characteristics between samples with C1 and C2.

Firstly, we characterized immune features between different
subtypes. About immune-related signals, both pro-tumor and
anti-tumor signals were upregulated in samples with C2
(Figure 3A). Therefore, EMT might have a two-sided effect on

anti-tumor immunity. Next, we depicted the infiltration of 22
immune cells in the TCGA cohort. The correlation between most
immune cells was not strong, and only a few pro-tumor cells
displayed an intense inhibition of anti-tumor cell infiltration
(Supplementary Figure S3A). This might indicate impaired
anti-tumor immunity in LGG patients. Also, the proportion of
pro-tumor cells, such as macrophages M2, Tregs, B cells naive,
mast cells resting, and T cells CD4 memory resting was higher in
samples with C2. However, T cells CD8, as one kind of anti-

FIGURE 4 | Volcano plot of differentially expressed genes (DEGs) between samples with C1 and C2 (A). Relationship between the scale independence (R2) (B) and
mean connectivity (C)with the soft threshold (β). The branches of the cluster dendrogram correspond to the different genemodules. Each leaf on the cluster dendrogram
corresponds to a gene, and the colored row represents a color-coded module that contains a group of highly connected genes (D). Correlation coefficients of WGCNA
gene modules with ESTIMATE score, mDNAsi, and mRNAsi (E). Genes satisfying Gene Significance (GS) > 0.5 and Module Membership (MM) > 0.7 in the,
MEbrown (F), MEgreen (G), and MEturquoise (H)modules were identified as Eigengenes. K-M curves between samples with high and low (clustering method: median
values) ESTIMATE score (I).
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tumor cell, was highly infiltrated in samples with C2 (Figure 3B).
Next, we further evaluated the infiltration patterns of
lymphocytes with the ImmuCellAI algorithm (Figure 3C). We
noted that the cytotoxic levels and infiltration levels cytotoxic-
related cell like CD8 T cells, NKT, MAIT, Th17, and Tfh were
higher in samples with C2. However, the proportion of cells that
can strongly suppress the tumor immunity, such as nTreg and
iTreg, increased in parallel in samples with C2. Notably, the
dysfunction score and the expression of immune checkpoints
were higher in samples with C2, signifying higher immune escape
levels (Figures 3D,E). Therefore, the T-cell exhaustion levels in
samples with C2 might be higher. In addition, the immune and
stromal scores were significantly higher in samples with C2,
implying that these samples with lower tumor purity
(Supplementary Figures S3B,C). In terms of TCGA
immunophenotypes, 68% of samples with C2 possessed
Lymphocyte Depleted (IC4), whereas samples with C1 were
predominantly Immunologically Quiet (IC5) (Figure 3F).
Notably, samples with IC4 had the most confounding immune
features and the worst prognosis (Thorsson et al., 2018). In
summary, the anti-tumor immunity might be more severely
impaired in samples with C2.

Next, we evaluated the stemness features of samples with C1
and C2. Referring to previous studies, mDNAsi and mRNAsi
are a set of stemness indices obtained based on the OCLR
machine learning algorithm, where mDNAsi reflects the
epigenetic features of stem cells, and mRNAsi indicates the
gene expression features of stem cells (Malta et al., 2018).
Samples with high mDNAsi and low mRNAsi had a better
prognosis in LGG (Supplementary Figures S3D,E).
Compared to C1, samples with C2 had higher mDNAsi and
lower mRNAsi (Supplementary Figures S3F,G). Notably,
CD133 is an iconic marker of GSCs and tended to be highly
expressed in the GBM with a higher degree of malignancy.
(Singh et al., 2004; Du et al., 2020). It was highly expressed in
samples with C2 (Figure 3G). Meanwhile, CD44 was highly
expressed, while CD24 was lowly expressed in samples with C2
(Figure 3G). It is widely accepted that CD44high and CD24low

cells are cancer stem cells (Mani et al., 2008). Thus, the C2
subtype might related to the accumulation of stemness
properties by LGG cells, which could accelerate the
malignant progression of LGG and lead to a poor prognosis.

3.4 Functional Annotation of Eigengenes
Based on WGCNA
To investigate the specific genes and underlying biological
functions that affected the immune and stemness features, we
used weighted correlation network analysis (WGCNA) to
construct co-expression networks and annotated the functions
of Eigengenes. The ESTIMATE score is the sum of the immune
score and the stromal score, and it varied between samples with
C1 and C2 (Supplementary Figure S3H). Therefore, we selected
the ESTIMATE score as the index to represent immune features.
Similarly, referred to the relationship of mDNAsi and mRNAsi
with stemness features, both of them were selected as the
stemness indices.

To keep the results more representative, we set FDR < 0.05 and
|logFC| > 1 as the threshold, and a total of 1,912 differentially
expressed genes (DEGs) were identified between samples with C1
and C2 (Figure 4A; Supplementary Table 3). These DEGs were
used to build a weighted network. Next, a scale-free topology
system was constructed by using the optimal R2 = 0.88 and a soft
threshold (β = 4) (Figures 4B,C). After merging modules with the
disparity coefficient <0.25 and overall gene counts <30, nine
modules were finally obtained (Figure 4D). By selecting modules
with the highest correlation coefficients, the MEbrown, MEgreen,
and MEturquoise modules were the main modules of mDNAsi,
mRNAsi, and ESTIMATE score respectively (Figure 4E). Finally,
Genes satisfying Gene Significance (GS) > 0.5 and Module
Membership (MM) > 0.7 were identified as Eigengenes. A
total of 31, 37, and 247 genes were identified as Eigengenes in
the MEbrown, MEgreen, and MEturquoise modules (Figures
4F–H; Supplementary Table 4).

GO and KEGG functional enrichment analyses can reveal the
potential biological functions of Eigengenes in main modules.
Eigengenes in theMEturquoise module were closely related to the
function of immune cells, immunoreactive substances, and
recognition and presentation of antigens (Supplementary
Figures S4A,B). Also, the prognosis samples with high
ESTIMATE scores were relatively bad (Figure 4I). As for the
MEbrown module, Eigengenes were highly enriched in the cell
cycle andmitosis-related pathways, implying that mDNAsi might
be associated with the proliferation of cancer cells
(Supplementary Figures S4C,D). Eigengenes in the MEgreen
module were highly enriched in GO pathways related to cell
adhesion (Supplementary Figure S4E). These results revealed
the mechanisms by which the immune and stemness features,
prognosis, and malignancy differed between the C1 and C2
subtypes. Notably, the original study has demonstrated that
mRNAsi is inversely correlated with EMT levels (Malta et al.,
2018). Therefore, mDNAsi and mRNAsi might be a set of
complementary stemness indices, and the conclusion of higher
EMT levels in samples with C2 was further supported.

3.5 Genetic Variations Between Samples
With Different Subtypes
Further, we explored the variation in genetic features across the
C1 and C2 subtypes. Of 123 EMT-related genes, 103 underwent
CNV events (Supplementary Figure S5A). Further, we found 86
genes with significant amplifications or deletions. Some of these
genes were reciprocally related and differentially expressed
between samples with C1 and C2 (Figure 5A). In addition,
Chr19/20 co-gain and Chr7 gain & Chr10 loss were almost
only observed in samples with C2 (Supplementary Figures
S5B,C). Also, the incidence of CDKN2A/B homozygous
deletion, EGFR amplification, and PDGFRA amplification was
higher in samples with C2 compared to C1 (Supplementary
Figures S5D–G). Previous studies have indicated that these
specific CNV events are related to high-grade gliomas and
poor prognosis (Ceccarelli et al., 2016; Eskilsson et al., 2018;
Reinhardt et al., 2018; Neftel et al., 2019). Therefore, variations in
abnormal degrees of CNV events might existed between samples
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FIGURE 5 | RCircos plot for copy number variations (CNV) of differential expressed EMT-related genes. From the outside to the inside, these loops represented
chromosomal loci, average expression in samples with C1, average expression in samples with C2, gain (red) or loss (blue), and frequency of CNV, respectively (A).
Differences in the rating of deletion (DEL), insertion (INS), single-nucleotide polymorphism (SNP) between samples with C1 and C2 (B). Differences in the rating of six
types of single-nucleotide variants (SNV) including transitions (Ti) and transversions (Tv) between high and low GILncSig subgroups (C). Differences in the mutation
rates of the top 15 mutated genes in LGG between samples with C1 and C2 (D). Waterfall plots of the 20 most frequently mutated genes in samples with C1 (E) and
C2 (F). The correlation heatmaps about correlations of 30 top mutated genes between high and low GILncSig subgroups. The color and symbol in each square
represented the statistical significance of the exclusive or co-occurrence for each pair of genes, and the statistical method was the Fisher’s exact test (G). The fraction of
cancer signaling pathways and samples affected by the genetic variations in samples with C1 (H) and C2 (I). In the box plots, p < 0.05 was indicated by “*”, p < 0.01 was
indicated by “**”, p < 0.001 was indicated by “***”, and the statistical analysis was performed by the Mann-Whitney U test.
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with C1 and C2, which might be involved in the altered
expression patterns of EMT-related genes and formation of
poor prognosis in samples with C2.

As for nucleotide variations, the median somatic mutation
count in samples with C2 was 40, significantly higher than 27 in
C1 (Supplementary Figure S5H). Also, for the variant types, the
fraction of SNP was higher in samples with C2 (Figure 5B). In the
six types of SNV, the proportion of C > T and C >Awas higher in
samples with C2, while the proportion of T > C was relatively
lower (Figure 5C). Also, SNP and the missense mutation were
predominant in both C1 and C2 subtypes (Supplementary
Figures S5I,J). These results indicated that the variant types
were not converted between samples with C1 and C2, but it was
undeniable that genetic heterogeneity existed. For example, the
mutation sites and forms of IDH1 were conserved, but it was
highly mutated in samples with C1 (Supplementary Figure S5K).
Also, in some genes such as TP53, CIC, and ATRX, the mutation
sites and forms were different (Supplementary Figures S5L–N).
In addition, VAF levels of samples with C2 were relatively higher
(Supplementary Figure S5O). Notably, some studies have
suggested that alterations in VAF levels are related to poor
prognosis (Shin et al., 2017). In summary, nucleotide
variations existed between samples with C1 and C2, which
might affect the prognosis of these samples.

Next, by comparing the mutation profiles of samples with C1
and C2, a total of 261 differentially mutated genes were identified
(Supplementary Table 5). Figure 5D exhibited the distribution
of 15 most significantly differentially mutated genes. Among
genes with mutation rates above 10%, IDH1, CIC, and FUBP1
were highly mutated in samples with C1, while EGFR, TTN, NF1,
and PTEN were highly mutated in samples with C2 (Figures
5E,F). Previous studies have indicated that IDH1 mutations are
protective factors for the prognosis of glioma, and mutations in
CIC and FUBP1 are characteristic of oligodendroglioma (Yan
et al., 2009; Wesseling et al., 2015). The EGFR mutation is one of
the important markers of GBM and is associated with poor
prognosis (Schlegel et al., 1994; Korshunov et al., 2015). In
addition, PTEN and NF1 are oncogenes whose mutational
inactivation is associated with cancer development and
progression (Chalhoub and Baker, 2009; Krauthammer et al.,
2015). As for driver genes, IDH1 was the driver gene for both
samples with C1 and C2 (Supplementary Figures S5P,Q). This
might be because IDH1 mutation is one of the key events in the
oncogenesis of gliomas. In addition, EGFR was identified as the
driver gene for samples with C2 (Figure 5E). The function of
EGFR is closely related to the EMT process. Next, we analyzed the
mutational interactions between the top 25 mutated genes. As
shown in Figure 5G, most gene pairs exhibited mutually
exclusive mutations in samples with C1, while gene pairs in
samples with C2 mainly displayed co-occurring mutations.
Interestingly, EGFR exhibited mutually exclusive mutations
with IDH1, ATRX, and TP53. However, the mutation rates of
ATRX and IDH1 were relatively lower in samples with C2
(Figures 5E,F). Finally, functional annotation was performed
for differences in mutational patterns. Except for MYC and TP53,
the remaining cancer signaling pathways were highly enriched in
samples with C2 (Figures 5H,I). Among them, the WNT,

NOTCH, PI3K, and TGF-β signaling pathways are closely
related to EMT, and the RTK-RAS and PI3K signaling
pathways can regulate cancer progression (Gonzalez and
Medici, 2014; Katoh and Nakagama, 2014; Paul and Hristova,
2019; Hoxhaj and Manning, 2020). In addition, the Hippo and
WNT signaling pathways are associated with the acquisition of
stem cell features, and the activation of the NOTCH pathway can
contribute to the formation of the immunosuppressive
microenvironment (Zhan et al., 2017; Meurette and Mehlen,
2018; Ma et al., 2019). Taken together, genetic mechanisms
broadly influenced the malignant progression of LGG. Also,
differences in the activity of cancer signaling pathways might
be related to the variations in multiple biological features
including EMT levels, anti-tumor immunity, and stem cell
features between samples with C1 and C2.

3.6 Epigenetic Variations Between Samples
With Different Subtypes
Similarly, epigenetic derangements can drive the process of
oncogenesis and progression through multiple approaches
(Feinberg et al., 2016). As the most important pre-
transcriptional epigenetic regulatory mechanism, DNA
methylation can directly regulate gene expression. Between
samples with C1 and C2, the expression of 617 genes was
influenced by the DNA methylation levels. These genes were
identified as driver genes of DNA methylation (Supplementary
Table 6). Also, we found that the overall DNA methylation levels
of driver genes in samples with C2 were relatively low
(Supplementary Figure S6A). Previous studies have indicated
that hypomethylation is associated with the oncogenesis process
(Good et al., 2018). In addition, driver genes were highly enriched
in KEGG pathways like glioma, cell metabolism, cell adhesion,
and multiple cancer signaling pathways (Figure 6A). Therefore,
altered DNA methylation patterns might be closely related to
higher malignancy in samples with C2.

Further, we explored the potential link between EMT and
post-transcriptional RNA regulatory patterns. From published
data, a total of 26 writers for N6-methyladenosine (m6A), N1-
methyladenosine (m1A), 5-methylcytosine (m5C), and
alternative polyadenylation (APA) were selected (Huang et al.,
2012; He et al., 2019; Shi et al., 2020). These writers were
differentially expressed between samples with C1 and C2
(Figure 6B). Next, with cor > 0.5 and p < 0.05 as the
threshold, 385 DEGs were identified to have co-expression
relationships with these writers (Supplementary Table 7).
Among them, 328 DEGs upregulated in samples with C2 were
enriched in GO pathways related to the function of multiple
immune molecules and cells (Supplementary Figure S6B).
Moreover, these 328 DEGs were not only enriched in KEGG
cancer signaling pathways such as PI3K-Akt, PD-1/PD-L1, and
NF-kappa B but also could regulate multiple cell death patterns
(Supplementary Figure S6C). In contrast, 57 DEGs lowly
expressed in samples with C2 were relevant to the biological
function of normal neurons (Supplementary Figures S6D,E).
Notably, the expression of CFI was much higher in samples with
C2, and 313 of 385 DEGs had co-expression relationships with
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CFI. Also, CFI was a prognostic risk factor in LGG samples
(Figure 6C). Therefore, we considered that CFI might be an
important APA regulator, whose hyper-expression was associated
with the altered expression patterns of EMT-related genes and
poor prognosis of LGG patients. In addition, we observed that 54
differentially expressed EMT-related genes had AS events
(Figure 6D). In summary, the expression patterns of EMT-
related genes were closely related to altered RNA
modifications, which had a non-negligible impact on the
malignant progression of LGG.

3.7 Construction of EMTsig and the
Nomogram
To simplify the forecasting process and quantify the prognostic
implications of EMT-related genes, all 509 LGG samples in the
TCGA cohort were randomly divided into the train (n = 256) and
test (n = 253) sets, of which there were no differences in the
distribution of clinical traits (Supplementary Table 8). Next, we
determined the optimal penalty coefficient (log(λ) = −2.7) by
LASSO regression, and BMP2, SFRP2, BIRC5, and ZNF217 were
identified as characteristic variables of EMT-related genes
(Supplementary Table 9; Figures 7A,B). After testing by the
univariate and multivariate Cox analysis, all of these four genes

retained prognostic significance (Supplementary Figures
S7A,B). Therefore, EMTsig was constructed based on them.
The K-M curves indicated that high EMTsig accompanied by
worse prognosis in LGG samples (Figure 7C; Supplementary
Figures S7C,D). Also, the results of univariate Cox analysis
presented that the hazard ratio of EMTsig was 1.612
(1.434–1.812, p < 0.001) (Figure 7D). Thus, EMTsig was a
prognostic risk factor for LGG.

We further validated the accuracy and versatility of the
prognostic predictive capability of EMTsig. The OS-dependent
ROC curves indicated that the AUC values corresponding to 1-,
3-, and 5-year OS were 0.88, 0.89, and 0.80 (Figure 7E). Similarly,
the high EMTsig subgroup of CGGA samples also had a poor
prognosis (Figure 7F). As for the ROC curves, the AUC values of
EMTsig corresponding to 1-, 3-, and 5-year OS in CGGA were all
above 0.7 (Figure 7G). In addition, the levels of IDH mutation
and 1p19q co-deletion levels in the low EMTsig subgroup of
CGGA samples were higher, further confirming that elevated
EMTsig was accompanied by the increase of malignancy
(Supplementary Figures S7E,F). Notably, 470 of 509 TCGA
samples were obtained from Caucasians, while the CGGA
samples were obtained from Chinese (Asians). Therefore,
EMTsig could be a reliable prognostic biomarker in patients
from different sources or ethnicities.

FIGURE 6 | Results of KEGG functional enrichment analysis of DNA methylation driver genes (A). Differences in the expression of N6-methyladenosine (m6A), N1-
methyladenosine (m1A), 5-methylcytosine (m5C), and alternative polyadenylation (APA) writers between samples with C1 and C2 (B). The interactive network and
prognostic implications of writers for the post-transcriptional RNA modification. The left half-circle represented different RNA modification patterns, and the right half-
circle represented whether these writers were risk or protective factors for OS. The colors of lines indicated correlations between writers, and the size of the circle
represented pvalues for prognostic implications of these writers (C). Statistics on the counts and types of genes with alternative splicing (AS) (D). In the box plots, p <
0.05 was indicated by “*”, p < 0.01 was indicated by “**”, p < 0.001 was indicated by “***”, and the statistical analysis was performed by the Mann-Whitney U test.
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The result of multivariate Cox analysis indicated that the
prognostic prediction capability of EMTsig was independent of
clinical and molecular traits which might have a significant effect
on the prognosis of LGG (Supplementary Figure S7G). Next, the
TCGA and CGGA cohorts were further stratified. Firstly, we
stratified all LGG samples based on clinical traits. K-M curves
indicated that the low-EMTsig subgroup had a better prognosis in
each clinical trait stratification (Supplementary Figures S7H–M).
Secondly, the CNS WHO 2021 classification integrates the
prognostic implications of IDH mutations and 1p19q-codel and
classifies adult-type diffuse gliomas into three groups (Louis et al.,
2021). Following the same strategy, we identified three
stratifications, including 470 samples with IDHwt (GBM), 431
samples with IDHmut-non-codel (Astrocytoma), and 254 samples

with IDHmut-codel (Oligodendroglioma). By univariate Cox
analysis, we found that EMTsig was a significant prognostic risk
factor in all of these three stratifications (Figure 7H). These results
further supported that EMTsig could maintain the significant
prognostic predictive capability in glioma patients of different
clinical and molecular trait stratifications. Also, based on the
properties of EMTsig as an independent prognostic biomarker,
we considered whether a comprehensive assessment of EMTsig,
clinical traits, and molecular traits could maximize the survival
benefit of LGG patients in clinical applications. With the Cox
regression, we found that IDH1 mutation status, age, grade, and
EMTsig had independent effects on OS, and the nomogram was
constructed (Figure 7I). The calibration and ROC curves exhibited
that the error of the nomogram was within a manageable range

FIGURE 7 | The relationship between lambda values and partial likelihood deviance (A) or variable coefficients (B) in the calculation of EMTsig by the LASSO
regression. K-M curves of OS between the high and low EMTsig subgroups of the TCGA cohort (C). Results of univariate Cox analysis of EMTsig, clinical traits, and
molecular traits with OS in LGG patients of the TCGA cohort (D). The 1-, 3-, and 5-year OS-dependent ROC curves of EMTsig in the TCGA cohort (E). K-M curves of OS
between the high and low EMTsig subgroups of the CGGA cohort (F). The 1-, 3-, and 5-year OS-dependent ROC curves of EMTsig in the CGGA cohort (G).
Results of univariate Cox analysis of EMTsig with OS in three stratifications with worse prognosis (H). The nomogram of the Cox prognostic prediction model (I).
Calibration curves (J) and OS-dependent ROC curves (K) for the nomogram. The OS-dependent ROC curves for clinical traits, IDH1status, the nomogram, and EMTsig
(L). Decision curves compared the differences in the net benefit of clinical traits, IDH1status, EMTsig, and the nomogram for the prognostic prediction of LGG patients
(M). In this figure, p < 0.05 was indicated by “*”, p < 0.01 was indicated by “**”, p < 0.001 was indicated by “***”.
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(Figures 7J,K). Moreover, the nomogram had the highest AUC
value compared to the single-trait evaluation approaches
(Figure 7L). Also, through decision curve analysis (DCA), the
nomogram had the highest net benefit (Figure 7M). In summary,
in terms of prognostic predictive capability, the nomogram could
be more sophisticated compared to the EMTsig.

3.8 Guidance of EMTsig on Biological
Properties of LGG
Since EMTsig was constructed based on the principle
components of 121 differentially expressed EMT-related genes,
EMTsig might be correlated with EMT-related subtypes. As
shown in Supplementary Figure S8A, EMTsig was

FIGURE 8 |Overview of differences in clinical traits andmolecular traits between the high and low EMTsig subgroups of LGG samples in the TCGA cohort (A). Gene
set enrichment analysis (GSVA) results of activated GO (B) and KEGG (C) pathways in the high EMTsig subgroup of TCGA samples. GSVA results of activated GO (D)
and KEGG (E) pathways in the low EMTsig subgroup of normal samples. In this figure, p < 0.05 was indicated by “*”, p < 0.01 was indicated by “**”, p < 0.001 was
indicated by “***”.
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significantly higher in samples with C2. Also, 95% of samples
with C2 were in the high EMTsig subgroup (Supplementary
Figure S8B). Figure 8A provided an overview of the differences
in clinical and molecular traits between high and low EMTsig
subgroups of all LGG samples in the TCGA cohort. The high
EMTsig subgroup had similar clinical and molecular traits as C2.
Also, EMTsig was positively correlated with ESTIMATE score
and mDNAsi, and negatively correlated with mRNAsi
(Supplementary Figures S8C–E). Thus, samples in the high
EMTsig subgroup might possess similar biological properties
as C2. Encouragingly, EMTsig was an easily detectable
quantitative biomarker. Therefore, EMTsig could assist in
identifying the biological properties of LGG patients in clinical
applications, which facilitates the selection of appropriate
individualized interventions.

GSVA can be used to detect changes in the activity of pathways
within the entire gene set. In both normal and LGG samples in the
TCGA cohort, most of the highly activated gene sets in the low
EMTsig subgroup were just related to the transduction of neural
signals (Supplementary Figures S8F–I). In contrast, immune
function, cell cycle, EMT, and cancer-related signaling pathways
were highly activated in the high-EMTsig subgroup of LGG
samples (Figures 8B,C). Notably, similar results were obtained
in the high EMTsig subgroup of normal samples (Figures 8D,E).
This indicated that adjacent non-tumor tissue might also
participate in the EMT process, formation of TME, and
malignant progression of LGG. Overall, EMTsig was
suggestive for the evolving trend of biological properties of

LGG. Also, the impact of adjacent non-tumor tissue should be
considered when selecting therapeutic strategies for patients with
high EMTsig in clinical applications.

3.9 Guidance of EMTsig on the Sensitivity of
Oncology Treatment
Many studies have pointed out that the EMT process and
accompanying alterations in immune or stemness features
could impact the efficiency of oncology treatment (Mani et al.,
2008; Zhou et al., 2017; Singh et al., 2018; van Staalduinen et al.,
2018; Ramesh et al., 2020). Based on the suggestive capability of
EMTsig for EMT levels and biological properties, EMTsig might
be a potential biomarker for the sensitivity of oncology treatment
in LGG.

Firstly, we verified the relationship between EMTsig and
efficiency to radiotherapy and chemotherapy. In the TCGA
cohort, the proportion of samples who were sensitive to
radiotherapy and chemotherapy was higher in the high
EMTsig subgroup (Figures 9A,B). Also, we noted that the
MGMT promoter (MGMTp) methylation levels were higher in
the high EMTsig subgroup (Figure 9C). Since glioma
chemotherapy is mainly dependent on the alkylating agent
TMZ, the high MGMTp methylation level further supported
that the high EMTsig subgroup was sensitive to TMZ.
Meanwhile, in the CGGA cohort, we obtained similar results
(Figure 9D). Further, we analyzed the relationship between the
progression-free interval (PFI) and EMTsig. However, in the

FIGURE 9 | Differences in the sensitivity of radiotherapy (A) and chemotherapy (B) between high and low EMTsig subgroups. Differences in the MGMT promoter
(MGMTp) methylation levels between high and low EMTsig subgroups in the TCGA cohort (C). Differences in the MGMT promoter (MGMTp) methylation status between
high and low EMTsig subgroups in the CGGA cohort (D). K-M curves of Progression-free interval (PFI) between high and low EMTsig subgroups of the TCGA cohort (E)
and the GEO cohort (F). Differences in follow-up treatment success between high and low EMTsig subgroups of TCGA samples (G). Differences in the lymphocyte
infiltration levels (ImmuCellAI) between the high and low EMTsig subgroups of the TCGA cohort (H). In this figure, p < 0.05 was indicated by “*”, p < 0.01 was indicated by
“**”, p < 0.001 was indicated by “***”. Variance analyses were performed with the Mann-Whitney U test.
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TCGA cohort, K-M curves indicated that the high EMTsig
subgroup had a lower PFI time and rate (Figure 9E).
Likewise, in a GEO cohort that received TMZ therapy,
elevated EMTsig also adversely affected the PFI (Figure 9F).
Moreover, in the TCGA cohort, 32% of samples in the high
EMTsig subgroup remained in progressive disease after follow-up
treatment, this proportion was only 11% in samples with low
EMTsig. Also, the probability of achieving complete remission
was higher in samples in the low EMTsig subgroup (Figure 9G).
These results indicated that although the rise in EMTsig could
improve the sensitivity of radiotherapy and TMZ chemotherapy,
the concomitant elevated malignancy might neutralize the
therapeutic efficiency, and thus the long-term outcome was
not satisfactory. Finally, in the CellMiner database, we
explored possible alternative chemotherapeutic agents. We
found that the sensitivity of some chemotherapeutic agents
and molecular targeted drugs were correlated with the
expression of EMTsig-related genes (Supplementary Figures
S9A,B, Supplementary Table 10). Although these drugs are
not widely used in the chemotherapy of glioma, but they
provide potential alternative individualized therapeutic plans
for LGG.

The essence of ICB therapy is the reactivation of suppressed
anti-tumor immune responses. Tumor mutational load (TMB) is
closely related to the formation of neoantigenic epitopes, which
can be used as indices for the sensitivity of ICB therapy (Chan
et al., 2019). Supplementary Figures S9C demonstrated that
TMB was positively correlated with EMTsig. Also, the proportion
of immune cells, especially lymphocytes, is closely related to the
sensitivity of ICB therapy (Neal et al., 2018; Chan et al., 2019).
Through the ImmuCellAI algorithm, the infiltration scores of 24
types of immune cells were obtained for TCGA samples
(Supplementary Table 11). As shown in Figure 9H, the
proportion of most lymphocytes and the infiltration score
were significantly higher in the high EMTsig subgroup.
Meanwhile, the ESTIMATE score was positively correlated
with EMTsig, indicating that samples in the high EMTsig
subgroup had lower tumor purity (Supplementary Figure
S8C). In addition, immune checkpoints were highly expressed
in the high EMTsig subgroup with higher dysfunction scores
(Supplementary Figures S9D,E). This implied that the highly
expressed immune checkpoints might inhibit the normal
function of lymphocytes. However, highly expressed immune
checkpoints provided adequate sites for ICB therapy, and highly
infiltrated lymphocytes supplied potential effector cells for the
recovery of anti-tumor immune responses. Therefore, EMTsig
might be positively correlated with the sensitivity of ICB therapy
for LGG patients.

4 DISCUSSION

Our study aimed to identify EMT-related genes in that have a
significant impact on prognosis and explore the relationship of
these genes with oncogenesis, progression, and the evolution of
biological properties in LGG. By optimizing the clustering
strategy, two subtypes about differential expression patterns of

EMT-related genes were identified in the TCGA cohort. Between
the C1 and C2 subtypes, significant differences existed in clinical
traits, molecular traits, metabolism, anti-tumor immunity, and
stemness features, eventually resulting in poor prognosis of
samples with C2. Also, we found that genetic, epigenetic, and
transcriptomic heterogeneity led to variations in the activation of
tumor signaling pathways and molecular functions, thus causing
the differential distribution of malignant features. Next, to better
evaluate individual variations between LGG samples, the EMTsig
system was constructed. As expected, EMTsig was not only a
prognostic marker but also correlated with the sensitivity of
oncology treatment. In addition, EMTsig provided us with an
easily conductible clustering strategy for evaluating the role of
adjacent non-tumor tissue in the malignant progression of LGG.
The GSVA results indicated that adjacent non-tumor tissue
might also be involved in the process of EMT, progression,
metastasis, and formation of the TME in LGG. Therefore,
when performing clinical interventions, EMTsig allowed us for
evaluating the features of the tumor and adjacent non-tumor
tissue. This could be beneficial for LGG patients to establish the
optimal individualized therapeutic plans for improving clinical
outcomes.

In the context of neoplasia, the EMT process is often
aberrantly activated. EMT can assist in metastasis of cancer
cells by enhancing motility, disrupting intercellular junctions,
degrading the basement membrane, and remodeling the ECM
(Miyoshi et al., 2004; Costigliola et al., 2017; Loh et al., 2019).
Also, the EMT process is associated with the rise in the
proportion of cancer stem cells, decreased anti-tumor
immunity, and resistance to oncology treatment (Rhim et al.,
2012; Akalay et al., 2013; Singh et al., 2018; van Staalduinen et al.,
2018). Thus, EMT is one of the essential parts of the invasion-
metastasis cascade. Although the heterogeneity exists between
different cancer types, the EMT process in LGG may also possess
significant prognostic implications. To further explore this issue,
we identified the EMT-related genes most significantly
differentially expressed between LGG and normal samples and
provided a comprehensive insight into the mechanisms by which
these genes affected the evolution of biological features,
oncogenesis, progression, and prognosis. Our study indicated
that the expression of EMT-TFs, EMT-related signaling
pathways, and the ECM process were closely related to the
expression patterns of 121 differential expressed EMT-related
genes. This suggested that our subtypes could well reflect the
differences in EMT levels between LGG samples. Meanwhile, we
noted that samples with C2 had lower tumor purity, higher
expression of immune checkpoints, and a higher proportion of
pro-tumor cells such as Tregs, M2 macrophages, and resting
immune cells. This resulted in higher levels of T-cell exhaustion
and poorer anti-tumor immunity. In fact, several studies found
that some LGG samples in the TCGA cohort had immunological
characteristics similar to our C2 subtype, which possessed a
poorer prognosis (Du et al., 2020; Wu et al., 2020; Ji et al.,
2021). Also, samples with C2 were more likely to acquire higher
stemness levels. These altered biological properties would have a
profound impact on the clinical outcome of LGG patients. In
addition, previous studies have noted that stromal cells in tumor
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tissue can secrete a variety of chemokines and cytokines. These
secreted signals may communicate with tumor cells, immune
cells, or adjacent non-tumor tissue via the paracrine fashion
(Olumi et al., 1999; Quail and Joyce, 2013; Sun et al., 2014;
Lambrechts et al., 2018). Similarly, we observed that the adjacent
non-tumor tissue appeared to be adaptively altered in response to
the changes in EMTsig. Therefore, the permissive effect of
adjacent non-tumor tissue on the invasion-metastasis cascade
should be considered when implementing clinical interventions
for LGG patients.

We noted that differences in EMT levels, molecular traits, and
genetic features were simultaneously observed between samples
with C1 and C2. Similarly, various studies have pointed out that
EMT can cause genetic variations through a variety of
mechanisms. For example, TGF-β can inhibit DNA damage
repair and prolong mitosis (Comaills et al., 2016). Also, TGF-
β and SNAI1 can affect the integrity of nuclear envelope and
nuclear pore components, leading to abnormal mitotic processes
and decreased mechanical stability of the nucleus (Güttinger
et al., 2009; Gruenbaum and Foisner, 2015). These alterations
lead to prolonged exposure of DNA in the cytoplasm and
increased risk of nuclear deformation or rupture when cells
undergo strenuous movement, eventually leading to the
accumulation of genomic instability. In our study, samples
with C2 were more inclined to possess mutated EGFR, TTN,
NF1, and PTEN. Mutations of these genes are often indicated for
higher degrees of malignancy and poor clinical outcomes. Also,
multiple cancer signaling pathways were highly aberrantly
activated in samples with C2. These signaling pathways are
closely related to the EMT process, immune cell infiltration,
cancer stem cell accumulation, progression, and metastasis of
cancers. Therefore, our study offered a possibility that the EMT
process might interact with genetic features, which could facilitate
the malignant progression of LGG.

In contrast to genetic variations, epigenetic modifications
regulate gene expression without changing DNA sequences or
affecting protein functions at the translational level. Our study
suggested that the variations in expression patterns of EMT-
related genes were related to changes in DNA methylation and
post-transcriptional RNA modification patterns in LGG. Many
studies have pointed out that EMT-TFs can synergistically co-
regulate the EMT process with DNA methylation. For example,
CDH1 is an important marker of EMT and is often down-
regulated or inactivated during the progression of cancers
(Loh et al., 2019). In EMT-TFs, SNAI1 and SNAI2 bind to the
E-box on the promoter and directly inhibit the transcription of
CDH1 (Puisieux et al., 2014). Meanwhile, the CDH1 promoter
exhibited hypermethylation in a variety of cancers, further
reducing CDH1 expression (Yoshiura et al., 1995). Similarly,
altered RNA regulation patterns may mediate the EMT process.
For example, m6A in SNAI1 CDS triggers the polyribosome-
mediated translation process which drives the activation of
SNAI1-related functions (Lin et al., 2019). In addition, we
observed that many EMT-related genes underwent AS events
in LGG samples. Depending on the splice site, AS has different
biological effects. In case it happens in the RNA coding regions,
AS events can affect protein functions, while those occurring in

the polyA site may impact the efficiency of translation (Keren
et al., 2010). As the 3′UTR contains multiple polyA sites, this
process may be affected by the APA activity. In our study, the
expression of APA writers varied across different subtypes in
LGG samples. Thus, we believed that the differences in epigenetic
regulatory patterns were associated with differential expression
patterns of EMT-related genes. These changes might be involved
in the regulation of EMT and affected the biological properties
and clinical outcomes of LGG patients.

Finally, we attempted to translate our findings into clinical
applications. the EMTsig system successfully quantified the EMT
levels and could reliably predict the prognosis and the
evolutionary patterns of biological properties in LGG patients.
Also, comparing the available evidence, we found that the four
genes used to construct the EMTsig were closely related to EMT.
BMP2 is a member of the TGFβ family and induces the process of
EMT through the BMP signaling pathway (Fukuda et al., 2021).
SFRP2 is an upstream repressor of the WNT signaling pathway
and has an inhibitory effect on the EMT process (Duan et al.,
2017). BIRC5 is one of the anti-apoptotic signals induced by
ZEB1, which can induce the EMT process through the TGFβ
signaling pathway (Sánchez-Tilló et al., 2014). ZNF217, a
member of the zinc finger protein family, functions as an
EMT inducer mainly through the TGF-β-activated SMAD
signaling pathway (Vendrell et al., 2012). Therefore, EMTsig is
closely related to the activity of the TGF-β signaling pathway,
which means that EMTsig may accurately reflect changes in the
biological processes associated with the TGF-β signaling pathway.
In addition, EMTsig could help LGG patients to optimize the
therapeutic strategies. Currently, TMZ is the main
chemotherapeutic agent for glioma. Our study revealed that
EMTsig was positively related to the sensitivity of TMZ.
However, the increase in EMT levels and malignancy resulted
in an unsatisfactory long-term outcome of TMZ chemotherapy.
Similar evidence suggests that the efficacy of TMZ can be
improved by inhibiting the EMT process, further supporting
our findings (Rajesh et al., 2020). Moreover, the rise in
EMTsig gave rise to several alternative therapeutic options. In
our study, samples with high EMTsig had higher lymphocyte
infiltration, immune checkpoint expression, and TMB, which
indicated that ICB therapymight be effective. Similar studies have
pointed out that the EMT process can activate the PD-L1
signaling to induce immune escape, and ICB therapy may be
an alternative therapeutic option (Jiang and Zhan, 2020). Also,
EMTsig-related genes were related to the sensitivity of some
chemotherapeutic agents and molecular targeted drugs.
Therefore, the individualized alternative chemotherapy
protocols for LGG patients with TMZ resistance might be a
good choice. In addition, therapeutic strategies for targeting key
molecules and signaling pathways of EMT have promising
efficacy in cancers (Davis et al., 2014; Zhu et al., 2018). In the
future, cellular and animal model-based studies may further
confirm the feasibility of therapeutic strategies for targeting
the EMT process in LGG patients. In summary, EMTsig was
valuable for clinical application and also provided us with new
insights and approaches for investigating the effects of EMT on
the biological properties of cancers.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 88769318

Wu et al. Prognostic Signature of EMT-Related Genes

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


There were still some limitations in this study. By using the
differentially expressed EMT-related genes, we explored the impact
of the EMT-related genes on the biological properties of LGG at the
macroscopic level. However, The EMT-related genes we identified
have other biological functions alongside the induction of EMT. This
means that the differential expression of EMT-related genes cannot
fully explain the interaction patterns between EMT levels and other
LGG biological properties. Thus, the function and regulatory
mechanism of specific genes need to be further elucidated.
Further, the identification of EMTsig was based on existing data
sets. However, the clinical significance of EMTsig was not validated
with RT-qPCR in our study. In the future, this can be further
explored in newly acquired clinical samples or disease models. In
addition, the mechanisms behind the prognostic implications of
adjacent non-tumor tissue in LGG need to be further validated in
experimental studies. However, it is undeniable that our study
provides new insights for LGG biology and oncology treatment,
which has important implications for clinical interventions of LGG.

5 CONCLUSION

This work was based on a multi-omics analysis and revealed the
mechanisms by which EMT-related genes affects the biological
properties of LGG from the genetic, epigenetic, and
transcriptomic layers. Meanwhile, by revealing changes in the
activity of signaling pathways, we explored the potential
biological functions of adjacent non-tumor tissue in EMT
processes, oncogenesis, progression, and metastasis of LGG.
Finally, EMTsig was a promising versatile biomarker that
could accurately predict prognosis and guide oncology
treatment for LGG patients. In the future, experimental studies
can help us to more comprehensively understand the

mechanisms behind the EMT process and to validate the
prognostic implications in adjacent non-tumor tissue.
Additionally, after being validated by prospective studies,
EMTsig may be valuable for the individualized treatment of LGG.
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