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Evolutionary studies indicate that the nervous system evolved prior to the vascular system,
but the increasing complexity of organisms prompted the vascular system to emerge in
order to meet the growing demand for oxygen and nutrient supply. In recent years, it has
become apparent that the symbiotic communication between the nervous and the
vascular systems goes beyond the exclusive covering of the demands on nutrients
and oxygen carried by blood vessels. Indeed, this active interplay between both
systems is crucial during the development of the central nervous system (CNS).
Several neural-derived signals that initiate and regulate the vascularization of the CNS
have been described, however less is known about the vascular signals that orchestrate
the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of
blood vessels in the process of neurogenesis during CNS development in vertebrates. In
mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two
brain regions that exhibit different neurogenic complexity in their germinal zone, the
hindbrain and the forebrain.
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INTRODUCTION

In the course of phylogenic evolution, the nervous system precedes the appearance of the vascular
system. The first organisms that developed a primitive nervous system were diploblasts,
ie., cnidarians (jellyfish, anemones, corals) and ctenophores (jelly comb) (Hartenstein and
Stollewerk, 2015; Arendt et al.,, 2016). These animals exhibit a diffuse nerve net and lack a
vascular system, as oxygen and nutrient demands can be met by simple diffusion (Monahan-
Earley et al., 2013). Millions of years later, more complex organisms emerged, the triploblasts, which
have bilateral symmetry and a tubular nervous system. With their increased complexity and body
size, it became necessary to develop a circulatory system to transport fluid throughout the whole
organism. This incipient circulatory system evolved into a blood vascular system.

Interestingly, the nervous system also precedes the vascular system during embryogenesis. The
neural tube, the origin of the central nervous system (CNS) in bilaterian animals, is formed by
neuroepithelial cells derived from the ectoderm (Hartenstein and Stollewerk, 2015) and is avascular
ab initio (James et al., 2009). In vertebrates, neuroepithelial cells that form the neural tube initially
undergo symmetric divisions in synchrony with interkinetic nuclear migration [see reviews (Miyata,
2008; Taverna and Huttner, 2010)]. This process of cell proliferation serves to amplify the pool of
progenitor cells before the onset of neurogenesis (Subramanian et al., 2017). Next, from embryonic
day (E) 10.5 onwards in mouse (Haubensak et al., 2004), neuroepithelial cells divide asymmetrically
to generate radial glial cells (RGCs). RGCs are neuronal progenitor cells with cell-renewal and
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neurogenic capacity (Malatesta et al., 2000; Noctor et al., 2001),
representing the cellular source for almost all neural lineages of
the CNS [see review (Gotz and Huttner, 2005)]. RGCs are
morphologically similar to neuroepithelial cells, although they
are more elongated [see review (Arai and Taverna, 2017)]. Both
cell types exhibit apical-basal polarity and span their processes
across the neural tube. The apical end-feet contact the lumen of
the neural tube whereas their basal fiber anchors at the pial
surface. Moreover, RGCs are not only the source of neuronal
progenitors and neurons, but the basal processes of these cells are
also used as scaffolds for the migrating newborn neurons (Rakic,
1971; Nadarajah and Parnavelas, 2002).

Neurovascular interactions happening before the onset of
neurogenesis have not been described; however, following the
closure of the neural tube, angioblasts (endothelial progenitor
cells) are recruited from the pre-somitic mesoderm to surround
the neural tube with a vascular mesh, termed perineural vascular
plexus (PNVP) (Kurz et al., 1996; Ambler et al., 2001). These
primitive vessels then sprout radially into the neural tube
developing a ramified vascular network, called intraneural
vascular plexus (INVP). In mouse, PNVP establishment occurs
between E8.5 and E10, followed by the emergence of INVP at
around E10.5 [see reviews (James and Mukouyama, 2011; Segarra
et al, 2019)], therefore the onset of neurogenesis is timely
harmonized with neural tube vascularization. Moreover, initial
experiments in chick embryos showed a stereotypical pattern in
the formation of the INVP (Feeney and Watterson, 1946),
indicating that sprouting angiogenesis into the primitive
neural tube is guided by neural-derived cues. This hypothesis
was demonstrated later, and neural-derived vascular endothelial
growth factor A (VEGF-A) was shown to be one of the major
signals orchestrating neural tube vascularization (Hogan et al,,
2004; James et al., 2009).

In the developing CNS, vessels establish an intimate
relationship with RGCs. On one side, the vascular sprouts of
the INVP align with the RGCs processes (Noctor et al., 2001;
Gerhardt et al., 2004; Ma et al., 2013). On the other side, the
long basal processes of the RGCs contact the pial surface
irrigated by vessels of the PVNP while RGC somatas and
their short apical processes lie on the ventricular side of the
neural tube, where the INVP further develops and forms the
periventricular plexus (PVP) [see review (Peguera et al., 2021)].
Developmental neurogenesis is a multi-step process that
encompasses several waves of cell division, followed by
migration and differentiation of neuroblast cells, and
culminates with the integration of mature neurons into the
neural circuit (Bjornsson et al., 2015). The vasculature, which
intermingles and develops symbiotically with the growing CNS,
may help to guide and coordinate the different stages of
neurogenesis.

Communication between vessels and neural cells is
bidirectional. Several studies have deciphered which neuronal
cues regulate CNS vascularization [reviewed in (Paredes et al.,
2018)], but less is known about the instructive role of endothelial
cells in modulating neuronal processes. Emerging data reveal that
the vasculature plays a functional role in CNS development,
including embryonic neurogenic niches. In this review, we
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focus specifically on the influence of the vasculature along the
neurogenic journey and its potential control of neuroblast cell
division, migration and differentiation during CNS development.

LESSONS FROM IN VITRO SYSTEMS

Co-culture systems of neural stem cells (NSCs) and endothelial cells
have helped to demonstrate the influence of the endothelium on the
neurogenic niche (Shen et al., 2004; Sun et al,, 2010; Vissapragada
et al, 2014). Most of these studies suggest that endothelial cells
induce the proliferation of NSCs to increase the undifferentiated
pool of neurons. For example, Shen et al. showed that soluble factors
secreted by endothelial cells promote the symmetric division of NSC,
whereas NSC undergo differentiation in the absence of endothelial
cells (Shen et al., 2004). Also, an enhanced proliferation of NSC was
observed when neuronal progenitors were co-cultured with
embryonic brain endothelial cells from PVP origin, therefore
reproducing the embryonic neurogenic niche in vitro
(Vissapragada et al, 2014). Interestingly, variations in the co-
culture conditions could trigger different effects on the neuronal
progenitors: whereas soluble factors led to NSCs self-renewal, direct
contact with the endothelium promoted neuronal progenitor cell
differentiation (Gama Sosa et al., 2007). This divergent response
provides an indication of the complexity of the neurogenic dynamics
in vivo and the diversity of signaling mechanisms that may be
derived from the interplay with the endothelium.

VASCULAR-GUIDED NEUROGENESIS IN
NON-MAMMALIAN VERTEBRATES

Non-mammalian models have been crucial in the study of
neuronal development (Marder, 2002). In zebrafish, the
avascular mutant cloche is a powerful model to investigate the
neurovascular interactions during development. Cloche zebrafish
have a dysfunctional heart, which impairs blood circulation, as
well as lack blood cells and most of the vasculature (from 20 to 26-
somite stage) (Stainier et al., 1995; Liao et al, 1997). In the
hindbrain, blood vessels develop in close association with subsets
of neuronal clusters in early stages (48-72h post-fertilization,
hpf), but the absence of vessels in cloche has no impact on local
neurogenesis (Ulrich et al., 2011). However, in other brain
regions at the same developmental stage, such as the
cerebellum’s upper rhombic lip and the optic tectum, the
axonal scaffolds were reduced in cloche, presumably because
their development requires blood flow and/or signals from the
surrounding vessels (Ulrich et al., 2011). Interestingly, Taberner
et al. demonstrated using cloche mutants that blood flow is
necessary for cranial sensory neural differentiation (54-72 hpf)
in the statoacoustic ganglion via activation of genes related to
oxygen metabolism (Taberner et al., 2020). Besides blood flow,
blood-borne signals may potentially influence the neurovascular
niche during development. Indeed, in Xenopus laevis, neuronal
progenitors that line the ventricle and extend their radial
processes to establish contact with the pial surface are able to
internalize circulating dextran through their end-feet (Lau et al.,
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2017). However, no relationship was found between neural
progenitor’s end-feet-blood vessel contacts and their cell
division rate.

Direct contact between endothelial cell and neural progenitor
also seems to regulate neuronal development. In early cranial
sensory neurogenesis of the statoacustic ganglion in zebrafish
(30-36 hpf), direct interaction of endothelial cells and neuronal
progenitors regulate their proliferation (Taberner et al., 2020).
Thus, loss of vasculature in cloche correlates with a neuroblast
increase in this region, indicating that endothelium-neuroblast
contacts negatively regulate neurogenesis by keeping neuroblasts
quiescent. Those contacts are mediated by the endothelial cell
cytoneme, a thin actin-based cellular extension specialized for
cell-cell communication that binds to cranial sensory neuroblasts
and communicates via DIl4-Notch signaling pathway (Taberner
et al., 2020).

In zebrafish retina, cloche mutants also lack vasculature and
show prominent defects in cell proliferation, survival,
organization and differentiation (30-72 hpf) (Dhakal et al,
2015). These defects in retinogenesis were independent from
hypoxia, but cloche mutants did not allow to differentiate the role
on retinal neurogenesis between endothelial cells, blood-borne
factors and/or circulating blood cells. To address this, Dhakal
et al. used three different mutant models characterized by: 1)
absence of endothelial cells, 2) lack of blood flow and 3) no
erythroid lineage cells. This strategy revealed that factors derived
directly from endothelial cells are major key players in cell
proliferation and differentiation in the retina; although
circulating factors might also play a role in these processes
(Dhakal et al, 2021). Interestingly, the ciliary marginal zone,
where the retinal neurogenic niche resides, is severely affected in
the absence of endothelial cells (Dhakal et al., 2021). Consistent
with this, blood vessels associated with retinal stem cells in the
ciliary marginal zone were shown to be required to maintain them
in proliferative stages (Tang et al., 2017). In the developing rat
retina, in vitro and in vivo studies also support that endothelial
cells regulate the cell self-renewal of retinal progenitor cells via the
epigenetic regulator Hmga2 (Parameswaran et al., 2014).

Taken together, all data suggest that the role of the vasculature
in neurogenesis is very variable depending on the region and
developmental stage. Blood vessels may govern diverse
mechanisms leading to different responses, from the balance
between proliferation and quiescence to differentiation.

CONTRIBUTION OF THE VASCULATURE
TO DEVELOPMENTAL NEUROGENESIS IN
MAMMALS

Vascular regulation of developmental neurogenesis has been
studied in the neurogenic niches of the hindbrain and the
forebrain in the embryonic mouse (Karakatsani et al., 2019).
The hindbrain gives rise to the cerebellum, pons, and medulla
oblongata; whereas the forebrain differentiates into the
diencephalon and the telencephalon, which generates neurons
that populate the vast neocortex and the subcortical structures
(such as hippocampus and basal ganglia).

Vessels Influence Developmental Neurogenesis

The hindbrain is the most functionally and developmentally
conserved region in the evolution of the vertebrate brain
(Krumlauf and Wilkinson, 2021). In contrast, the evolution of
the neocortex across vertebrates is variable and shows differences
in tissue structures, for example number of neocortical layers
(Briscoe and Ragsdale, 2019). Cortical neurogenesis is
evolutionary conserved in mammals; however, the cerebral
cortex is also characterized by a wide variability in volume
and folding complexity across species. This could be related to
a prolonged neurogenic period that correlates with the duration
of gestation, exposing the developing neocortex to maternal
environment for a longer period of time. This includes a
whole variety of circulating factors, such as hormones, that are
delivered by the blood vessels and the cerebrospinal fluid system
and potentially influence neurogenesis (Montiel et al., 2013;
Stepien et al., 2021).

Neurogenesis in the Developing Hindbrain
In the hindbrain, vessels from the PNVP (which later becomes the
meningeal vasculature) penetrate radially into the neural tissue
towards the ventricular zone, where they turn and anastomose to
form the PVP at around E10 and onwards (Figure 1A) (Fantin
etal,, 2013). Subsequently, lateral sprouts emerge and anastomose
to form a more complex plexus.

Interestingly, direct neurovascular contacts are described in
the germinal zone of the hindbrain surrounding the ventricle.
Confocal microscopy and 3D reconstructions suggested that
hindbrain neural progenitor processes and end-feet directly
contact PVP blood vessels (Tata et al., 2016). In support of a
neurovascular communication, a spatiotemporal congruency was
found between the sprouting of vessels in the PVP and the peak of
neural progenitor proliferation. Moreover, endothelial deletion of
Neuropilinl (NRP1), a co-receptor of VEGF-A, resulted in
premature differentiation of neural progenitor independent of
VEGEF signaling and hypoxia (Figure 1B) (Tata et al., 2016). This
suggests that PVP vasculature directly regulates neurogenesis.

The hindbrain is the premise of the cerebellum, which mostly
develops postnatally. In the cerebellum, glutamatergic neurons called
granule cells originate in the upper rhombic lip. During embryonic
development, granule cells proliferate and migrate anteriorly to
cover the entire dorsal cerebellar surface, where they create a
postnatal secondary neurogenic niche, the external granule layer
(EGL) (Consalez, 2021). This migration process is mediated by the
interaction of C-X-C motif chemokine 12 (CXCL12), expressed by
the leptomeninges, and its receptor CXCR4, expressed by the
migrating progenitor cells (Zhu et al, 2004; Hagihara et al,
2009). Later, CXCL12 signaling is suggested to arrest neuronal
progenitors at the pial surface in the EGL (Zhu et al., 2004; Vilz
et al,, 2005; Consalez, 2021). At perinatal stages, the EGL actively
proliferates in mice until the third postnatal week. During the first
postnatal week (Figures 1C,D), the cerebellar cortex is poorly
vascularized, resulting in low O, tension that increases expression
of the hypoxia-inducible factor Hifla (Kullmann et al., 2020). HIF1a
on the one hand, negatively regulates the partitioning-defective
(Pard) gene complex via Zebl, which prevents granule cell
polarization and consequent migration and, on the other hand,
promotes the attachment of the proliferating granule cell progenitors
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FIGURE 1 | Endothelial cell signaling regulates neurogenesis in the hindbrain/cerebellum. (A) (Top) Scheme of a coronal view of the hindbrain at the embryonic
stage. Vessels from the perineural vascular plexus (PNVP) ingress into the neural tissue in a perpendicular manner towards the ventricle where they form the
periventricular vascular plexus (PVP). Then, lateral sprouts emerge and form a more complex vascular network. (Bottom) Timeline of concurrent hindbrain embryonic
vascularization and radial glia cells (RGC) proliferation. (B) (Left) Closer view of the ventricular zone containing a layer of radial glial cells (RGC) that extend their basal
fibers towards the pial surface and the apical short processes contact the ventricle. (Right) RGC basal fibers directly contact the PVP vessels. In this scenario, endothelial
NRP1 signaling maintains RGC proliferation through a mechanism independent of hypoxia and VEGF. (C) (Top) Scheme of a sagittal view of the cerebellum at the first
postnatal week. (Bottom) Timeline of concurrent cerebellar postnatal vascularization and granule cell progenitors (GCP) proliferation. (D) (Left) Granule cell progenitors
(GCP) reside under the pial vessels in the cerebellum and form the external granule layer (EGL). (Right) In hypoxic conditions, Hif1a/Zeb1 favors the GCP attachment to
the extracellular matrix (ECM) of the pial surface through Integrin f1 expressed at the GCP membrane. In parallel, Hif1a/Zeb1 inhibit GCP polarization and subsequent
migration. Components of the pial ECM (laminins) enhance SHH signaling which, in turn, promotes GCP proliferation.

to the pial extracellular matrix via Integrin p1, which keeps them in
the germinal zone (Figure 1D) (Kullmann et al.,, 2020). Moreover,
components of the extracellular matrix on the pial side of the EGL,
particularly laminins, enhance the response to sonic hedgehog
(SHH), the best-studied morphogen that induces granule cell
proliferation (Pons et al., 2001; Consalez, 2021) (Figure 1D). As
cerebellar  vascularization progresses, Hifla expression is
downregulated, and granule cells can detach from the pia and
prepare for migration (Kullmann et al, 2020). Granule cells
extend their axons while migrating. In this process, the
interaction of Discoidin domain receptor 1 (DDR1) expressed in
the granule cells with collagen secreted at the pial surface is essential
for their axonal formation (Bhatt et al., 2000).

All in all, although relief from hypoxia is an important factor
controlling progenitor cell division, other vascular-mediated
signaling pathways directly contribute to hindbrain/cerebellum
neurogenesis.

Neurogenesis in the Developing Forebrain
Located on the edge of the telencephalic lateral ventricles, RGCs
divide symmetrically or asymmetrically to expand the pool of

progenitor cells, giving rise to either two RGCs or one RGC and
one intermediate progenitor cell (IPC), respectively (see review
(Taverna et al, 2014)). Progenitor cells continue to divide
asymmetrically to give rise to neurons. The forebrain germinal
zone is layered in two: the ventricular zone (VZ) where RGC
somatas reside and the sub-ventricular zone (SVZ), above the VZ,
where the newly born IPC accumulate from E12.5 (Paridaen and
Huttner, 2014; Bjornsson et al, 2015). In some species (e.g.,
humans), the SVZ highly amplifies the pool of progenitors and is
considered to be the evolutionary basis for neocortex expansion.
Dorsal and ventral telencephalon give rise to excitatory and
inhibitory neurons respectively, and both of these telencephalic
regions exhibit a VZ and SVZ.

Simultaneously to the neurogenic process, forebrain
vascularization starts ventrally and progressively extends
towards the dorsal forebrain (Lange et al, 2016; Karakatsani
et al,, 2019; Puelles et al.,, 2019) (Figure 2A). Vessels grow from
the PNVP towards the ventricle following a spatiotemporal
pattern. Penetrating vessels invade the ventral forebrain
already at around E10.5 whereas sprouts in the dorsal region
are delayed about 1 day (Lange et al., 2016; Segarra et al., 2018).
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FIGURE 2 | Vasculature influences neurogenesis in the forebrain. (A) (Top) Scheme of a coronal view of the forebrain at the embryonic stage, showing its
vascularization from the perineural vascular plexus (PNVP) and the periventricular vascular plexus (PVP) in a progressive manner from the ventral telencephalon towards
the dorsal telencephalon. (Bottom) Timeline of concurrent telencephalic embryonic vascularization and neurogenesis. (B) (Middle) Ventricular zone (VZ) contains a layer of
radial glial cells (RGC), which generate intermediate progenitor cells (IPC) that form the subventricular zone (SVZ). (Left) In a poorly-vascularized and hypoxic
environment, RGCs express HIF1a which triggers glycolysis and RGC proliferation. (Right) As oxygenation progresses with increased vascularization, RGC adapt to
hypoxia relief. Oxygen supply from blood vessels mediates HIF1a degradation and promotes RGC asymmetric division generating IPCs. (C) (Left) Tip cells from
ingrowing PVP blood vessel extend filopodia that directly contact RGC somatas in the VZ. (Right) Endothelial cell filopodia adhere to RGC. This direct contact prolongs

Unlike the hindbrain, an additional angiogenic source
vascularizing the PVP has been identified in the forebrain. The
PVP vascularization originates from a basal vessel at the
telencephalic floor that branches from the basal ganglia
primordium (Vasudevan et al., 2008). This vascular plexus
encompassing the ventricle begins in the ventral telencephalon
around E9 and progresses ventral-to-dorsal and lateral-to-medial
between E10-E11 towards the dorsal telencephalon, merging
simultaneously with the penetrating sprouts from the PNVP
(Vasudevan et al., 2008). Confocal microscopy and 3D
reconstruction of telencephalon slices show that blood vessels
are omnipresent in the telencephalic neurogenic niches and form
a rich PVP. This has also been observed in humans, where the
ventral telencephalon is vascularized at early mid-gestation (Di
Marco et al., 2020). Altogether, these findings strongly suggested
that blood vessels play a critical role in embryonic neurogenic
niches.

Initially blood vessels were solely described as providing a
nutrients and oxygen to tissues. Following this idea, the putative
contribution of blood vessels to neurogenesis was first explored
through the prism of oxygenation and circulating factors. Haigh
et al. elegantly laid the groundwork by inducing telencephalic
devascularization and hypoxia after deleting neuronal VEGF-A,
resulting in a decreased neuronal proliferation in the VZ-SVZ
(Haigh et al., 2003). Vascular-specific Gpr124 KO mice exhibit
hypoxia in the VZ region. The consequent induction of Hifla in

this mouse model was found to maintain the proliferative state of
RGCs by triggering glycolysis and to inhibit their neuronal
differentiation (Lange et al., 2016). In other words, in the early
stages of development, the supply of oxygen through blood
vessels is poor, which makes neurogenic niches highly
hypoxic. Hypoxia maintains RGCs in a proliferative state and
stimulates angiogenesis. When the tissue becomes more
vascularized, hypoxia is alleviated and HIFla signaling
downregulated. This results in reduction of neural progenitor
cell expansion and in their differentiation into IPCs (Bjornsson
etal., 2015; Lange et al., 2016) (Figure 2B). This effect of hypoxia
is reminiscent to the observations in the postnatal cerebellum,
since in both regions the increase in vascularization regulates
neuronal differentiation. While hypoxia was the first indication of
a vascular contribution to embryonic neurogenesis, it became
clear that the vascular system regulates neural progenitors using
other strategies.

Endothelial cells are capable of secreting factors, called
angiocrines, that are crucial for regulating neurogenesis. For
instance, conditionally deleting Vegf in endothelial cells led to
several developmental defects in the embryonic telencephalon (Li
et al, 2013), such as: impaired angiogenesis, abnormal
localization of proliferating neuronal progenitors outside of the
neurogenic niche of the dorsal telencephalon, disrupted radial
glia scaffold, and defective radial migration of post-mitotic
pyramidal neurons. Moreover, the tangential migratory stream
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of inhibitory neurons towards the dorsal telencephalon was also
altered by the endothelial deletion of Vegf, leading to focal
misplacement of neurons in the marginal zone even above the
pial surface, disturbed axonal tracts, and defective cortical
lamination (Li et al., 2013). Reelin is a neuronal guidance cue
secreted by Cajal-Retzius cells in the marginal zone of the
neocortex (Tissir and Goffinet, 2003). Deletion of the Reelin
effector molecule Dab1 in endothelial cells also resulted in several
defects in forebrain cytoarchitecture, such as invasion of
migrating pyramidal neurons in the marginal zone, altered
positioning of neurons in the cortical layers, and disrupted
adhesion of RGC processes to the pial surface (Segarra et al,
2018). However, no defects were detected in the pool of neuronal
progenitors in the germinal zone, suggesting that lack of Reelin
signaling in the endothelial cells preferentially impacts on
neurovascular interactions at the pial surface rather than at
PVP vasculature. Indeed, endothelial cells from the PVP
exhibit differential gene expression compared with cells from
the pial surface, suggesting that the endothelium selectively
guides the tangential migration of inhibitory interneurons
along the pial or the periventricular streams (Won et al,
2013). Furthermore, secretion of the neurotransmitter
Gamma-Aminobutyric Acid (GABA) by endothelial cells
contributes to long-distance tangential migration of inhibitory
interneurons from the ventral telencephalon to their final
position in the neocortex (Li et al, 2018). Deletion of
endothelial GABA release not only disrupted the tangential
migration of interneurons, but also increased the number of
proliferating progenitor cells in the SVZ of the ventral
telencephalon. In addition, RNA sequencing revealed
dysregulation of crucial neurogenesis-related genes when
endothelial-specific GABA secretion was deleted embryonically
(Li et al., 2018).

Javaherian and Kriegstein observed that IPCs, which express
the marker Tbr2, were preferentially distributed along the
developing blood wvessels in the SVZ. Via VEGF-
overexpression after in utero electroporation, they induced the
overgrowth of blood vessels and triggered the aberrant migration
of Tbr2" cells towards the ectopic blood vessels. Moreover,
mitotic progenitors were preferentially located to branch
points, where tip cells are present during branching
morphogenesis (Javaherian and Kriegstein, 2009). Tip cells are
specialized endothelial cells that extend filopodia to sense
migratory guidance cues in their environment and mediate
new contacts (Gerhardt et al., 2003). These findings suggested
that IPC interact with blood vessels by contacting tip cells. Ten
years later, Di Marco et al. elegantly confirmed this hypothesis by
describing direct contacts between vascular tip cell filopodia and
apical neural progenitors of the lateral ganglionic eminence in
both mouse and human embryos (Figure 2C). In the same study,
and thanks to series of cell birth-dating experiments in mouse
models with enriched and depleted vascular filopodia, endothelial
cell filopodia were shown to extend the mitotic phase of RGCs
and this triggered an earlier neural differentiation while limiting
the amplification of the pool of progenitor cells (Di Marco et al.,
2020). In addition, RGCs establish direct contacts with the
periventricular vasculature via their apical end-feet in the

Vessels Influence Developmental Neurogenesis

ventral telencephalon. Tan et al. reported that the anchorage
of RGC end-feet to periventricular blood vessels is mediated by
Integrin B1 (Tan et al,, 2016). Deletion of Integrin B1 specifically
in RGCs halved the anchoring of the end-feet and reduced the
number of mitotic RGC in the VZ of the medial ganglionic
eminence. Interestingly, Integrin pl-mediated RGC anchoring
was critical in defining the proportion of parvalbumin and
somatostatin interneurons, the two major types of neocortical
interneurons (Tan et al., 2016). Thus, the vasculature of the
neurogenic niche is able to regulate the proliferation state of
RGCs via direct cell-cell contacts. Moreover, Integrin f1 is also
required for the attachment of basal RGC processes to the pial
surface (Graus-Porta et al., 2001) by binding to laminins on the
meningeal surface (Radakovits et al., 2009). While anchoring of
RGC end-feet to pial vessels is not required for RGC proliferation,
it is crucial for radial migration of excitatory neurons and possibly
their differentiation (Haubst et al., 2006). Consistent with this,
deletion of Dabl in endothelial cells impaired the deposition of
Laminin-o4 on the vasculature, which disrupted the binding of
RGC processes via Integrin fl and, consequently, altered the
proper positioning of pyramidal neurons in the neocortical layers
(Segarra et al., 2018).

At late embryonic stage the VZ decreases in size while the SVZ
expands, and this increase continues perinatally (Brazel et al,
2003). The SVZ located at the anterior part of the lateral ventricle
gives rise to neuroblasts that migrate along the rostral migratory
stream to the olfactory bulbs. Remarkably, neuroblasts generated
postnatally in the SVZ prematurely leave the rostral migratory
stream and migrate towards the cortex using cortical blood
vessels as scaffolds. In this way, a fraction of GABAergic
interneurons is added to the lower cortical layers (Le
Magueresse et al., 2012). Moreover, at early postnatal stages
vessels progressively align longitudinally along the developing
rostral migratory stream and, interestingly, neuroblast
proliferation was significantly associated with the vicinity of
vessels (Nie et al., 2010).

The meninges, which are initially vascularized by the PNVP
and become highly irrigated by the leptomeningeal vessels during
development, support the tangential migration of the Cajal-
Retzius cells via CXCL12/CXCR4 interactions during
embryonic development (Borrell and Marin, 2006). In addition
to providing extracellular matrix components, metabolites, and
growth factors that regulate neurogenesis (Siegenthaler et al.,
2009; Choe et al., 2012), meninges have been shown to harbor
cells that express neural precursor markers during development,
suggesting that meninges may themselves represent a neurogenic
niche (Bifari et al., 2015; Nakagomi and Matsuyama, 2017).
Neuronal progenitors in the meninges are generated during
embryonic development. They have characteristics resembling
RGCs and migrate perinatally into the brain parenchyma where
they differentiate into cortical neurons (Bifari et al., 2017). These
meningeal neuronal progenitors migrate from the leptomeninges
through the meningeal substructures below the hippocampus
towards the lateral ventricle. The meningeal-derived neuroblasts
maintain a close association with the vasculature during this
journey, although a direct signaling from the vasculature remains
to be elucidated.
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CONCLUDING REMARKS

Neurogenesis is the driving force behind CNS development. This
process does not only respond to intrinsic signals from neuronal
progenitors but it is also governed by the influence of the cellular
milieu in the germinal zones, of which the endothelial cells are an
important component. Indeed, several animal models with
vascular deficits support the notion that perturbations in the
vasculature have an impact on the neurogenic process. Hypoxia
produced by insufficient vascularization modulates the expansion
versus the differentiation of the pool of progenitors. Interestingly,
vessels also exert an active role in neurogenesis, either by directly
contacting neuronal progenitors or by releasing factors that
modulate neurogenesis. A spatiotemporal analysis of putative
molecular players in the course of neurogenesis would be relevant
since unique pathways can be involved in different neurogenic
niches throughout brain development. Furthermore, vascular
heterogeneity could play a role in directing neurogenesis,
considering that endothelial cells from PVP and PVNP
express different genes (Won et al, 2013), and even
transcriptional differences were found among dorsal and
ventral vessels from the PVP (Vasudevan et al., 2008).
Furthermore, vessels act as conduits of blood-borne substances.
These substances can reach the neurogenic niches if they are
permeable to the blood-brain barrier, which is formed at
embryonic stages (Daneman et al., 2010). Moreover, the choroid
plexus is a vascularized structure that develops in the ventricles
concomitantly to developmental neurogenesis. The choroid plexus
releases molecules into the embryonic cerebrospinal fluid (CSF),
which is known to contain a myriad of factors involved in
neurogenesis (see review (Fame and Lehtinen, 2020)). These
molecules have to cross the blood-CSF barrier to reach the
ventricles. Therefore, neurogenesis can also be regulated by
selective transport of molecules through the barriers within the
CNS, however this field of research still remains poorly explored.
In addition, it has to be considered that blood circulating maternal
factors also influence the embryonic neurodevelopment in mammals.
All in all, these findings open the possibility that some
neurodevelopmental defects may originate in the vascular
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