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Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene
expression which underlies tissue development. The emergence of new tools to assess
genome-wide epigenetic modifications has enabled significant advances in the field of
vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the
activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq,
ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate
the activity of these regulatory elements. Recently, this approach led to the identification
and characterization of key enhancers of important vascular genes, such as gata2a,
notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics
are being used in the zebrafish to determine chromatin states and assess the function of
the cis-regulatory sequences that shape the zebrafish vascular network.
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INTRODUCTION

In a developing embryo, a sequence of events guides the transformation of undifferentiated cells to
become specialized functional tissues and organs. This process requires the synchronization of a
multitude of factors in time and space to orchestrate cellular processes such as proliferation,
differentiation, migration and survival. One of the key factors in the acquisition of cell identity is
differential gene expression. All cells in an organism largely share the same DNA sequence, yet they
activate and repress specific gene expression to acquire lineage-specific morphologies and
functionalities. This is achieved largely due to epigenetic changes, including DNA and
chromatin modification and non-coding RNA regulation, allowing for tissue specific expression.

Endothelial cells (ECs) constitute the lining of the blood and lymphatic vascular networks that in
vertebrates reach all the tissues and organs across the body. These vascular networks are essential to
support life by delivering oxygen and nutrients, removing waste, maintaining fluid homeostasis and
facilitating immune functions. During embryonic development, the forming blood and lymphatic
vascular networks undergo a cellular and molecular transformation to generate functionally and
morphologically distinct entities that support their specific functions. This requires the
synchronization of morphological changes with the onset of lineage-specific gene expression.
This is achieved by a combination of gene sets that provide a specific molecular code for each
lineage (reviewed in Yamashita, 2007; Kume, 2010; Wolf et al., 2019). Epigenetic regulation, and in
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particular chromatin organization, dictates the accessibility for
transcription factors to bind the DNA sequences in the non-
coding regions and mediate lineage specific gene expression
(Lickert et al., 2004; Wu et al., 2007; Alvarez-Saavedra et al.,
2014).

Thanks to the technological advances in recent years, we are
gaining deeper insights into the epigenetic regulation of vascular
identity. This review will focus on the application of these new
techniques to define the spatiotemporal regulation of endothelial
lineages in zebrafish. We will discuss three different and
complementary approaches for the characterization of
epigenetic regulation of endothelial gene expression in
zebrafish: chromatin state, mapping of histone modifications
and conservation of non-coding elements. As each of these
approaches provide different information about gene
expression regulation, their combination can be used to obtain
a precise and accurate prediction of the presence of cis-regulatory
elements, as well as their activation state in specific times and cell-

lineages and their direct upstream regulation. Since non-coding
RNAs in zebrafish and endothelial cells have been recently
extensively reviewed (Weirick et al., 2018; Jaé et al., 2019;
Ranjan et al., 2021) we will focus on other aspects of
epigenetic regulation, such as cis-regulatory elements, histone
modifications and 3D genomic architecture. We will also briefly
review the main strategies used to generate enhancer reporter
lines in zebrafish, an organism particularly suitable for rapid and
accurate testing of enhancer function and activity in vivo, due to
the ease of transgenesis and live imaging.

TRANSCRIPTIONAL REGULATION OF
ENDOTHELIAL CELL LINEAGES

In zebrafish, ECs originate from the lateral plate mesoderm
(LPM) which, by a sequence of differentiation events, gives
rise to specialized endothelial cell types, the arterial ECs

FIGURE 1 | Transcription factors involved in endothelial cell identity segregation in zebrafish. Schematic representation of the specification of the main ECs lineages
and the TFs involved in the acquisition of their identity. Many factors are known to be involved in this process in zebrafish. Here, we indicate the TFs known to play a role in
the segregation of arterial (sox7, sox18, grl) and venous (nr2f2, nr2f1b) identity. So far, the only TF linked to LEC identity segregation in zebrafish is prox1a. These factors
bind to region of open chromatin to promote the acquisition of a specific cellular fate.
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(AECs), venous ECs (VECs) and lymphatic ECs (LECs) (Hogan
and Schulte-Merker, 2017) (Figure 1). During these complex
developmental processes, several transcription factors (TFs) play
a key role in orchestrating the segregation and identity acquisition
of the different lineages.

During the early stages of EC specification, the transcription
factor Npas4l regulates the acquisition of angioblast identity
(Stainier et al., 1995; Reischauer et al., 2016) through the
expression of other TFs, such as erg (Ellett et al., 2009), etsrp/
etv2 (Sumanas and Lin, 2005; Veldman and Lin, 2012; Reischauer
et al., 2016; Marass et al., 2019), tal1 (Gering et al., 2003; Patterson
et al., 2007; Veldman and Lin, 2012; Reischauer et al., 2016;
Marass et al., 2019), lmo2 (Gering et al., 2003; Patterson et al.,
2007; Marass et al., 2019) and fli1a (Thompson et al., 1998;
Reischauer et al., 2016) (Figure 1).

As development proceeds, the fate of the arterial and venous
lineage begins to segregate. Although upstream signaling, such as
Notch and Efnb2/ephB4, is an important modulator of these
processes, we focus on the TFs involved in the segregation, as
their activity is linked to chromatin accessibility. AECs identity is
induced by transcription factors including Sox7, Sox18 (Herpers
et al., 2008; Pendeville et al., 2008) and grl (Zhong, 2000).
Transcription factors such as Nr2f2/COUPTFII (Aranguren
et al., 2011) and nr2f1b (Li et al., 2015) are required to define
the venous population (Figure 1). Foxc1a and Foxc1b are also
necessary for the correct arteriovenous differentiation (Skarie and
Link, 2009). A specific role for SMAD1/5 in the acquisition of
venous identity has also been proposed by comparative work on
mouse and zebrafish (Neal et al., 2019).

The last endothelial population to differentiate are the LECs,
which originates from the cardinal veins. Its differentiation is
marked by the expression of the transcription factor Prox1a
(Koltowska et al., 2015a) (Figure 1). LEC progenitors form a
functionally distinct vasculature, the lymphatic vascular network
(Küchler et al., 2006; Yaniv et al., 2006; Hogan et al., 2009a).

As we have seen, TFs play a key role in orchestrating the
differentiation of endothelial cell populations. As many of them
are expressed in wider cell populations than the one they regulate,
the endothelial specification processes must therefore be
accompanied by an underlying re-organization of the genomic
DNA. Such re-organization changes the epigenetic landscape
making different regulatory DNA sequences accessible to
lineage-specific TFs. However, in which specific ways the
genome is reorganized in endothelial cell lineages to
coordinate the activation of specific gene sets is still a largely
unexplored and fascinating question.

DNA ORGANIZATION AND ENHANCERS

The DNA that is present in every cell nucleus is not a free
molecule, but is wrapped around histones to form a structure
called chromatin. In addition to providing protection from
damage to the DNA, chromatin helps determine whether
DNA is easily made accessible (or inaccessible) for gene
regulation. Chromatin organization is a highly dynamic
process: upon acetylation or methylation of the histones, the

DNA can become more relaxed (euchromatin) or be pulled
tightly into an interlocked, organized bundle
(heterochromatin) (Figure 2). Likewise, DNA methylation can
negatively regulate gene activity by preventing the binding of TFs
and recruiting transcriptional repressors (Moore et al., 2013). The
chromatin state is central to gene activity, as the dogma postulates
that open chromatin is associated with active gene expression,
allowing the RNA-polymerase complex and the transcription
factors to interact with their binding sites on the exposed regions
of DNA, called cis-regulatory sequences (CREs).

Enhancers are a subclass of CREs and can be located both
upstream and downstream of the transcription start sites. As
such, enhancers do not contain the sequences necessary for RNA-
polymerase recruitment, but can regulate expression by being
brought in close proximity to the translational machine by a DNA
loop (Su et al., 1990). In addition, gene expression can also be
regulated by long-acting enhancers through chromatin looping
that brings together distant regions of DNA. While the short-
range enhancers act in cis, where the regulatory element and its
target are located on the same chromosome, the long-range
enhancers can act both in cis and in trans (Bashkirova and
Lomvardas, 2019; Tomikawa et al., 2020). This requires 3D
folding of the chromatin to bring the regulatory element
located on a different chromosome close to the target locus.
Often more than one enhancer regulates expression of a gene in
different tissues across different developmental stages (Long et al.,
2016). From an evolutionary point of view, this has allowed the
developmental regulation in a tissue to undergo changes without
affecting the expression of the same gene in other parts of the
embryo. Thus, enhancers are particularly interesting elements to
study in the developmental biology field, as they provide the key
to spatio-temporal regulation of gene expression.

DEFINING THE CHROMATIN STATE OF
ENDOTHELIAL CELLS

As transcriptionally active elements are associated with
euchromatin, and inactive ones with heterochromatin,
mapping and comparing chromatin states in specific cell
populations allows us to identify regions and elements
underpinning the lineage specific regulation of gene
expression, such as active promoters and enhancers.

Historically, DNAse hypersensitivity has been the method
used to assess chromatin state. This technique takes advantage
of the ability of the DNAse I enzyme to cleave exposed regions of
chromatin to identify potential CREs. Combining the DNAse
genomic DNA cuts with tagging and sequencing of the short
fragments using a next-generation sequencing platform allows to
identify genomic regions of open chromatin. DNAse
hypersensitivity databases have been generated for human and
other mammals (Boyle et al., 2008; Vierstra et al., 2014). Although
it has been used on human Umbilical Vein Endothelial cells
(HUVECs), the association of open chromatin regions with
specific endothelial genes has not been described in details
(Song and Crawford, 2010; Winter et al., 2013). The lack of
DNAse hypersensitivity databases for zebrafish or other teleost
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fishes and the high cell numbers required for DNAse-seq make it
a challenging approach for studying tissue specific regulation in
these organisms and contributed to its low popularity among
zebrafish vascular biologists.

An alternative approach to identify the open chromatin
regions is the Assay for Transposase-Accessible Chromatin
with high-throughput sequencing (ATAC-seq) (Buenrostro
et al., 2013). This technique relies on a hyperactive Tn5
transposase and the loading of sequencing adapters in the
areas lacking histones. Thanks to the low cell number input
required and the technical ease, ATAC-seq has become a
favourite method in the field, and has been readily used in
vascular biology (Table 1). ATAC-seq provides a variety of
information on chromatin organization. It allows the
identification of putatively active genes, marked by

significantly different chromatin accessibility around the
transcription starting sites (TSS) (Buenrostro et al., 2013). In
addition, the distal peaks of open chromatin in the non-coding
regions of a locus provide insights into the presence of potential
cis-regulatory elements (Cusanovich et al., 2018; Galang et al.,
2020). This technology can be used to characterize the changes in
chromatin architecture between normal and pathological
conditions (Corces et al., 2016, 2018). In the last years, new
analysis methods allowing the characterization of regulatory
networks from ATAC-seq data, based on either motifs
(Tripodi et al., 2018; Zuo et al., 2019) or TFs footprints
(Quach and Furey, 2016; Baek et al., 2017; Pranzatelli et al.,
2018; Li et al., 2019), have also been developed.

In zebrafish, ATAC-seq studies defining the changes of
chromatin organization in endothelial cells through

FIGURE 2 |Main approaches to the identification of regulatory sequences. Technical approaches for the identification and characterisation of CREs. Zebrafish EC
regulatory sequences have been identified based on conservation, as is the case for genes such as flt1, etsrp, gata2a and notch1. Chromatin accessibility was also
successfully investigated in the EC population, contributing to the identifications of CREs in gata2a andmafbb. Data on histone modification was generated using ChIP-
seq and CUT&RUN on EC in other organisms, and is available for zebrafish in a variety of tissues.
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development are rapidly emerging. Quillien et al. used
Fluorescent Activated Nuclei Sorting (FANS) followed by
ATAC-seq to identify a number of endothelial-specific open
chromatin regions in zebrafish at 24 hpf (Table 2). They did

so by taking advantage of the Tg(fli1a:egfp)y1 line and compared
chromatin states between GFP-labelled endothelial cells and
GFP-negative, non-endothelial ones. They identified about
5,000 enhancer elements that were enriched specifically in

TABLE 1 | Available datasets for ECs in mammals. Summary of the available ATAC-seq, histone modification ChIP-seq and CAGE-seq studies in murine and human
endothelial cells.

Technique Organism/Cell line Endothelial Stage Reference Enhancers identified

ATAC-seq studies on endothelial polulations in mouse and human

ATAC-seq Mouse Aortic Ecs Young adult Engelbrecht et al. (2020) Genome-wide in silico
predictions

ATAC-seq Human primary cells HUVECs — Findley et al. (2019) —

ATAC-seq Mouse Liver sinusoidal ECs Adult Furuta et al. (2021) —

ATAC-seq Cell line HUVECs — Han et al., (2021) —

ATAC-seq Cell line HUVECs — He et al. (2019) —

ATAC-seq Human primary cells Aortic ECs — Hogan et al. (2017) Genome-wide in silico
predictions

ATAC-seq Cell line, differentiated in vitro Hemogenic
endotheliium

— Jung et al. (2021) —

ATAC-seq Cell line Aortic Ecs — Krause et al. (2018) Endothelial enhancer in
the Plpp3 intronic region

ATAC-seq Cell line HUVECs — Leisegang et al. (2017) —

ATAC-seq Human biopsy Vascular tissue — Li et al. (2020) —

ATAC-seq Mouse Brain, liver, lung and
kidney ECs

P7 Sabbagh et al. (2018) Genome-wide in silico
predictions

ATAC-seq Mouse primary cells Brain Ecs Young Sabbagh and Nathans,
(2020)

—

ATAC-seq Human primary cells Aortic ECs — Stolze et al, (2020) Kif26b, Fgd6 and Vegfc
enhancres characterized
in vitro

ATAC-seq Human primary cells Dermal Ecs — Tsou et al. (2016) —

ATAC-seq Human primary cells Dermal Ecs — Tsou et al. (2021) —

ATAC-seq Mouse Liver sinusoidal ECs Adult Winkler et al. (2021) —

ATAC-seq Mouse Retinal ECs P6 Yanagida et al. (2020) —

ATAC-seq Mouse Endocardium Adult Yang et al. (2020) —

scATAC-seq Mouse Carotid AECs Adult Ando et al. (2016) —

scATAC-seq Mouse Ecs from 13 different
organs

Adult Cusanovich et al. (2018) —

scATAC-seq Human biopsy ECs component of
carotid arteriosclerotic
plaques

— Depuydt et al. (2020) —

scATAC-seq Human fetal tissue ECs from 15 organs 89–125 days Domcke et al. (2020) —

scATAC-seq Mouse ECs E8.25 Pijuan-sala et al. (2020) Flt1 +67 kb; Maml3
+360 kb

Histone modification studies in mouse endothelial cells

ChIP-seq on H3K4me3,
H3K9ac,H3K27ac, and
H3K27me3

Differentiated mouse SCs Haemogenic
endothelium

— Goode et al. (2016) —

ChIP-seq on H3K4me1 Mouse ECs E12.5 Harada et al. (2021) 2 Sgk1 enhancers
ChIP-seq on H3K27me3

and H3K4me3
Differentiated mouse ECs — Kanki et al. (2017) Genome-wide in silico

prediction
ChIP-seq on H3K27ac/

H3K4me3
SCs Mouse Liver sinusoidal ECs Adult Winkler et al. (2021) —

CAGE-seq studies on endothelial cells

CAGE-seq Human and Mouse Various — The FANTOM Consortium
and the RIKEN PMI and
CLST (DGT), 2014

—

CAGE-seq Human primary cells Dermal LECs and BECs — Dieterich et al. (2015) —

CAGE-seq Human primary cells (reanalysis of
the data from Dietrich et al., 2015)
Dermal LECs and BECs

Dermal LECs and
nBECs

— Dieterich et al. (2017) —

CAGE-seq Human (coltured cells) Dermal LECs and BECs Neonatal Ducoli et al. (2021) —
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endothelial cells. They have validated their predictions by
confirming the functionality of 9 out of 12 tested elements,
which were able to drive GFP expression in the endothelium
of transgenic zebrafish embryos (Quillien et al., 2017).

The chromatin state state of endothelial cells was also studied
by Dobrzycki et al. (Dobrzycki et al., 2020) (Table 2). They used
bulk ATAC-seq on cells sorted by Fluorescent Activated Cell Sort
(FACS) from the Tg(kdrl:GFP) line, comparing chromatin state in
the GFP-positive blood and hemogenic endothelium and GFP-
negative cell populations at 26 hpf. Peak validation showed the
GFP-positive population was enriched for endothelial TFs such as
ERG, ETS, ETV and FLI (Dobrzycki et al., 2020). Similarly, a
study by Bonkhofer et al. used a combination of the transgenic
lines TgBAC(runx1P2:Citrine); Tg(kdrl:mCherry), FACS and
ATAC-seq to profile the changes in chromatin organisation in
the hemogenic endothelium and aortic roof endothelial cells at
29 hpf (Bonkhofer et al., 2019). Although the main focus of both
these studies was to decipher the regulation of hemogenic
endothelium specification, they are an outstanding resource to
study the chromatin state changes in the non-haemogenic
endothelial cells as well.

This comparative approach has been successfully used in other
studies. Both Shin et al. (2019) and Dobrzycki et al. (2020)
identified the same gata2a intron 4 enhancer on the basis of
chromatin accessibility. The element identified drives reporter
expression in the endothelium until 3 dpf, and is subsequently
limited to the valve in the facial lymphatic (Shin et al., 2019;
Dobrzycki et al., 2020). Such studies show the potential of this
approach in identifying tissue-specific enhancers, as well as its
robustness across independent experimental approaches.

The identification of gene expression heterogeneity in endothelial
cells from single cell transcriptomics studies in mouse (Kalucka et al.,
2020; Pasut et al., 2021) suggests the possibility that big cell
populations such as AECs, VECs and LECs hide a yet uncovered
heterogeneity of subpopulations, each characterized by different
expression and epigenetic profiles mirroring their different
environmental requirements and functions. Single cell ATAC-seq

(scATAC-seq) allows us to investigate this heterogeneity, and dissect
the minute complexity of gene expression regulation on a single cell
level. The technique has been so-far developed in mammals
(Buenrostro et al., 2015; Cusanovich et al., 2015), where it has
been used to identify novel endothelial-specific enhancers (Pijuan-
Sala et al., 2020) as well as enhancers active in the development of the
hematopoietic lineage (Zhu et al., 2020). Recent work in zebrafish has
applied this technology to hematopoietic stem and progenitor cells
(HSPCs) (Avagyan et al., 2021). Works fromMcGarvey et al. (2022)
investigated changes in chromatin modification on a single cell level
between the clochemutant and wild-type cells. clochemutants carry a
mutation in the transcription factor Npas4l (Reischauer et al., 2016)
and display a complete absence of vasculature, blood cells, and
endocardium (Stainier et al., 1995). In addition to providing
valuable insights into molecular changes in cloche mutants, this
study represents the first characterization of endothelial chromatin
state at a single cell level. Work from the Hogan lab (Grimm et al.,
2022, preprint) applied a combination of scRNA-seq and scATAC-
seq in mutant strains to identify changes in chromatin stability and
transcriptional outputs downstream of Prox1, the chief regulator of
LECs identity. The potential of scATAC-seq for characterizing the
differences in cis-regulation between closely related yet different cell
populations, as well as the possibility of integrating such data with
other single cell databases such as RNA-seq (Ranzoni et al., 2021),
makes it one of themost promising techniques in the field, and opens
exciting perspectives for future studies.

CHARACTERIZING CIS-REGULATORY
SEQUENCES IDENTITY: COMMONLY
USED TOOLS IN VASCULAR BIOLOGY
Cis-regulatory activity can be identified due to characteristic
histone modifications, which are a readout of the chromatin
state and can be used to identify CREs or to distinguish between
their different subtypes (Chen et al., 2012; Fernández and
Miranda-Saavedra, 2012). Histones are proteins that form

TABLE 2 | Available datasets for EC enhancer identification in zebrafish. Summary of the available ATAC-seq and histone modification ChIP-seq studies which can be used
to investigate the presence of endothelial enhancers.

Technique Tissue Stage Genotypes Translegic line Reference

ATAC-seq studies

ATAC-seq Endothelium 24 hpf WT Tg(fli1a:egfp)y1 Quillien et al. (2017)
ATAC-seq Endothelium 26 hpf WT Tg(kdrl:GFP)s843 Dobrzycki et al. (2020)
ATAC-seq Endothelium 29 hpf WT TgBAC(runx1P2:Citrine); Tg(kdrl:

mCherry)
Bonkhofer et al.
(2019)

ATAC-seq Whole
embryo

1-somite stage WT and
cloche

N/A Marass et al. (2019)

sc-ATAC-seq Whole
embryo

24 hpf WT and
cloche

N/A McGarvey et al.
(2022)

Histone modification studies

ChIP-seq on H3K4me1 and H3K4me3 Whole
embryo

24 hpf WT N/A Aday et al. (2011)

ChIP-seq on H3K4me1, H3K27ac and
H3K4me3

Whole
embryo

Dome, 80% epiboly, 24 p,
48 hpf

WT N/A Bogdanovic et al.
(2012)
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hetero-octamers around which the genomic DNA is wrapped,
creating a structure called nucleosome. Histones can be subjected
to post-transcriptional modifications, such as methylation or
acetylation. The type of histone modifications correlates with
functions and activation states of the cis-regulatory sequences
they mark. For example, in many animals, including zebrafish,
the presence of a trimethylated lysine 4 on histone 3 (H3K4me3)
is associated with active promoter regions (Bernstein et al., 2002;
Santos-Rosa et al., 2002; Bernstein et al., 2005;Wardle et al., 2006)
while an enrichment for monomethylated lysine 4 (H3K4me1)
marks the presence of an enhancer (Heintzman et al., 2007).
Acetylated lysine 27 of the same histone (H3K27ac) is also
enriched in enhancer sequences, with the key difference that it
specifically marks active enhancers, while H3K4me1 can mark
both poised and active enhancers (Creyghton et al., 2010; Bonn
et al., 2012). Histone modifications can therefore be used to
predict both promoter and enhancer activity.

A number of studies have uncovered specific factors involved
in histone modifications that are essential for the correct
development of the vasculature in zebrafish. Protein Arginine
Methyl Transferase 5 (Prmt5) promotes chromatin looping,
allowing accessibility to transcription factors required for
vascular morphogenesis (Quillien et al., 2021). In the same
way, the histone acetyltransferase P300 has been shown to be
involved in blood vessel formation in zebrafish (Fish et al., 2017)
and to be recruited by ERG to endothelial genes in vitro (Kalna
et al., 2019), further indicating the complex interplay between
chromatin regulators and tissue specific gene expression.
Additional endothelial-enriched epigenetic regulators,
including factors involved in histone modification and
chromatin remodeling, have been identified using RNA-
sequencing of isolated zebrafish endothelial cells (Matrone
et al., 2021). This work validated one of the histone
methyltransferase, Prdm16, as being necessary for zebrafish
angiogenesis. Further evidence for the importance of correct
histone methylation is supported by the role of the histone
demethylases Kdm4a and Kdm4c in zebrafish vascular
formation (Wu et al., 2015). DNA methylation is another
marker associated with activation of gene expression,
nucleosome organization and histone modifications
(Robertson, 2002) and in zebrafish can be visualized by the
recently developed transgenic model zebraRDM, which takes
advantage of a fluorescent protein fusion with a methyl-CpG
binding domain (Zhang et al., 2017). This line promises to be a
powerful tool to study the dynamics of DNA methylation in real
time, working as a complementary tool to the standard methods
for identifying histone modifications.

The most common method used to identify histone
modifications is chromatin immunoprecipitation sequencing
(ChIP-seq) using antibodies specific for the modified histones.
The histones of interest are immunoprecipitated together with
the fragments of DNA bound to them after chromatin shredding,
and then sequenced. Histone modification studies on whole-
embryo samples are available for zebrafish. However, the lack
of tissue specificity limits the utility of such databases to already
known endothelial genes. One of these sets was generated from
embryos at 24 hpf and maps the presence of H3K4me1 and

H3K4me3 histone modifications (Aday et al., 2011). Although
some genes expressed specifically in the endothelium at 24 hpf,
such as dusp5, fli1b and plxnd1, are marked by both histone
modifications in the promoter region, no vascular enhancer has
been identified based on this database, possibly because of the
dilution of tissue-specific signals. A second genome-wide histone
modification dataset comes from a study by Bogdanovic et al.
(2012) which generated histone modification tracks for
H3K4me1, H3K4me3 and H3K27ac at four different time
points in development, including 48 hpf (Table 2). This
database has later been used to successfully identify a notch1b
enhancer driving arterial expression in zebrafish (Chiang et al.,
2017), suggesting that despite its limitations, it can be used to
retrieve vascular-specific enhancers. Data from the
DANIO_CODE consortium (Baranasic et al., 2021, preprint)
provides whole-body and a number of tissue-specific ChIP-seq
datasets. The technique was successfully used on mouse and
cultured endothelial cells in multiple studies (Table 1), and
recently it has been paired with transcriptomic and DNA
methylation analysis to investigate the mechanisms underlying
the segregation of lymphatic and blood endothelium in humans
(Tacconi et al., 2020).

An alternative method to histone ChIP-seq for identifying
active promoter elements is the combination of Cap Analysis of
Gene Expression sequencing (CAGE-seq) with ATAC-seq, an
approach that has been used in zebrafish (Nepal et al., 2013).
CAGE-seq maps the position of TSS by sequencing the mRNAs
containing the 5′ cap. As TSS can only be found in promoters, it
allows the identification of these CREs and, by exclusion, of
enhancers as well. Although currently CAGE-seq has not been
used for endothelial zebrafish cells, it has been successfully
applied to culture blood and lymphatic endothelial cells,
leading to the discovery of the role of the transcription factor
Mafb during lymphangiogenesis (Dieterich et al., 2015), a
function that is conserved in zebrafish (Koltowska et al.,
2015b; Dieterich et al., 2015; Rondon-Galeano et al., 2020).
Combining CAGE-seq with gene expression profiling such as
RNA-seq or microarrays is a useful method to identify gene
expression changes downstream of epigenic modification, and
studies using this approach in endothelial cells in vitro are
summarized in Table 1.

Recently, CUT&RUN and CUT&Tag have emerged as a
more robust alternatives to ChIP-seq. In Cleavage Under
Targets and Release Using Nuclease (CUT&RUN) (Skene
and Henikoff, 2017), permeabilized cells are immobilized
with magnetic beads and the desired DNA-binding protein
is targeted with antibodies, which are recognized by a
ProteinA-MNase fusion construct. The MNase moiety
cleaves the DNA, releasing the fragments in the solution,
from which they are collected and sequenced. Compared with
ChIP-seq, CUT&RUN require less input (fewer cell numbers)
and reduces background noise, requiring less-deep
sequencing and consequently cutting costs. Despite its
recent development, CUT&RUN has already been used
successfully in zebrafish, targeting both TFs (Campbell
et al., 2021; Ye et al., 2021) and histone modifications
(Akdogan-Ozdilek et al., 2021; Ye et al., 2021).
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A further development of the CUT&RUN technology is
Cleavage Under Targets and Tagmentation (CUT&Tag)
(Kaya-Okur et al., 2019). In this technique, the ProteinA is
fused to a Tn5 transposase, able to ligate sequence adapters
directly to the cut DNA, eliminating the need for library
preparation. Because of the high affinity and high activity of
the core enzyme, CUT&Tag can be used with extremely low cell
input, including single cells (Kaya-Okur et al., 2019). In zebrafish,
CUT&Tag has been successfully used to investigate the
localization of the histone variant H2A.Z in shield stage and
24 hpf embryos (Akdogan-Ozdilek et al., 2021).

Together, these recently developed techniques promise to
revolutionize the field of chromatin characterization, making
the profiling of DNA-binding elements easy to perform and
reducing cost and time investments.

Together with ATAC-seq, techniques such as ChIP-seq,
CAGE-seq, CUT&RUN and CUT&Tag can allow us to draw a
picture of the chromatin state in endothelial cells and its variation
both in time and within subpopulations, offering an
unprecedented level of insight into the epigenetic changes
underlying endothelial development.

THE POWER OF GENOMIC
CONSERVATION IN ENHANCER
IDENTIFICATION - APPLICATION IN
ENDOTHELIAL CELLS

At the beginning of the millennium, with the advent of whole-
genome sequencing of multiple animal species, it became evident
that many of the previously described enhancer elements
overlapped with areas of high sequence conservation between
species (for an exhaustive review of the early work on conserved
enhancers, see Kikuta et al., 2007).

The DNA sequences that are involved in gene expression
regulation include enhancer elements, containing the DNA
motifs recognized by the different transcription factors. These
motifs are not free to mutate as much as the surrounding non-
coding DNA, leading to enhancer sequences often being more
conserved than their surroundings (Plessy et al., 2005; Visel et al.,
2007). Interestingly, recent reports have shown that the tissue-
specificity of H3K4me1-marked enhancers can be conserved
between phylogenetically distant organisms despite lacking
sequence conservation (Wong et al., 2020). However,
enhancers associated with genes involved in embryonic
development are often highly conserved (Woolfe et al., 2004).
Thus, analysis of conserved non-coding elements (CNEs)
represents a quick and useful approach to the identification of
enhancers, complementary to histone marks and chromatin
accessibility (discussed in the Defining the Chromatin State of
Endothelial Cells and Characterizing CREs Identity: Commonly
Used Tools in Vascular Biology sections of this review).

Tools to identify CNEs are available via the USCS genome
browser, in the form of tracks that report sequence conservation
among teleosts and tetrapods, such as the Multiz Alignment and
Conservation on Zn9 (Raney et al., 2014). Alternative

customizable methods that allow local alignment between
species include mVISTA (Mayor et al., 2000; Frazer et al.,
2004) or MultiPipMaker (Schwartz et al., 2000) alignment
programs. As the sequences are input by the user, any
annotated genome of interest can be used for the alignment.
Local synteny, which is the topological conservation of the loci
surrounding the gene of interest in different organisms
(Thomasova et al., 2002; Engstrom et al., 2007), is an
important parameter to consider when identifying conserved
enhancers. If the loci have maintained their relative position,
without major transpositions of DNA material, it can be inferred
that the non-coding regions in between them can be considered
homologous and can therefore contain conserved regulatory
sequences. It is important to highlight that with the immense
progresses in computational capabilities, methodologies which
use deep learning and convolutional neuronal networks to predict
enhancer identity based on DNA sequence are being developed
(de Almeida et al., 2021, preprint; Min et al., 2017; Yang et al.,
2017). However, these methods have yet to be used in vascular
biology.

The traditional sequence conservation analysis has been
employed in the discovery of a number of endothelial-specific
enhancer elements. Bussmann et al. investigated the presence of
CREs of flt1, a gene expressed in the AECs, by comparing the
surrounding regions in 11 vertebrate species, and identified two
enhancers driving arterial expression (Bussmann et al., 2010).
Additional enhancer elements that are conserved among
vertebrates have been identified for a number of endothelial
genes, including etsrp (Veldman and Lin, 2012), gata2a
(Dobrzycki et al., 2020) and notch1b (Chiang et al., 2017).

The identification of endothelial enhancers in comparative
studies with mouse has also led to further dissection of the
signaling pathways regulating blood vessel development.
Elegant in vivo investigations of the enhancer elements of
Notch and the ligand Dll4 in mouse and zebrafish position
SoxF transcription factors upstream of Notch in the regulation
of arterial identity (Sacilotto et al., 2013; Chiang et al., 2017). The
venous identity is dependent of COUP-TFII and Ephb4, and the
functional dissection of their enhancers in zebrafish and mouse
revealed a requirement for ETS for tissue specific gene expression
(Neal et al., 2021). Furthermore, the characterization of two flk1
enhancers, presenting binding site for GATA and ETS, provided a
direct link between the Notch and Vegf signaling pathways (Choi
et al., 2007; Becker et al., 2016).

Although CNEs likely represent only a small subset of active
enhancers, their study can provide important insight in the most
conserved aspects of vascular development, offering hints at
homologous processes taking place in humans and other
Vertebrates.

FROM CHROMATIN ARCHITECTURE TO
LOCAL REGULATION

An important, yet less studied, aspect of spatiotemporal
regulation of gene expression is 3D genome organization, a
process that brings inter- or intra-chromosome regions
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together to activate or repress gene expression. As the regions of
interaction often mark underlying enhancer activity, studying
chromatin architecture provides indications on the potential
presence of long-range enhancers. These are CREs located
hundreds or more kb away from the promoter they regulate,
such as, for example, an Shh enhancer located in the LMBR1
locus, more than 1 Mb away from the promoters it interacts with
(Lettice et al., 2003), or the two regulatory regions associated with
Myc function in craniofacial development and located at more
than 1 Mb from the locus (Vural Uslu et al., 2014). The significant
distance between this class of enhancers and the promoters they
interact with, as well as the possible presence of several loci within
this distance, makes it extremely difficult to identify these CREs
with the methods discussed so far in this review.

Chromatin 3D conformation is commonly investigated using
technologies such as Hi-C (Belton et al., 2012), which is based on
the principle that enhancer-promoter interactions require the
DNA to be in close contact spatially. Briefly, chromatin is cross-
linked in its 3D conformation with formaldehyde, and then
shredded. Fragments of DNA interacting with each other will
form hybrid structures, which are then biotinylated, ligated and
sequenced. By mapping the “hybrid” sequences to two separate
regions of the genome, the technique allows the reconstruction of
long-range genomic interactions. This approach is undoubtedly
useful to reconstruct the chromatin architecture across the
genome and to identify topologically associated domains, as
well as long- and short-range genomic interactions. However,
it is limited in its utility in predicting enhancer activity and
linking the interaction to a specific gene. These limitations can be
partially overcome by combining the methodology with other
epigenomic tools such as ATAC-seq or CUT&Tag. In addition,
related techniques such as Chromatin Interaction Analysis by
Paired-End Tag sequencing (ChIA-PET) and HiChIP (Fullwood
et al., 2009; Mumbach et al., 2016) allow the detection of long-
range DNA interaction mediated by specific proteins. For
example, interactions involving the RNApolII can reveal the
presence of a long-range enhancers interacting with a promoter
(Li et al., 2012). These techniques have been successfully used in
zebrafish (Franke et al., 2021), as well as in human endothelial
cell samples (Papantonis et al., 2012; Nakato et al., 2019;
Higashijima et al., 2020; Ma et al., 2022), and have led to
the identification of a distal endothelial KLF4 enhancer
(Maejima et al., 2014). The importance of protein-protein
interactions (PPIs) in mediating the contact of long-range
genomic regions has been shown by Weintraub et al. in
their work on enhancer-promotor loops. This study
identified a role for the transcription factor Ying Yang 1
(YY1) in facilitating and supporting the promoter-enhancer
contacts, which have a functional role in regulating gene
expression (Weintraub et al., 2017). Although only a few
studies have investigated long-range enhancers, the recent
progresses in methods that incorporate PPIs into genome-
wide detection of enhancer-promoter interactions promise a
rapid developemnt in this field (Wang et al., 2021). Together,
the technological advances in epigenomics provide an open
platform to unveil the complexity underlying long-range DNA
interactions.

THE PROOF OF THE PUDDING—IN VIVO
ACTIVITY TESTING OF ENHANCERS IN
ZEBRAFISH
Zebrafish is an excellent model to test the activity of enhancers in
vivo, due to its aptitude to transient expression of reporter
constructs and genetic manipulation. Moreover, stable
enhancer lines have been widely used in zebrafish as
endothelial-specific reporters (Table 3). Testing of enhancer
activity in vivo is a useful tool that can be used to further
understand gene expression regulation, as exemplified by the
identification of the regulatory loop between SoxF and Vegfd in
blood vessel formation (Duong et al., 2014).

The most common way to test enhancer activity is to clone the
putative sequence upstream of a minimal promoter followed by a
fluorescent reporter in a plasmid backbone containing tol2 sites
for transgenesis. The construct is then injected into 1-cell stage
zebrafish embryos. Generation of the stable lines is often
advisable to confirm the expression pattern.

When testing enhancer activity, it is important to remember that
regulatory elements often act in concert. Therefore, an element
unable to drive tissue-specific expression could still be involved in
regulation, but not be sufficient to drive the reporter on its own.

A way to circumvent the issue of recapitulating the real regulatory
landscape is to test the endogenous enhancer activity in situ.However,
this approach remains challenging as the tools that efficiently generate
such reporters are limited. Successful endogenous tissue specific
enhancers lines have been generated by enhancer trapping
(Balciunas et al., 2004; Kawakami et al., 2010), including some for
endothelial genes such as tal1 (Veldman et al., 2013). This method
takes advantage of random insertions of GFP expression constructs
into the genome, followed by screening of the expression pattern.
Therefore, it offers more of a “forward genetic” approach to enhancer
screening (Kikuta et al., 2007; Kawakami et al., 2017). The rapid
expansion of CRISPR technologies for knock-ins (Kimura et al., 2015;
Albadri et al., 2017) is a promising alternative to the previous
approaches, and a number of gene and promoter mutant lines
have been generated with this technique (Ota et al., 2016; Kesavan
et al., 2017; Eschstruth et al., 2020). However, this method has not yet
been tested for endothelial enhancers. The progresses in knock-in
technology are also opening the possibility of workingwith conditional
mutants in zebrafish. The recent advances in the establishment of the
CRE/lox system in this model (Burg et al., 2018; Kesavan et al., 2018)
are leading theway for the development of conditionalmutant lines. In
this context, enhancers driving CRE in a subset of the overall gene
expression will provide an exceptional tool to generate tissue-specific
conditional mutants.

Enhancer expression is often weak and spatially limited.
Therefore, screening for positive embryos can be demanding. To
accelerate the process, a preselection of positively injected embryos
can be performed by the introduction in the plasmid backbone of a
second reporter construct, such as e.g., αcry:GFP (Quillien et al.,
2017), driving GFP in the lens. Such constructs are often chosen
because they drive easily-identified expression in a tissue that is not of
interest for the study. The Gomez-Skarmeta group has developed the
ZED vector (Bessa et al., 2009), a tool specifically designed to test
enhancer activity, containing the XCA:DsRed muscular selection
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TABLE 3 | CRE endothelial reporter lines in zebrafish. Summary of the endothelial specific CREs used in transgenic zebrafish lines. CRE typology and tissue specificity are
reported.

Gene Element
name

Element
type

Element
position

Publication Endothelial
expression

Other tissues Examples of
generated lines

Publications

DII4
DII4in3 Mouse

enhancer
Mouse intron 3 Sacilotto et al.

(2013)
Arterial endothelium Not reported Tg(Dll4in3:GFP) Sacilotto et al.

(2013)
DII4-F2-E1b Mouse

enhancer
Mouse intron 3 Wythe et al.

(2013)
Arterial endothelium Not reported Tg(Dll4-F2-E1b:GFP) Wythe et al.

(2013)
Ephb4

Ephb4-2 Mouse
enhancer

Around −2 kb
from intron 1

Neal et al.
(2019)

Venous endothelium Not reported Tg(Ephb4-2:GFP) Neal et al.
(2019)

Etsrp
−2.3etsrp Enhancer −2.3 kb upstream Veldman and

Lin (2012)
Endothelium before
36hpf, then aortic
arches

Not reported Tg(−2.3etsrp:gfp)zf372 Veldman and
Lin (2012)

fli1a
fli1a Promoter −15 kb to exon 1 Lawson and

Weinstein
(2002)

Endothelium Neural crest-
derived tissues

Tg(fli1a:EGFP)y1 Lawson and
Weinstein
(2002)

Tg(fli1a:pecam1-EGFP)
ncv27

Ando et al.
(2016)

Tg(fli1a:B4GALT1-
mCherry)

Kwon et al.
(2016)

fli1a Promoter −1 to +6 kb Lawson et al.
(2001)

Endothelium Neural crest-
derived tissues

Tg(fli1a:nEGFP)y7 Roman et al.
(2002)

fli1ep Enhancer/
promoter
fusion

enhancer (+2.2 to
+3.2 kb) +
promoter (−0.9 kb
to exon 1)

Villefranc et al.
(2007)

Endothelium Neural crest-
derived tissues

Tg(fli1ep:dsredex)um13 Covassin et al.
(2009)

Tg(Fli1ep:Lifeact-EGFP Phng et al.
(2013)

Tg(fli1a:H2B-mCherry) Yokota et al.
(2015)

flt1
Flt1_9a Enhancer Not specified Bussmann

et al. (2010)
Arterial endothelium,
weakly veins

Not reporter Tg(flt1_9a_cFos:GFP) Kaufman et al.
(2015)

−0.8flt1 Enhancer/
enhancer/
promoter
fusion

Not specified Bussmann
et al. (2010)

Arterial endothelium Not reporter Tg(−0.8flt1:RFP)hu5333 Bussmann
et al. (2010)

flt4
−6.6flt4 Promoter −6.6 kb to exon 1 Hogan et al.

(2009b)
Blood endothelium
before 48hpf

Not reporter Tg(-6.6flt4:YFP)hu4881 Hogan et al.
(2009b)

gata2a
gata2a-i4 Enhancer Intron 4 Dobrzycki

et al. (2020)
Endothelium Endocardium Tg(gata2a-i4-1.1

kb:GFP)
Dobrzycki et al.
(2020)

gata2aECE Enhancer x6 Intron 4 Shin et al.
(2019)

Endothelium at 2dpf,
lympatic valve at 14dpf

Not reported Tg(gata2aECE:nsfGFP)
um2 91

Shin et al.
(2019)

kdrl/flk1
kdrl/flk1 Promoter −6.5 kb to exon 1 Jin et al.

(2005)
Blood endothelium Not reporter Tg(kdrl:EGFP)s843 Jin et al (2005)

Tg(kdrl:NLS-EGFP) Blum et al,
(2008)

Tg(kdrl:
Hsa.HRASmCherry)
s896

Chi et al. (2008)

kdr-l Promoter −6.8 kb to exon 1 Hogan et al.
(2009a)

Blood endothelium Not reporter Tg(kdr-l:ras-cherry)s916 Hogan et al.
(2009a)

Flk1in10 Mouse
enhancer

Mouse intron 10 Becker et al.
(2016)

Blood endothelium
before 48 hpf, then
restricted to arteries

Not reported TgFlk1in10:GFP) Becker et al.
(2016)

lyve1b
−5.2lyve1b Promoter −5.2 kb to exon 1 Okuda et al.

(2012)
Venous and lymphatic
endothelium

Not reporter Tg(−5.2lyve1b:DsRed)
nz101

Okuda et al.
(2012)

Tg(−5.2lyve1b:Venus)
uq16bh

Bower et al.
(2017)

Tg(lyve1b:Kaede)nz102 Eng et al.
(2019)

(Continued on following page)
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marker and aGateway cloning site for the enhancer in front of a basal
promoter:GFP element.

CRISPR/Cas9 genome editing has also been successfully used to
test the functional relevance of an enhancer andwhether it is necessary
to drive endothelial gene expression. In recent years, we have seen
multiple examples of functional testing of vascular enhancers in vivo.
Deletion of a notch1b enhancer driving reporter expression in the
dorsal aorta and intersegmental arteries led to a reduction in the
expression of the reporter in these two tissues, but not in other
normally expressing notch1b (Chiang et al., 2017). Similarly, deletion
of the i4 enhancer of gata2a caused a reduction of the expression of
this gene in the endothelium, but not in other tissues (Shin et al., 2019;
Dobrzycki et al., 2020). It has to be noted however that in all these
cases the effect on vascular morphology were small (Dobrzycki et al.,
2020), limited to very specific structures (Shin et al., 2019), or
connected to maternal effects (Chiang et al., 2017). As enhancer
activity often has very narrow spatiotemporal restrictions, the effects of
enhancer loss can be minimal, which can make the identification of
the mutant phenotype difficult. However, the increased specificity of
the phenotype can provide unique insight into more specific
regulatory mechanisms in developing tissue, which could not be
observed in more traditional gene knockouts. Thus, enhancer
deletion remains an important tool to determine the regulatory
networks driving tissue and organ formation.

CONCLUSION

The recent technological advances in epigenomics opened new and
exciting avenues to study the complexity of gene regulation on

multiple levels, from local to genome-wide, promising to uncover
new paradigms in gene regulation and to reveal an unsuspected
complexity in the development of tissues, including vascular
networks. This comprehensive understanding linking the cellular
morphological transformations with the complex mechanisms
regulating gene expression is a long-awaited progress in biology.

The recent developments in single-cell genomics, such as
scATAC-seq, scCUT&RUN/Tag and scChIP-seq, hold the
potential for uncovering undescribed mechanisms of
regulation underlying the cellular and molecular heterogeneity
of vascular networks. At the same time, emerging technologies in
the study of 3D chromatin architecture and long-distance
regulatory interactions, such as Hi-C, have now been applied
to zebrafish for the first time (Yang et al., 2020), and are opening
the possibility to study enhancer regulation of gene expression on
a global scale.
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TABLE 3 | (Continued) CRE endothelial reporter lines in zebrafish. Summary of the endothelial specific CREs used in transgenic zebrafish lines. CRE typology and tissue
specificity are reported.

Mafbb
mafbbEnh Enhancer 7.8 kb

downstream
Quillien et al.
(2017)

Venous endothelium Not reported Tg(mafbbEnh-basP:
egfp)

Quillien et al.
(2017)

Mef2c
mef2c-F10 Mouse

enhancer
Mouse intron 4–5 De Val et al.

(2008)
Endothelial cells Not reported Tg(mef2c-F10-GFP) De Val et al.

(2008)
mrc1a

mrc1a Enhancer/
promoter
fusion

Enhancer (intron
19) +promoter
(−1.9 kb to
exon 1)

Jung et al.
(2017)

Venous and lymphatic
endothelium, before
3 dpf Some
expression in arterial
endothelium

Myeloid cells Tg(mrc1a:egfp)y251 Jung et al.
(2017)

notch1b
notch1b-15 Enhancer −15 kb upstream Chiang et al.

(2017)
Arterial endothelium Not reported Tg(notch1b-15:GFP) Chiang et al.

(2017)
nrp1b

nrp1bEnh Enhancer 34.5 kb upstream Quillien et al.
(2017)

Blood endothelium Not reported Tg(nrp1bEnh-basP:
egfp)

Quillien et al.
(2017)

Tie2
Tie2 Mouse

Enhancer/
Promoter
fusion

Enhancer (10 kb
intron 1) +
promoter (−2.1 kb
to exon 1)

Schlaeger
et al, (1997)

Early endothelium Hematopoietic
mesoderm,
endocardium

Tg(Tie2:EGFP)s849 Motoike et al.
(2000)

tmem88a
tmem88aEnh Enhancer 3.8 kb upstream Quillien et al.

(2017)
Blood endothelium Not reported Tg(tmem88aEnhbasP:

egfp)
Quillien et al.
(2017)
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