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Characterizing the tumor microenvironment (TME) of archived clinical tissues requires
reliable gene expression profiling (GEP) of formalin-fixed paraffin-embedded (FFPE)
samples. The EdgeSeq Precision Immuno-oncology Panel (PIP) is a targeted GEP
assay designed for TME characterization but lacks widespread technical validation on
a large cohort of clinical samples. Here, we evaluated its performance by exploring its
concordance with multiple orthogonal platforms using 1,220 FFPE samples across various
cancer types. Quantitative comparisons with RNA-seq and NanoString showed strong
correlations at the sample level (median ρ = 0.73 and 0.81) and moderate correlations at
the single-gene level (median ρ = 0.49 and 0.57). Gene signature analysis revealed high
concordance with RNA-seq on widely used signatures for TME characterization and
immune checkpoint inhibitor (ICI) efficacy prediction, though some genes in these
signatures are not targeted by EdgeSeq PIP. From a histopathological viewpoint, the
tumor/immune abundances derived from hematoxylin and eosin (H & E) staining were well
recapitulated by the transcriptomic profiles assessed by EdgeSeq PIP. Furthermore, the
mRNA level of PD-L1 assessed by EdgeSeq PIP was moderately correlated with the PD-
L1 score (ρ = 0.65) estimated by immunohistochemistry (IHC); the mRNA level of CD8A
aligned well (ρ = 0.55) with the IHC-derived abundance of CD8+ T cells. Overall, our results
showed that EdgeSeq PIP generated well-correlated data with independent approaches
at mRNA, protein, and histological levels, thus providing strong technical support for
further using EdgeSeq PIP in biomarker studies and companion diagnostic (CDx)
development.
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INTRODUCTION

Over the past years, immune checkpoint inhibitor (ICI)-based therapies have transformed the
treatment landscape of cancer (Sanmamed and Chen, 2018). ICIs such as humanized monoclonal
antibodies against cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death protein 1
(PD-1) and programmed death ligand 1 (PD-L1) have demonstrated impressive efficacy and have
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been approved as first-line or second-line therapies for an ever-
growing list of malignancies (Vaddepally et al., 2020). However,
only a small fraction of patients benefits from ICI-based therapy,
and there are urgent needs to identify the mechanisms driving
response or resistance and develop new biomarkers to guide
personalized therapy (Havel et al., 2019). Unraveling the
landscape of immune cell subpopulations in the tumor
microenvironment (TME) and investigating their interactions
with tumor and stromal cells is a critical step in this process
(Chen and Mellman, 2017).

TME characterization heavily relies on precise and
comprehensive gene expression profiling (GEP). Among
multiple GEP methods, RNA-seq has been established as the
gold standard and is widely used in cancer research (Wang et al.,
2009), such as The Cancer Genome Atlas (TCGA). However, in
clinical practice, RNA-seq (and derived methods, such as RNA
Exome) has several limitations. On the one hand, it requires large
amounts of high-quality samples, which is usually not feasible in
clinical trials in which most samples are formalin-fixed and
paraffin-embedded (FFPE) and exhibit moderate-to-severe
degradation (Evers et al., 2011). This requirement also
contradicts the scarcity of tumor tissues in most clinical trials,
especially when other typical biomarker assays, such as tumor
mutation burden (TMB) and immunohistochemistry (IHC)
assays are in competition (Aisner et al., 2016). On the other
hand, RNA-seq is untargeted and thus not cost-effective for the
development of companion diagnosis assay, as only a small
proportion of genes are of strong interest (Thorsson et al., 2018).

Given these limitations of RNA-seq and the increasing
demands for profiling immuno-oncology-related genes in
clinical trials, targeted assays such as EdgeSeq PIP (HTG
Molecular, Tucson, AZ), PanCancer IO 360 (NanoString,
Seattle, WA) and Oncomine IRRA (Thermo Fisher Scientific,
Waltham, MA), have emerged in recent years. These assays
significantly reduced requirements for sample quality and
quantity, thus mitigating the challenges of sample acquisition
and making them clinically feasible. EdgeSeq PIP, which focuses
on ~1,300 key genes related to immuno-oncology, has the
highest coverage among all these assays. By utilizing
quantitative nuclease protection chemistry, EdgeSeq PIP
quantifies RNAs via an extraction-free approach, which
eliminates the risk of extraction bias induced by the removal
of short or fragmented RNAs (Martel et al., 2002; Qi et al., 2016).
The data generated from FFPE samples has good concordance
with that from fresh-frozen samples. Moreover, the extraction-
free approach circumvents the loss of RNA from sample during
extraction; thus, less tissue input is required to generate an
equivalent amount of RNA. Last, EdgeSeq PIP has the unique
advantage of utilizing samples previously subjected to
hematoxylin and eosin (H & E) or IHC staining, which
further expands its clinical utility when samples are
extremely limited (Qi et al., 2019). Although successfully
used in several clinical trials (Wang et al., 2018; Desai et al.,
2020; Garg et al., 2020; Martin-Broto et al., 2020; Song et al.,
2021), the reliability of EdgeSeq PIP in real clinical settings and
its concordance with other platforms have not been well studied.
Previous studies either compared only EdgeSeq PIP with RNA-

seq at the single-gene level or were limited by a small number of
samples to draw solid conclusions (Anguiano et al., 2020; Ran
et al., 2020). In this study, using 1,220 FFPE samples across
several cancer types from clinical trials, we performed
comprehensive comparisons of EdgeSeq PIP and multiple
platforms and confirmed its fidelity at the RNA, protein, and
histological levels.

MATERIALS AND METHODS

Patient Cohort
Baseline FFPE samples were collected from the following seven
clinical studies on tislelizumab monotherapy or tislelizumab
combined with chemotherapy or anti-PD-L1 therapy: A317-
001 (NCT02407990), A317-102 (NCT04068519), 900-101
(NCT03379259), A317-204 (NCT04004221), A317-205
(NCT03469557), A317-206 (NCT03432598), RATIONALE 307
(NCT03594747), and RATIONALE 309 (NCT03924986). The
major cancer types in each study were summarized in
Supplementary Table S1.

Sample Preparation, Library Construction
and Sequencing
All archived FFPE blocks were prepared as previously described.
After confirming the presence of malignant cells by histological H
& E staining, the samples were processed via standardized
procedures for biomarker investigation. In general, a tumor
content of at least 20% and sufficient tumor area (>20 mm2

for RNA-seq and >2.5 mm2 for EdgeSeq PIP) were required
for sample inclusion.

For EdgeSeq PIP, sample processing, library construction and
sequencing were performed in accordance with OP-00034, OP-
00035, OP-00079 (HTG EdgeSeq instrument method). Briefly,
tissues were scraped and lysed using lysis buffer from HTG
Molecular Dianostics. Next, Proteinase K was added to digest
proteins and remove potential contaminations. Gene-specific
nuclease protection probes were then added to the lysed
samples to form the probe-target RNA heteroduplexes, after
which S1 nuclease was added to degrade non-hybridized
molecules. Then samples were individually barcoded using a
16-cycle PCR, purified using Agencourt AMPure XP beads
and loaded into Illumina MiSeq (Illumina, San Diego, CA) for
50 bp single-end sequencing.

For RNA-seq, RNA was extracted using the AllPrep DNA/
RNA FFPE Kit (QIAGEN, Hilden, Germany). The amount of
RNA was quantitated by the fluorescence method using Qubit
RNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA),
and the quality was assessed by Agilent 2,100 Bioanalyzer System
(Agilent Technologies, Santa Clara, CA). Only samples with RNA
>40 ng and DV200 >20% were included for downstream steps.
rRNA depletion, cDNA synthesis and NGS library preparation
were performed using the TruSeq RNA Exome (Illumina, San
Diego, CA). The libraries were then loaded into HiSeq X Ten
instrument (Illumina, San Diego, CA) for 150 bp paired-end
sequencing.
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For NanoString, all processing steps were performed
according to the manufacturer’s instructions. In brief, RNA
was extracted using RNeasy Mini Kit (QIAGEN, Hilden,
Germany). The amount of RNA was quantitated by the
fluorescence method using Qubit RNA HS Assay Kit (Thermo
Fisher Scientific, Waltham, MA), and the quality was assessed by
Agilent 2,100 Bioanalyzer System (Agilent Technologies, Santa
Clara, CA). After hybridization with the PanCancer IO 360 Panel,
sample analysis was performed on a nCounter Digital Analyzer
(NanoString Technologies, Seattle, WA).

EdgeSeq Precision Immuno-Oncology
Panel Data Processing
Demultiplexed FASTQ files from the Illumina MiSeq were parsed
by the EdgeSeq parser (HTG Molecular Diagnostics, Inc.). Three
post-sequencing quality control metrics were derived and used
for filtering samples: 1) >15% percentage of reads allocated to the
positive process control probe; 2) >1.5 million reads; and 3) a
relative standard deviation (RSD) of reads allocated to each probe
>0.10. After removing samples not meeting these QC
requirements, the raw read counts for each sample were
transformed to the log2 counts per million (CPM) scale.

RNA-Seq Data Processing
Adapters in raw reads were detected and trimmed by
Trimmomatic (0.36) (Bolger et al., 2014). After trimming,
reads shorter than 50 bp were removed. These reads were
then mapped to the human genome (GRCh38) using STAR
(2.7.10a) (Dobin et al., 2013). Gene expression was quantified
using the RSEM workflow (1.3.3) with default parameters (Li and
Dewey, 2011). Only samples with >1.5 million reads and >80%
reads confidently mapped to the transcriptome were retained.
Then, transcripts per million (TPM) values were log2-
transformed for downstream analysis.

Differential Expression and Gene Set
Enrichment Analysis
Differentially expressed genes were identified following the
limma-voom workflow (3.50) (Law et al., 2014; Ritchie et al.,
2015). Gene set variation analysis (GSVA), single-sample gene set
enrichment analysis (ssGSEA) and Z scores for each signature
were calculated using the R package GSVA (1.42) by switching
the “method” parameter (Hanzelmann et al., 2013). In addition to
the signatures collected from specific studies, gene sets from the
MSigDB-C2-Canonical Pathway (KEGG, BioCarta, PID,
Reactome, WikiPathways) were also included in the signature
analysis (Liberzon et al., 2011).

Programmed Death Ligand 1
Immunohistochemistry
PD-L1 expression was assessed by the VENTANA PD-L1
(SP263) IHC assay (Ventana Medical Systems, Oro Valley,
AZ, United States). The level of PD-L1 was then scored by the
percentage of PD-L1 membranous staining on tumor cells (TC).

CD8 Immunofluorescence
CD8 immunofluorescence analysis of FFPE samples was
performed with CD8A antibody (SP57, Ventana 790-4460) in
a College of American Pathologist (CAP)-controlled area within
the Oncology and Immunology Unit of WuXi AppTec using the
IF 6-colorWJJ-CD30 protocol on a Leica BOND Rx platform.
Whole-slide images were acquired by Leica Aperio VERSA 8. Z1.
Image analysis was performed using the HALO software package
(Indica Labs, United States).

Statistical Analysis
Correlation between two continuous variables was assessed by
Spearman correlation. The interpretation of correlation was
defined as: negligible (0–0.09), weak (0.10–0.39), moderate
(0.4–0.69), strong (0.70–0.89) and very strong (0.90–1.00)
(Schober et al., 2018). Differences in medians or continuous
variables between two groups were assessed by non-parametric
Wilcoxon rank-sum tests. The alpha level for all comparisons was
0.05 unless indicated otherwise. All statistical analyses and
visualizations were performed with R (v.4.0.2).

RESULTS

High Concordance Between EdgeSeq
Precision Immuno-Oncology Panel and
Other GEP Platforms at Gene Level
We first calculated Spearman correlation coefficients for all
common samples between EdgeSeq PIP and RNA-seq
(Supplementary Table S2). The strength of correlation was
defined according to a widely used guiding rule for correlation
interpretation in medical research (Materials and Methods)
(Schober et al., 2018). Of the 395 samples, most had strong
correlation (median ρ = 0.73) (Figure 1A). When assessing the
concordance of the two platforms using a gene-by-gene approach,
we found a moderate correlation (median ρ = 0.49) (Figure 1B
and Supplementary Table S3), which was comparable with the
result from a previous study comparing RNA-seq with
NanoString (Kwong et al., 2018). We presumed that the weak
correlation of some genes was partially attributed to their low
expression levels. By stratifying genes according to their relative
expression in RNA-seq, we found that the correlation coefficients
significantly decreased as the expression level decreased
(Figure 1C). The genes with expression levels in the lowest
25% only had a median correlation of 0.26 (Figure 1C). In
addition, the dynamic range of gene expression measured by
the median absolute deviation (MAD) also associated with the
cross-platform correlation (Supplementary Figure S1A;
Supplementary Table S3). This might indicate that correlation
analysis was not suitable for numbers with low variances. After
excluding genes with low expression (<1 TPM) and dynamic
range (MAD <0.98, 25% quartile), the median correlation
improved from 0.49 to 0.60 (Supplementary Figure S1B).
Furthermore, considering the intended use of EdgeSeq PIP for
profiling immune statuses in tumors, we evaluated the expression
of several key immune markers and found all genes had moderate
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to strong correlations (ρ range from 0.47 to 0.77) (Figure 1D and
Supplementary Figure S1C).

We also performed comparisons of EdgeSeq PIP and
NanoString in another 17 samples and found strong
correlations (median ρ = 0.81) using the sample-by-sample
approach and moderate correlations (median ρ = 0.57) using
the gene-by-gene approach (Supplementary Figures S2A,B,
Supplementary Table S4). Similar to the results in RNA-seq,
the immune markers assessed by EdgeSeq PIP also showed a high
level of concordance with NanoString (6/9 genes had strong
correlations with ρ > 0.7) (Supplementary Figure S2C).
Taken together, our findings showed that EdgeSeq PIP had a
high degree of agreement with RNA-seq and NanoString at the
single-gene level.

High Concordance Between EdgeSeq
Precision Immuno-Oncology Panel and
RNA-Seq for Characteristic Tumor
Microenvironment Gene Signatures
Gene signature, a set of genes with similar expression patterns or
biological functions, have been widely used in TME profiling
(Liberzon et al., 2011). Compared to single gene, signature-based
approach has many significant advantages, including dimension
reduction and greater biological interpretability. Here, we used 29
signatures that successfully classified the TMEs of tumors from

TCGA and investigated the applicability of EdgeSeq PIP for TME
subtyping (Bagaev et al., 2021) (Supplementary Table S5). First,
we assessed the concordance of gene set variation analysis
(GSVA) scores derived from EdgeSeq PIP and RNA-seq
(Materials and Methods). Most signatures had moderate
positive correlations (median ρ = 0.61), which persisted even
after samples were divided into smaller groups according to
cancer types (Figure 2A). Nevertheless, five signatures:
neutrophil, Th1, Th2, Treg, and Treg traffic had negligible
correlations (median ρ = 0.01) between the two platforms
(Figure 2A). This result may have been due to the incomplete
coverage of gene list in certain signatures by EdgeSeq PIP or to the
involvement of genes with low correlations between the two
platforms. We first explored whether the percentage of missed
genes in each signature influenced the correlation. Surprisingly,
the signatures with poor correlation did not have significantly
higher rates of missing genes than the others (Supplementary
Figure S3B). In contrast, most genes in these five signatures with
worse correlations had lower RNA-seq expression levels and thus
weaker correlations with EdgeSeq PIP at the single-gene level
(Figure 2B and Supplementary Figure S3C). This result
suggested that not the incompletion of genes in the signature
but rather the correlation at single-gene level drove the
concordance of signatures. After removing these weakly
correlated signatures, the remaining signatures had
significantly higher correlations as well as lower variations

FIGURE 1 | Concordance of EdgeSeq PIP with RNA-seq at gene level. (A) Distribution of sample-wise Spearman correlation coefficients between EdgeSeq PIP
and RNA-seq. Dashed line represents the median value. (B) Distribution of gene-wise Spearman correlation coefficients between EdgeSeq PIP and RNA-seq. Dashed
line represents the median value. (C) Boxplot showing the difference of Spearman correlation coefficients across genes stratified by their relative expression level
(quartile) in RNA-seq. (D) Heatmap showing the Spearman correlation of key immune cell markers (left) and scatter plot showing their expression levels (right) in
EdgeSeq PIP (x-axis) and RNA-seq (y-axis).
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than individual genes (Figure 2C), which indicated that
signature-based analysis had the property of noise reduction.

In the previous study, the TME of TCGA tumors were
classified into 4 subgroups and annotated according to their
enrichment of immune or fibroblast components (Bagaev
et al., 2021). By averaging the scores of corresponding
signatures (Supplementary Table S5), we derived “immune
enrichment” and “fibroblast enrichment” score for each
sample and found the scores generated by EdgeSeq PIP and
RNA-seq correlated well (ρ = 0.62 and 0.70 separately)
(Figure 2D). Taken together, the data from EdgeSeq PIP
generated reliable signature scores and TME subtype results.

High Concordance Between EdgeSeq
Precision Immuno-Oncology Panel and
Other Gene Expression Profiling Platforms
Regarding Potential Immune Checkpoint
Inhibitor-Predictive Gene Signatures
We chose six well-known ICI-predictive signatures and studied the
fidelity of calculating them using EdgeSeq PIP data
(Supplementary Table S6) (Denkert et al., 2015; Cristescu
et al., 2018; Socinski et al., 2018; Motzer et al., 2020; Roelands
et al., 2020; Sangro et al., 2020). By calculating the correlation
between signature scores derived from EdgeSeq PIP and RNA-seq,
we found a high degree of concordance for all signatures (median ρ
= 0.84) (Figure 3A and Supplementary Figure S4A). As expected,
most genes in these signatures were well-correlated between the
two platforms (median ρ = 0.57) (Supplementary Figure S4B).

Among these signatures, tumor inflammation signature
(TIS) is originally derived from the NanoString platform
using predefined algorithm and weight (Cristescu et al.,
2018). Using the 17 samples with both EdgeSeq PIP and
NanoString data, we applied GSVA on EdgeSeq PIP data to
get “TIS-PIP score” and then compared it with the “TIS-
NanoString score” derived from its original algorithm. We
found a moderate correlation (ρ = 0.61) of TIS score despite
of different platforms and algorithms (Figure 3B). In addition
to GSVA, we also tested other methods for EdgeSeq PIP, such as
ssGSEA and Z-score (Materials and Methods) and found
consistent results (Supplementary Figures S5A,B). We
reasoned that in addition to the cross-platform concordance
at the single-gene level (Supplementary Figure S5C), the strong
intra-signature correlation of genes could also account for the
high correlation coefficient. Indeed, we found that except for
CD276, all other 17 genes were moderately correlated with each
other (median ρ = 0.46) (Figure 3C and Supplementary
Figure S5D).

Additionally, we assessed tumor immune dysfunction and
exclusion (TIDE), a computational framework integrating
multiple signatures of tumor evasion that successfully
predicts the responses of melanoma and lung cancer
patients to ICIs (Jiang et al., 2018). We found that the
TIDE scores generated by EdgeSeq PIP had moderate
correlations with those generated by RNA-seq (ρ = 0.55)
(Figure 3D). Overall, our results suggested that data from
EdgeSeq PIP can be reliably used for most well-known ICI
efficacy prediction algorithms.

FIGURE 2 | Concordance of EdgeSeq PIP and RNA-seq for TME characterizing signatures. (A) Heatmap showing the Spearman correlation coefficients of
29 TME-characterizing signatures between EdgeSeq PIP and RNA-seq. Columns represent the overall correlation and correlation in each major cancer type. (B) Violin
plots showing the gene-wise Spearman correlation coefficients of genes in poor and well correlated signatures. (C) Violin plots showing the distribution of signature-
derived and gene-derived Spearman correlation coefficients (between EdgeSeq PIP and RNA-seq). (D) Scatterplot showing the correlation of immune scores (left)
and fibrotic scores (right) estimated by EdgeSeq PIP and RNA-seq data.
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High Consistency Between EdgeSeq
Precision Immuno-Oncology Panel and H &
E Staining Results
For 1,174 samples assessed by EdgeSeq PIP, H & E staining was
also performed to evaluate the percentages of tumor cells and
immune cells. Here, we assessed whether the H&E staining results
could be recapitulated by EdgeSeq PIP at mRNA level. First, we
used ESTIMATE (Yoshihara et al., 2013) to calculate the tumor
purity score for each sample based on EdgeSeq PIP data. We
found consistent result with H & E staining: the samples with a
high tumor percentage (>70%, assessed by H & E) had significant
higher tumor purity scores than those with low tumor percentage
(<70%) (Figure 4A). In addition, we identified the differentially
expressed genes between these two groups and performed gene
set enrichment analysis (GSEA) (Materials and Methods)
(Supplementary Table S7). Our results showed that cell cycle-
related pathways were enriched among the genes upregulated in
samples with >70% tumor percentage (Figure 4B and
Supplementary Figures S6A,B). This finding aligned with the
H & E result as most tumor cells had an extremely high
proliferation rate.

Similarly, we studied the concordance of EdgeSeq PIP with the
percentage of infiltrated immune cells estimated by H& E. On the
one hand, tumors with >5% immune cell percentage (by H & E)
had significant higher ImmunoScores (calculated by ESTIMATE)
than others (Figure 4C). On the other hand, immune-related
pathways and representative immune marker genes such as
CD8A, STAT1 and GZMK were up-regulated in tumors with
>5% immune percentage (Supplementary Figures S6C,D,
Supplementary Table S8). Overall, this evidence suggested
that the abundance of tumor or immune cells assessed by
histological methods was well reflected by EdgeSeq PIP.

High Consistency Between EdgeSeq
Precision Immuno-Oncology Panel and
Immunohistochemistry
PD-L1 IHC score has been widely used for predicting responses
to ICI-based therapies. A previous study showed that the mRNA
level of PD-L1 assessed RNA-seq had good concordance with its
protein level assessed by IHC (Conroy et al., 2019). Therefore, the
correlation with PD-L1 IHC could be used to evaluate the fidelity
of NGS-based approaches. In 369 samples with PD-L1 IHC data

FIGURE 3 |Concordance of EdgeSeq PIP and RNA-seq for potential ICI-predictive signatures (A)Heatmap showing the correlation coefficients of six ICI-predictive
signatures between EdgeSeq and RNA-seq. Columns represent the overall correlation and correlation in eachmajor cancer type. (B) Scatter plot showing the correlation
of GSVA score derived from EdgeSeq PIP data with the official TIS scores from NanoString IO360 assay. (C) Heatmap showing the co-correlation of genes within TIS
signature using RNA-seq data. (D) Scatter plot showing the correlation of TIDE score calculated from RNA-seq data and EdgeSeq PIP data.
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(Supplementary Figure S8), we found that the percentage of PD-
L1 positive tumor cells had a moderate correlation (ρ = 0.65) with
the mRNA level of PD-L1 (CD274) assessed by EdgeSeq PIP
(Figure 5A), which was comparable to its association with RNA-
seq (ρ = 0.69). It suggested that the remaining lack of correlation
was mainly due to the discrepancy between mRNA and protein,
rather than technical issues specific to platform. In addition, we
calculated the correlation of PD-L1 IHC with every gene and
found that CD274 had the highest correlation coefficient among
all genes (Figure 5B), which further suggested the fidelity of
EdgeSeq PIP data.

To further investigate the concordance of EdgeSeq PIP with
IHC, we assessed another important immuno-oncology marker,
the fraction of CD8+ T cells, by CD8A IHC in another 98 tumors
(Supplementary Figure S9). We investigated the correlation of
CD8 abundance estimated by IHC with the expression level of 4
traditional CD8+ T cell markers (CD8A, CD8B, PRF1, GZMA)
from EdgeSeq PIP and the EdgeSeq PIP-derived GSVA scores of
4 well-known CD8+ T signatures (Supplementary Table S9)
(Rooney et al., 2015; Danaher et al., 2017; Davoli et al., 2017; Prat
et al., 2017). All estimates for CD8+ T cells had significant positive
correlations with the IHC results (Figure 5C). Interestingly,
CD8A outperformed the other genes (ρ = 0.55) and even the
gene signatures. This result suggested that at least for data

generated by EdgeSeq PIP, the expression level of CD8A is
sufficient for estimating the fraction of CD8+ T cells in
tumors. Overall, our results indicated that the data generated
by EdgeSeq PIP were comparable to IHC data and could be used
as a complementary method for evaluating the protein levels of
PD-L1 and the CD8+ T cell fraction.

DISCUSSION

Gene expression profiling plays an important role in immuno-
oncology related biomarker studies, as it helps to elucidate the
TME landscape, and many predictive biomarkers have been
derived for ICI-based therapies. As clinical specimens in
certain cancers are obtained from core needle biopsies of small
size and suboptimal quality, tissue availability restricts the clinical
application of traditional GEP methods (e.g., RNA-seq). EdgeSeq
PIP, an assay focused on well-studied genes related to immuno-
oncology, uses an extraction-free technology to minimize sample
requirements. This method mitigates the challenge for sample
acquisition and has been widely used in clinical trials.

In this study, we provided evidence that EdgeSeq PIP is a
robust assay with a high degree of concordance with multiple
platforms, including RNA-seq, tumor/immune cell fraction

FIGURE 4 | Consistency of EdgeSeq PIP data with H&E staining. (A) Boxplot showing the difference in tumor purity scores between samples with high (>70%)
tumor percentage and low (<70%) tumor percentage. (B) Barplot showing the top eight pathways enriched in tumors with high (>70%) tumor percentage. (C) Boxplot
showing the difference in immune scores between samples with high (>5%) immune percentage and low (<5%) immune percentage. (D) Barplot showing the top eight
pathways enriched in tumors with high (>5%) immune percentage.
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estimation by H & E staining, PD-L1 scoring and CD8+ T cell
abundance estimation by IHC. By analyzing data from 395
clinical FFPE samples, we found that EdgeSeq PIP showed
good correlation with RNA-seq at the single-gene level,
especially after excluding genes with low expression levels or
dynamic ranges. Importantly, we demonstrated that EdgeSeq
PIP, with incomplete coverage of genes in some signatures, still
generated signature scores that were well correlated with those
of RNA-seq. This result indicated that EdgeSeq PIP data can be
reliably utilized for signature-based analyses of TME subtypes
and ICI efficacy prediction. In addition, we found that EdgeSeq
PIP aligned well with the overall percentage of tumor/immune

cells determined by H & E staining. Furthermore, our results
showed that the RNA levels determined by EdgeSeq PIP aligned
well with the protein levels determined by the IHC assessment of
two important immunotherapy biomarkers, the fraction of PD-
L1-positive tumor cells and CD8+ T cells.

As the method of choice for transcriptome probing, RNA-
seq has always been used as a reference standard to benchmark
other GEP assays. In our results, EdgeSeq PIP correlated well
with RNA-seq except for a small proportion of genes with low
expression levels. This result was within expectations, as true
signals for genes with low expression are hard to distinguish
from noise, which would diminish the correlation (Kwong

FIGURE 5 | Consistency of EdgeSeq PIP with PD-L1 IHC and CD8 IHC. (A) Correlation of the CD274 mRNA expression level from EdgeSeq PIP (blue) and RNA-
seq (red) with the PD-L1 TC score. (B) Spearman correlation coefficients (y-axis) of mRNA expression level assessed by EdgeSeq PIP with the PD-L1 level assessed by
IHC. Each dot represents a gene and genes were ordered according to their Spearman correlation coefficients (x-axis). (C) Scatterplot showing the correlation of CD8
related genes (top) and signatures (bottom) with CD8+ T cell fraction estimated by IHC (%).
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et al., 2018). In addition, loss of degraded transcripts during
RNA extraction, especially for low-expressing genes in
archived FFPE samples, could further exacerbate the
discordancy between the two platforms. There was evidence
that EdgeSeq PIP, using its extraction-free technique, offer
superior sensitivity on these “discordant” genes (Ran et al.,
2020). Nevertheless, such genes should be used with caution
and should even excluded from some analyses involving data
from both RNA-seq and EdgeSeq PIP.

In this study, we found that the gene signature score derived
from EdgeSeq PIP was strongly correlated with that from
RNA-seq, although some genes in given signatures were not
covered by EdgeSeq PIP probes. We reasoned that such result
was attributed to the coexpression of genes within the
signature (e.g., TIS). Such coexpression led to gene
“redundancy” and made the signature score calculation
robustly susceptible to gene dropout and different
algorithms. Though some poorly correlated genes resulted
in a low correlation among certain signatures, after their
exclusion, most signatures defined based on RNA-seq data
could be directly transferred and used on EdgeSeq PIP data.
However, we must admit that the signatures used in our study
were limited to those related to immuno-oncology, which
predominantly consisted of surface markers sharing similar
expression patterns. For other signatures, such as cellular
signaling pathways, the effect of “gene dropout” needs to be
further investigated.

PD-L1 IHC has been used to predict responses to ICI-based
therapy. A previous study revealed that the expression of PD-L1
measured by RNA-seq had a strong association with that
measured by IHC (Conroy et al., 2019). Here, we found that
the mRNA level of PD-L1 generated by EdgeSeq PIP had a high
correlation with the PD-L1 IHC level as well. Although a
biological gap exists between mRNAs and proteins, EdgeSeq
PIP at least provides another layer of PD-L1 quantification
that can be exploited for the prediction of ICI efficacy. In
addition, EdgeSeq PIP quantifies PD-L1 transcripts without
the need for subjective scoring and cell type discrimination by
pathologists, which might introduce substantial discrepancy
across studies (Hirsch et al., 2017).

In summary, for the first time, we comprehensively
benchmarked EdgeSeq PIP with multiple platforms using
large-scale clinical FFPE samples, and the results are
reflective of its actual performance in clinical practice. Our
results showed that EdgeSeq PIP generated data comparable
to those generated by classical methods. Considering its low
sample requirement and cost efficiency, the technology would
get an ever-increasing application for biomarker studies in
clinical trials.
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