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Objective: Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) is a

traditional herbal medicine widely known for its antifatigue and antistress

effects, as well as tonifying qi, invigorating spleen and kidney, and

tranquilizing the mind. Recent evidence suggests that ASH has a therapeutic

effect on major depressive disorder (MDD), but its mechanism is still unclear.

The current study aimed to investigate the effect of ASH on MDD and potential

therapeutic mechanisms.

Materials and Methods: The chemical compound potential target network was

predicted based on network pharmacology. Simultaneously, chronic

unpredictable mild stress (CUMS) model mice were orally administrated ASH

with three dosages (400, 200, and 100mg/kg) for 6 weeks, and hepatic

metabolomics based on gas chromatography–mass spectrometry (GC–MS)

was carried out to identify differential metabolites and related metabolic

pathways. Next, the integrated analysis of metabolomics and network

pharmacology was applied to find the key target. Finally, molecular docking

technology was employed to define the combination of the key target and the

corresponding compounds.

Results: A total of 13 metabolites and four related metabolic pathways were

found in metabolomics analysis. From the combined analysis of network

pharmacology and metabolomics, six targets (DAO, MAOA, MAOB, GAA,

HK1, and PYGM) are the overlapping targets and two metabolic pathways

(glycine, serine, and threonine metabolism and starch and sucrose

metabolism) are the most related pathways. Finally, DAO, MAOA, MAOB,

GAA, HK1, and PYGM were verified bounding well to their corresponding
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compounds including isofraxidin, eleutheroside B1, eleutheroside C, quercetin,

kaempferol, and acacetin.

Conclusion:Based on these results, it was implied that the potential mechanism

of ASH on MDD was related to the regulation of metabolism of several

excitatory amino acids and carbohydrates, as well as the expression of DAO,

MAOA, MAOB, GAA, HK1, and PYGM.

KEYWORDS

Acanthopanax senticosus Harms, major depressive disorder, metabolomics, network
pharmacology, molecule docking

1 Introduction

Major depressive disorder (MDD) is a complicated and

severe psychological disorder, characterized by low mood,

reduced activity, and cognitive dysfunction. More than

350 million people worldwide suffer from depression (Paulina

et al., 2018). According to theWorld Health Organization report,

nearly 800,000 people die by suicide every year (WHO, 2020).

Depression reduces the quality of life and has become a health

burden for families and society (Guo et al., 2017).

Even though the monoamine transmitter hypothesis is

widely accepted, the pathological mechanism of depression is

still uncertain. In addition, the neuroendocrine hypothesis,

abnormal feedback regulation of the

hypothalamus–pituitary–adrenal (HPA) axis, and social stress

are also related to depression (Cai et al., 2015; Afridi and Suk,

2021). Based on the research of these disease mechanisms,

various antidepressant drugs have been developed, including

selective serotonin reuptake inhibitors, tricyclic

antidepressants, serotonin–norepinephrine reuptake inhibitors,

monoamine oxidase inhibitors, and atypical antidepressants such

as benzodiazepines (Strawn et al., 2018). Although more than a

dozen of antidepressants are available, most individuals with

depression have no response to these treatments.

Traditional Chinese medicines, with the characteristics of

multiple effects, multiple compounds, and multiple targets, have

been widely used in the treatment of depression (Gu et al., 2021).

Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH), also

known as “Siberian ginseng,” is a kind of hardy shrub that

originates in China, Korea, Russia, and Japan, famous for its

antifatigue and antistress effect. As a traditional Chinese herbal

medicine, it is widely known for tonifying Qi. Qi is the vital

energy of life, and Qi deficiency is mostly caused by over work,

improper diet, aging, frailty, and chronic illness, and generally

manifests as physical weakness, pale complexion, shortness of

breath, limb weakness, dizziness, insomnia, sweating, and low

voice. The manifestation of Qi deficiency is similar to physical

weakness in modern medicine, accompanied by low-energy

metabolic levels and pre-depression symptoms. The indication

of ASH in traditional Chinese medicine is physical weaknesses,

fatigue, loss of appetite, and insomnia. Now, ASH is commonly

used in heart disease, hypertension, allergies, diabetes,

rheumatoid arthritis, and neurodegenerative diseases (Yi et al.,

2002; Liu et al., 2008; Takahashi et al., 2014; Liu et al., 2018). In

addition, ASH is also widely used in the treatment of depression.

Shugan Jieyu Capsule, composed of ASH and Hypericum

perforatum, is one of the Chinese patent medicines for

treating depression in China (Zhang X. et al., 2014). The

mixture of chlorogenic acid and (+)-syringaresinol-di-O-β-D-
glucoside, ingredients in ASH, could induce anxiolytic behavior

and regulate the autonomic nervous system (Miyazaki et al.,

2020). Qi et al. (2020) reported ASH extract’s antidepressant

effect by improving the contents of dopamine (DA),

norepinephrine (NE), and 5-hydroxytryptamine (5-HT).

Moreover, Bhaktaprasad and Dongwook (2014) showed that

ASH extract restored both altered c-fos expression and HPA

activity, which have beneficial effects on depression behaviors.

The anti-inflammatory, antistress, and neuroprotective effects of

ASH are also very beneficial in treating depression (Kimura and

Sumiyoshi 2004; Zhang S. et al., 2014; Han et al., 2016).

Neurological diseases, including MDD, are closely related to

metabolic disorders (Bhadra et al., 2021). Chronic unpredictable

mild stress (CUMS) is one of the most commonly used

preclinical models for understanding the onset and

progression of MDD (Willner, 2017). CUMS can well induce

several features of human pathology, such as altered circadian

rhythms, anhedonia, and increased anxiety and hopelessness

(Bosch et al., 2022). Behavioral tests such as sucrose

preference test (SPT), tail suspension test (TST), forced

swimming test (FST), and open-field test (OFT) are

commonly used to assess the depression phenotype.

Metabolomics has provided new insights into pathogenic

mechanisms, treatment responses, and biomarker verification

related to MDD (Duan and Xie, 2020; Gu et al., 2021). Although

in general, the brain is a first priority organ for depression

studies, traditional Chinese medicine theory believes that one

of the most important pathogeneses of depression is “the

stagnation of Liver-Qi” (Chen et al., 2020). The liver is the

hub of metabolism and energy substrate homeostasis. Studies

have proved that mental illness (including depression) is

associated with liver disorders (Russ et al., 2015; Wu et al.,

2016). Disturbances in the liver may cause HPA axis
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dysfunctions, hippocampal neurogenesis impairments, and

neuroplasticity and neurosteroid synthesis alterations. These

pathophysiological processes may have influence on related

brain regions, and exacerbate symptoms of depression

(Kimoto et al., 2001; Leonard, 2001; Barger et al., 2005; Koo

et al., 2010). Based on these theories, many metabolomics studies

on CUMS-induced depression have used liver tissue as the

research object (Chen et al., 2015; Jia et al., 2016; Jia et al.,

2017; Liu et al., 2021).

Network pharmacology, a newly developed technology of

systems biology, connects the mechanism of chemical

compounds, drug targets and diseases, as well as visualizes,

systematizes, and informs the process principles of complex

disease treatment (Zhang et al., 2016). From the perspective of

systems and networks, network pharmacology has been widely

used in studying the relevance between herbs and diseases (Liu

et al., 2019). Although pharmacological and clinical studies have

shown that ASH has a relatively definite antidepressant effect

such as restoring altered c-fos expression andHPA activity (Gaire

and Lim 2014) or modulating the central monoaminergic

neurotransmitter system and CREB protein expression (Jin

et al., 2013), the chemical basis and mechanism are still

unclear. Network pharmacology is expected to provide new ideas.

At present, there are still few metabolomic studies and

network pharmacology technology target prediction of ASH

treating depression. In this study, hepatic metabolomics based

on gas chromatography–mass spectrometry (GC–MS) combined

with network pharmacology was first applied to find biomarkers,

related pathways, hub targets, and key compounds of ASH on

MDD. Then, a molecular docking method was used to identify

the binding affinity of each compound and target, preliminary

exploring the mechanism of ASH onMDD. The flowchart of this

study design is presented in Figure 1.

2 Methods and materials

2.1 Network pharmacology

2.1.1 Screening of chemical compounds and
targets of ASH

The major chemical constituents of ASH were determined by

the literature on ASH chemical composition study. The

SwissTargetPrediction database (http://www.

swisstargetprediction.ch/) was used to obtain potential targets

for each chemical compound. The UniProt database (https://

www.UniProt.org/UniProt/) was employed to define each

abbreviation of the proteins of ASH. The information on

ADME including oral bioavailability (OB), drug-likeness (DL),

gastrointestinal (GI) absorption, and blood–brain barrier (BBB),

was obtained from the SwissADME database (http://www.

swissadme.ch/) and TCMSP database (http://lsp.nwu.edu.cn/

tcmsp.php).

2.1.2 MDD-associated target prediction
“Major depressive disorder” was imported to the database of

OMIM (https://www.OMIM.org/), GeneCard (https://www.

genecards.org/), DrugBank (https://www.DrugBank.ca),

FIGURE 1
Work scheme of this study. ASH: Acanthopanax senticosus (Rupr. et Maxim.) Harms; FST: forced swimming test; MDD, major depressive
disorder; OFT, open-field test; TST, tail suspension test.
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PharmGkb (https://www.PharmGkb.org/), and Therapeutic

Target database (http://bidd.nus.edu.sg/bidd-databases/TTD/

TTD.asp). Combined the targets searched from each database

and deleted duplicate ones, the rest were targets for MDD. The

shared targets for both the active compounds in ASH and the

disease were selected as the possible targets of ASH in treating

MDD. The Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/

index.html) was used to map the targets between ASH andMDD.

2.1.3 Construction of network
MDD targets and compounds in ASH, which have been

screened, were introduced into Cytoscape software to build a

visual network.

2.2 Metabolomics

2.2.1 Experimental reagents and equipment
Methanol (Sigma; Lot #WXBC2211V), chloroform (Sinopharm

Chemical Reagent Co., Ltd.; batch number 20161128), pyridine

(Sinopharm Chemical Reagent Co., Ltd.; batch number

20140424), heptadecanoic acid (Aladdin; Lot number: K1325026),

O-methoxyamine-HCl (SUPELCO; Lot # LB66506). N, O-Bis

(trimethylsilyl) trifluoro-acetamide (BSTFA with 1% TMCS)

(Sigma-Aldrich; Lot # BCBWA670). Tabellae Acanthopanacis

Senticosi was purchased from Shan Xi Yun Peng Pharmaceutical

Co. Ltd., and fluoxetine hydrochloride dispersible tablets were

purchased from Eli Lilly and Company. The quality control of

ASH was carried out by high-performance liquid chromatography

(HPLC), according to the method of Zhu et al. (2011). The level of

characteristic chemicals for eleutheroside E and syringin was

2.038 and 3.357 mg/g, respectively (Supplementary Figure S1).

GC–MS (6890N-5975B; Agilent; United States), automatic

sample rapid grinder (TissueLyser-24; Shanghai Jingxin

Industrial Development Co., Ltd.), vortex mixer (Vortex-

Genie 2; Scientific Industries; United States), high-speed

refrigerated centrifuge (Centrifuge 5415R; Eppendorf;

Germany), nitrogen blowing apparatus (SBH130D/3; Stuart;

United Kingdom), oscillating low-temperature incubator

(Enviro-Genie; Scientific Industries; United States).

Methanol–water–chloroform: prepared in a ratio of 5:2:2 (v/

v/v); heptadecanoic acid methanol solution (1.0 mg/ml): 10 mg

of heptadecanoic acid dissolved in 10 ml of methanol;

methoxyamine pyridine hydrochloride solution (15 mg/ml):

150 mg of O-methoxyamine–HCl dissolved in 10 ml of pyridine.

2.2.2 Animals
A total of 36 male ICR mice (20–22 g, Shanghai, China,

approval number: 2014-0008) were provided by the Laboratory

Animal Center of Shanghai University of Traditional Chinese

Medicine. All mice were free to food (AIN-93 purified standard

diets) and water under the barrier system and bred adaptively for

7 days. Animal welfare is strictly implemented in accordance with

the “The Guide for Care and Use of Laboratory Animals” and the

ethics and regulations of Shanghai University of Traditional

Chinese Medicine (IACUC Issue No: SZY201711003).

The mice were randomly divided into six groups: normal

group (N, distilled water 10 ml/kg), model group (M, distilled

water 10 ml/kg), ASH high-dose group (HD, 400 mg/kg), middle-

dose group (MD, 200 mg/kg), low-dose group (LD, 100 mg/kg)

(Zhang et al., 2010), and positive control group (PD, fluoxetine,

10 mg/kg). According to the standard of Chinese Pharmacopoeia

and the conversion standard of animal drugs, the dosages of

different concentrations were prepared respectively and

fluoxetine administration was performed according to the

literature (Wang et al., 2015; Wan et al., 2017), and the solvent

was distilled water. The mice were administered (i.g.) of ASH or

fluoxetine from 9:30 to 10:30 (1 h before modeling) every day for

6 weeks. The administration started on the first day of modeling

and continued throughout the modeling period.

2.2.3 CUMS model
The specific operations of the CUMS method included food

deprivation (24 h), water deprivation (24 h), overnight lighting

(24 h), wet wood chips (24 h), tail pinching (1 min), tilting cage

(24 h), and swimming in cold water at 4°C (5 min). All stresses

did not threaten the lives of mice, and mice were randomly given

different stresses every day to avoid adaptation. Animal welfare

was strictly followed in accordance with the “Guidelines for the

Care and Use of Laboratory Animals” and the regulation of

Shanghai University of Traditional Chinese Medicine (IACUC

Issue No: SZY201711003).

2.2.4 Sample collection and processing
The liver tissues were collected and stored in the refrigerator

at −80°C for further testing. A measure of 500°µL of the

methanol–water–chloroform mixed solution was added to the

centrifuge tube with a 50 mg liver sample. The samples were

homogenized at 70 Hz for 80 s, vortexed for 1 min, sonicated for

5 min, and placed at −20°C for 20 min to precipitate the protein.

Then the samples were centrifuged for 10 min (13,000 rpm, 4°C)

and 300 µL supernatant was collected. A measure of 20 µL of

methanolic heptadecanoic acid solution (1.0 mg/ml) was added

to the supernatant. The supernatant was blown dry with nitrogen

at 30°C and reconstituted with 50 µL of O-methoxyamine–HCl

pyridine solution (15 mg/ml). The samples were transferred into

a shaker for methoxylation reaction for 90 min (30°C). After the

reaction, 50 µL of BSTFA was added and the silylation reaction

was carried out for 1 h (70°C). After being placed at room

temperature for 1 h, the samples were analyzed on the GC–MS.

2.2.5 GC–MS analysis
The GC–MS column was Agilent J&W DB-5ms Ultra Inert

(30 m × 0.25 mm × 0.25 μm). GC parameters: high-purity helium

(purity: 99.9996%) was the carrier gas, the injection port

temperature was 260°C with splitless injection and 1.0 µL
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injection volume, and the flow rate was 1.0 ml/min. The initial

temperature was 80°C and lasted for 2 min. The temperature was

raised to 180°C at a rate of 10°C/min, then to 240°C at 5°C/min, and

finally to 290°C at 25°C/min and kept for 9 min. MS parameters:

ion source temperature was 230°C, quadrupole temperature was

150°C, and mass spectrometer interface temperature was 280°C.

Solvent delay was 5 min, ionization mode was EI, electron impact

ionization voltage was 70 eV, and scan range (m/z) was 30–550.

The parallel injection sequence method was used.

2.2.6 Data processing
The raw data were imported into R software (v2.13.2) for data

preprocessing. Subsequently, the processed data were imported

into SIMCA software (v14.0, Umetrics AB, Umeå, Sweden) for

multi-dimensional statistical analysis, including principal

component analysis (PCA), partial least squares-discriminant

analysis (PLS-DA), and orthogonal partial least squares-

discriminant analysis (OPLS-DA). The S-plot was obtained on

the basis of OPLS-DA, and variable importance in the projection

(VIP) value >1.0 as the standard to find candidate difference

variables. Then the value was imported into SPSS software (v21.0)

for an independent sample t-test. p < 0.05 was defined as a

significant difference, and fold change (FC) was calculated

based on the average relative peak area of the difference

variable between each group. Finally, values with VIP ≥1 and

p-value ≤ 0.05 were determined as differential metabolites.

2.2.7 Pathway analysis of metabolites and
network construction

Combined with the Human Metabolome Database (HMDB,

http://www.hmdb.ca/) to further confirm potential biomarkers,

andMetaboAnalyst 4.0 (http://www.metaboanalyst.ca/) platform

and Kyoto Encyclopedia of Genes and Genomes (KEGG, http://

www.genome.jp/kegg/) database were used for enrichment

analysis of metabolic pathways. Key pathways were

determined with p-value < 0.05, and targets related to the

pathways were identified based on the KEGG database.

2.3 Integrated analysis of network
pharmacology and metabolomics

The overlapping targets were obtained from the targets of

relevant pathways and the ASH related targets. These shared

targets were potential targets for ASH treating MDD. Finally, the

metabolite pathway target network was constructed by Cytoscape.

2.4 Molecule docking

The protein structure database Protein Data Bank (http://

www.rcsb.org/) was used to obtain the structural information of

the target. The docking software LigPlot (https://www.ebi.ac.uk/

thornton-srv/software/LigPlus/) was used to make images of the

interaction between protein molecules and ligand molecules.

3 Results

3.1 Screening the compounds and targets
of ASH

Through the literature search, a total of 20 main compounds

in ASH were retrieved (Yu et al., 2003; Du and Zhao, 2008; Gong

and Wang, 2012; Lu et al., 2012; Yang et al., 2015). The OB and

DL of these compounds were obtained by the TCMSP database,

and the results are shown in Table 1. From the UniProt database,

the gene names were identified, the invalid and duplicate targets

were removed, and finally, 281 targets were obtained.

3.2 MDD target and network identification

Through the integration of the results of each database,

3077 MDD-related gene targets were obtained. Using the

Venn diagram, 151 shared targets of ASH and MDD were

obtained (Figure 2A). Then we used the targets related to

ASH and corresponding compounds to build a network and

visualized it using Cytoscape (Figure 2B). The network has

171 nodes (20 compounds of ASH and 151 shared targets)

and 361 edges.

3.3 Analysis of potential biomarkers

First of all, as shown by the behavioral test results in

Supplementary Figure S2, the immobility time of the mice in

the CUMS model group was significantly increased in the FST

and the TST, and the total behavioral score in the OFT was

significantly decreased. After administration of different doses of

ASH and the positive control fluoxetine, all behavioral scores

were significantly improved, and the effects of middle-dose ASH

were relatively most significant. These confirmed a successful

depression model and antidepressant effect of ASH.

As shown in Supplementary Figures S3A,B, the overall

metabolic profiles of the liver of mice in the N and M groups

only showed a tendency to separate in the PCA score. The PLS-

DA score was further performed and the results showed that the

separation trend of the metabolic profiles of the N group and the

M group was more obvious.

The metabolic patterns of the ASH high, medium, and low-

dose groups and fluoxetine group are shown in Supplementary

Figures S3C–F. In the PCA analysis, the N group and the M

group showed a trend of separation, and the HD group, MD

group, and LD group were all close to the N group, of which the

most obvious one was the MD group. The PD group was also
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TABLE 1 Information of active compounds in ASH.

Molecule OB (%) DL GI absorption BBB Reference

Protocatechuic acid 25.37 0.04 High No Shang et al. (2018)

Chlorogenic acid 11.93 0.33 Low No Yu et al. (2003)

Rutin 3.2 0.68 Low No Gong and Wang (2012)

Hyperoside 6.94 0.77 Low No Gong and Wang (2012)

Quercetin 46.43 0.28 High No Gong and Wang (2012)

Quercitrin 4.04 0.74 Low No Gong and Wang (2012)

Daucosterol (eleutheroside A) 20.63 0.63 Low No Du and Zhao (2008)

Syringin (eleutheroside B) 14.64 0.32 Low No Lu et al. (2012)

Eleutheroside B1 - - Low No Du and Zhao (2008)

Eleutheroside C - - High No Du and Zhao (2008)

Eleutheroside D - - Low No Du and Zhao (2008)

Eleutheroside E 16.85 0.29 Low No Du and Zhao (2008)

Sesamin 56.55 0.83 High Yes Zhang and Li (2016)

Isofraxidin 52.32 0.1 High Yes Gong and Wang (2012)

Kaempferol 41.88 0.24 High No Gong and Wang (2012)

Acacetin 34.97 0.24 High No Gong and Wang (2012)

Daidzin 14.32 0.73 Low No Gong and Wang (2012)

Syringaldehyde 67.06 0.05 High Yes Gong and Wang (2012)

Syringic acid 47.78 0.06 High No Gong and Wang (2012)

Glucosyringic acid 24.29 0.3 Low No Gong and Wang (2012)

Note: - means no information about this compound. OB, oral bioavailability; DL, drug-likeness; GI, gastrointestinal; BBB, blood–brain barrier.

FIGURE 2
(A) Overlapping target genes between MDD and ASH. (B) Drug-active ingredients and disease target network. Purple triangle: active
compounds; green diamond: targets. The bigger nodes represent greater degrees.
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significantly separated from the M group, closer to the N

group. The results indicated that each dose of ASH and

fluoxetine could restore the hepatic metabolism in CUMS

mice to some extent.

In order to find the different metabolites between each dose

group of ASH and the M group, the OPLS-DA and S-plot score

under the supervision mode were established (Figure 3). In the

OPLS-DA analysis, the HD group, the MD group, LD group, and

PD group were all separated from the M group. The results of the

permutation test (Supplementary Figure S4) showed that the

established model was not overfitting. The variables with VIP

value > 1.0 were selected for statistical analysis, which was

combined with the NIST 05 database and HMDB database to

get the final differential metabolites.

As shown in Table 2, the levels of eight metabolites improved

in the HD group. Compared with the M group, the levels of

D-galactose, D-gluconic acid, glycine, D-glucose, L-aspartic acid,

and L-threonine were significantly increased, while 2-

FIGURE 3
OPLS-DA scores and S-plot of the liver metabolite group of CUMS mice in each administration group (n = 6). (A) HD group vs. M group (R2X =
0.655, R2Y = 0.927, and Q2 = 0.568); (B) MD group vs. M group (R2X = 0.759, R2Y = 0.959, and Q2 = 0.422); (C) LD group vs. M group (R2X = 0.762,
R2Y = 0.999, and Q2 = 0.968); (D) PD group vs. M group (R2X = 0.777, R2Y = 0.978, and Q2 = 0.664).
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butenedioic acid and myo-inositol levels were significantly

reduced. The levels of five metabolites were increased in the

MD group, glycine, D-glucose, L-aspartic acid, L-threonine, and

glutamine, while the levels of myo-inositol and L-valine were

significantly decreased. D-galactose and D-glucose were

improved in the LD group. In the PD group, the levels of

glycine, D-glucose, L-threonine, and glutamine were

significantly increased, and the levels of myo-inositol and

L-valine were significantly decreased. The heatmap of

differential metabolites is shown in Figure 4, which indicated

the differential metabolites among each group.

3.4 Metabolic pathways and relevant
target verification

The metabolic pathways between the model group and each

dose of the ASH group are shown in Figure 5. According to

statistical analysis, the metabolic pathways with p < 0.05 and

pathway impact >0.10 were selected.

The differential metabolite between the model group and the

HD group were involved in two pathways, glycine, serine, and

threonine metabolism and starch and sucrose metabolism. There

were three metabolic pathways between the model group and the

MD group, glyoxylate and dicarboxylate metabolism; glycine,

serine, and threonine metabolism; and alanine, aspartate, and

glutamate metabolism. Differential metabolites between the

model group and the LD group only constitute one metabolic

pathway, which is starch and sucrose metabolism. Also, two

pathways of glyoxylate and dicarboxylate metabolism and

glycine, serine, and threonine metabolism were corresponding

for differential metabolites between the model group and the PD

group. The differential metabolites involved in these metabolic

pathways are shown in Table 3. Based on these results, and

combined with the KEGG database, the key metabolic pathways

of MDD are illustrated in Figure 6.

Based on the aforementioned results, the following four

pathways, glycine, serine, and threonine metabolism; alanine,

aspartate, and glutamate metabolism; glyoxylate and

dicarboxylate metabolism; and starch and sucrose metabolism,

TABLE 2 Intervention of ASH and fluoxetine on different metabolites in the liver of CUMS mice.

Metabolite M vs. N HD vs. M MD vs. M LD vs. M PD vs. M

P FCa P FCb P FCb P FCb P FCb

D-Galactose 0.007 0.185 0.002 6.143 - - <0.001 2.299 - -

D-Glucose 0.016 0.132 0.007 7.547 0.02 1.951 0.001 2.314 0.010 2.152

Maltose - - 0.015 2.291 - - <0.001 0.006 - -

D-Mannose - - 0.034 2.331 0.038 1.276 0.001 1.641 0.002 2.294

D-Turanose - - - - - - <0.001 0.002 - -

D-Gluconic acid 0.012 0.145 0.011 8.799 - - - - - -

2-Butenedioic acid <0.001 3.590 0.005 0.340 - - - - - -

Propanedioic acid 0.006 3.402 - - - - - - - -

Octadecanoic acid - - - - 0.003 0.325 - - - -

Phosphate - - - - 0.010 0.367 - - - -

Propanoic acid - - - - - - 0.014 0.681 - -

Glycine 0.015 0.602 0.009 1.906 0.009 2.242 - - <0.001 3.306

L-Serine 0.002 0.244 - - - - - - - -

L-Aspartic acid 0.015 0.157 0.024 4.585 0.028 6.463 - - - -

L-proline 0.033 4.040 - - - - - - - -

L-Leucine - - - - 0.011 1.342 - - - -

L-Alanine - - - - 0.032 0.307 - - - -

L-Threonine 0.003 0.256 0.016 2.787 0.009 3.691 - - <0.001 13.143

L-Valine 0.013 6.254 - - 0.019 0.303 - - 0.011 0.064

Glutamine 0.009 0.270 - - 0.029 5.315 - - 0.011 10.233

L-Isoleucine - - 0.025 0.364 0.028 0.394 - - 0.002 0.146

Cholesterol - - 0.001 0.632 0.013 0.694 - - <0.001 0.473

Myo-inositol 0.038 1.382 0.049 0.591 0.008 0.528 - - 0.008 0.490

Note: Fold change (FC)a represents the change multiple of the relative content of the different metabolites in the M group compared to the N group (FCa, value = M/N). FCb represents the

change multiple of the relative content of the different metabolites in the administration group compared to the M group (FCb value = the administration group/M). - means that the

compound is not detected. FC, fold change.
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were selected to obtain targets with the KEGG database. There

were 130 targets in total.

3.5 Integrating analysis

Integrating 130 targets involved in four pathways and the

targets related to compounds in ASH, seven shared targets related

to two pathways that were glycine, serine, and threonine

metabolism and starch and sucrose metabolism were identified,

which were D-amino acid oxidase (DAO), monoamine oxidase A

(MAOA), monoamine oxidase B (MAOB), alpha glucosidase

(GAA), amylase alpha 1A (AMY1A), hexokinase 1 (HK1), and

glycogen phosphorylase muscle associated (PYGM). The

Cytoscape was applied to visualize the network of compounds

in ASH, shared targets, pathways, and relevant metabolites

(Figure 7). In addition, from the network, glycine, serine, and

threonine metabolism was associated with three metabolites,

glycine, L-serine, and L-threonine, while D-glucose and maltose

were related to starch and sucrose metabolism. The changes in

relative peak areas of five metabolites in each group are shown in

Figure 8. In untargeted metabolomics studies, the relative peak

area is often used to represent the relative content of the metabolite

to which the peak belongs. It is the ratio of the peak area of each

metabolite to the peak area of the internal standard in the same

sample. Each sample was added the same known amount of the

internal standard compound in the procedure of sample

pretreatment. Through the ratio to the peak of the internal

standard compound, the systematic errors caused by

pretreatment or analytical instrument can be reduced.

3.6 Molecule docking

To further verify the affinity of the overlapped targets and the

relevant compounds, molecular docking was carried out for these

compounds with the related targets of each active ingredient,

including isofraxidin docking with DAO, MAOA, and MAOB;

quercetin docking with MAOA; kaempferol docking with

MAOA; acacetin docking with MAOA and MAOB;

eleutheroside B1 docking with GAA, HK1, and PYGM;

eleutheroside C docking with PYGM.

The binding energies of the six compounds to the relevant

targets were calculated. The results are listed in Supplementary

Table S1. All the studied compounds had good binding energy

(<0 kcal/mol) to their relevant target proteins. Binding

energy <0 indicated that the ligand molecular compounds could

bind autonomously to the receptor target protein. The molecule

conformation with a lower binding energy was more stable.

As shown in the Figures 9A–C, isofraxidin had three

hydrogen bonds and five hydrophobic interactions with DAO,

10 hydrophobic interactions with MAOA and 1 hydrogen bond

and 10 hydrophobic interactions with MAOB. Eleutheroside B1,

as shown in Figures 9D,E, had six hydrogen bonds and eight

hydrophobic interactions with GAA as well as two hydrogen

bonds and seven hydrophobic interactions with HK1. The

protein PYGM, as shown in Figures 9F,G, interacted with

eleutheroside B1 creating two hydrogen bonds and

12 hydrophobic interactions, while interacted with

eleutheroside C creating three hydrogen bonds and six

hydrophobic interactions. In addition, quercetin, kaempferol,

and acacetin also had a good combination with their

corresponding targets (Supplementary Figure S5).

4 Discussion

In the metabolomics analysis, glycine, serine, and threonine

metabolism; alanine, aspartate, and glutamate metabolism;

glyoxylate and dicarboxylate metabolism; and starch and

sucrose metabolism were the most significant pathways for

ASH treating MDD, and a total of 130 targets were involved

with the four metabolic pathways, including DAO, MAOA,

MAOB, GAA, HK1, and PYGM. Network pharmacology

analysis has shown that the intersection of ASH targets and

MDD targets was 151, which also includes DAO, MAOA,

FIGURE 4
Heatmap of different metabolites in each group.
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MAOB, GAA, HK1, and PYGM. Therefore, integrating

metabolomics and network pharmacology together, DAO,

MAOA, MAOB, GAA, HK1, and PYGM were shared targets

in both results. Finally, molecule docking showed that all these

targets could dock stably with their corresponding compounds,

including isofraxidin, eleutheroside B1, eleutheroside C,

FIGURE 5
Metabolic pathway diagram of each administration group. (A)HD group vs. M group; (B)MD group vs M group; (C) LD group vs. M group; (D) PD
group vs. M group.

TABLE 3 Intervention of ASH and fluoxetine on liver metabolic pathways in CUMS mice.

Group Metabolite pathway p-
value

Pathway impact Related metabolite

M vs. N Aminoacyl-tRNA biosynthesis 3.18E-08 0.167 L-Serine, glycine, glutamine, L-valine; L-aspartic acid, L-threonine,
L-proline

Glycine, serine, and threonine metabolism 0.003 0.501 L-Serine, glycine, L-threonine

Alanine, aspartate, and glutamate metabolism 0.023 0.337 Glutamine, L-aspartic acid

Glyoxylate and dicarboxylate metabolism 0.002 0.148 L-Serine, glycine, glutamine

HD vs. M Glycine, serine, and threonine metabolism 0.028 0.295 Glycine, L-threonine

Starch and sucrose metabolism 0.006 0.413 D-Glucose, maltose

MD vs. M Glyoxylate and dicarboxylate metabolism 0.034 0.106 Glycine, glutamine

Glycine, serine, and threonine metabolism 0.034 0.295 Glycine, L-threonine

Alanine, aspartate, and glutamate metabolism 0.002 0.337 Glutamine, L-alanine, L-aspartic acid

LD vs. M Starch and sucrose metabolism 0.001 0.413 D-Glucose, maltose

PD vs. M Glyoxylate and dicarboxylate metabolism 0.011 0.106 Glycine, glutamine

Glycine, serine, and threonine metabolism 0.013 0.295 Glycine, L-threonine
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quercetin, kaempferol, and acacetin. In summary, ASH

influenced the pathological performance of MDD through the

two pathways, glycine, serine, and threonine metabolism and

starch and sucrose metabolism, and targets DAO, MAOA,

MAOB, GAA, HK1, and PYGM.

The remarkable pathway, glycine, serine, and threonine

metabolism obtained from the results of metabolomics, is

commonly seen in the mental disorders (Yang et al., 2020).

Similar to our results, glycine levels in patients with

depression were decreased (Zhao et al., 2015; Li et al., 2019).

Glycine and serine are neurotransmitters (Opladen et al., 2016).

Glycine is proven to have an anti-atherosclerotic effect (Grajeda-

Iglesias and Aviram, 2018), and low glycine levels in patients with

MDDmaymean thatMDD patients have a risk of atherosclerosis

(Hung et al., 2021). Threonine is an indispensable amino acid to

the nervous system. It can be converted to glycine and transferred

through the blood–brain barrier (Bränn et al., 2021). Excessive

threonine in the nervous system would affect the balance of

FIGURE 6
Schematic diagram of the metabolic pathways. In the model group, red and blue metabolites represent increased and decreased levels,
respectively.

FIGURE 7
Active compound–overlapping target-metabolic pathway potential biomarker interaction network. Purple triangle: active compounds; green
diamond: targets; blue V: metabolic pathways; red circle: potential biomarkers. The bigger nodes represent greater degrees.
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neurotransmitters (Boehm et al., 1998). Serine, a non-essential

amino acid, is actively transported to the brain and then

converted into glycine and phosphatidylcholine, both of which

are related to memory function (Woronczak et al., 1995;

Locasale, 2013). Both serine and glycine regulate N-methyl-D-

aspartate (NMDA) receptors, which play a major role in the

glutamate pathway in the brain (van den Brink et al., 2017). The

DA and glutamate systems in the brain are highly interrelated

(Javitt, 2007).

From the results of network pharmacology, targets DAO,

MAOA, and MAOB were involved in the glycine, serine, and

threonine metabolism. DAO, MAOA, and MAOB are widely

distributed in the liver and kidney, and DAO is mainly in the

intestine. DAO is a peroxisomal flavoprotein, which can directly

affect the level of serine. The research found that excessive DAO

expression would exacerbate schizophrenia (Labrie et al., 2010).

Serine is abundant in the forebrain and acts as a co-agonist of

NMDA receptors to enhance neurotransmission. At the same

time, DAO can catabolize serine and, therefore, modulate

neurotransmission (Yamanaka et al., 2012). Isofraxidin has a

good docking with DAO, suggesting that isofraxidin may

alleviate depression symptoms by regulating DAO.

Monoamine oxidases (MAOs) have two subtypes: MAOA

and MAOB, which are thought to mediate the degradation of

monoamine neurotransmitters (including DA) in the brain. Cho

et al. (2021) found that MAOA could regulate DA levels, whereas

MAOB could control tonic GABA levels. Also, elevated MAO

activity is responsible for inactivation of monoamine

neurotransmitters in neurological diseases, such as depression

(Singh et al., 2020). MAO inhibitor, one of the first discovered

antidepressants, reduces the degradation of central monoamine

neurotransmitters (such as 5-HT and DA) by inhibiting MAO,

and improves patient mood. In our results of molecular docking,

isofraxidin, quercetin, acacetin, and kaempferol were all bound

well to MAOA and MAOB, suggesting that the mechanism of

antidepressants of these compounds is similar to MAO

inhibitors. Also, similar to our results, He et al. (2020) found

from the root extract of ASH that isofraxidin had potential

inhibitory activity of MAOB ligand. At the same time, studies

have shown that some flavonoids (including quercetin, acacetin,

and kaempferol) had inhibitory activity of MAOA or MAOB

(Dhiman et al., 2019; Xiao et al., 2019; Lin et al., 2020).

Starch and sucrose metabolism is another major pathway in

the results of our study, and it is a prominent pathway in patients

with MDD (Chung et al., 2019). It belongs to carbohydrate

metabolism, and the main different metabolites involved in

our study are D-glucose and maltose. Maltose is a

disaccharide composed of two glucose units connected by

glycosidic bonds. Glucose is the main source of energy, and in

our results, D-glucose was decreased in the model group,

FIGURE 8
Relative content of the hepatic biomarkers in each group. (A) Glycine; (B) L-serine; (C) L-threonine; (D) D-glucose; (E) maltose. *p < 0.05,
compared with the N group; **p < 0.01, compared with the N group; #p < 0.05, compared with the M group; ##p < 0.01, compared with the M group.
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implying disturbed energy metabolism. Also, energy deficiency

leads to the most common depressive symptoms, including

decreased activity, physical fatigue, and slowed cognitive

function (Ren et al., 2020). Abnormal glucose metabolism in

depression is proven to be associated with suicide risk, which

may be related to the cytokine-mediated inflammatory process

(Koponen et al., 2015). Glucose metabolism homeostasis is the

basis for maintaining normal brain function, and in MDD

patients, the glucose metabolism in many areas of the brain is

reduced (Hundal, 2007; Fu et al., 2017). In depression or obesity

models of depression, the uptake of glucose by brain cells is

enhanced, or in other words, its metabolism is slower (Detka

et al., 2014). At the same time, glucose is the main energy

substrate of neurons and glial, which is very important to the

neuron microenvironment (Magistretti and Pellerin, 1999).

GAA, acid α-glucosidase, is widely distributed in the systemic

circulation and can cause glycogen accumulation in many tissues

and the entire central nervous system and severe neuromuscular

damage when deficient, which eventually leads to Pompe disease,

a metabolic and neuromuscular disorder (In’t Groen Stijn et al.,

2020). Increased GAA expression in the liver can improve

glycogen accumulation in the muscles and central nervous

system (Puzzo et al., 2017). In the brain, glycogen is an

important energy reserve, and the reduction of the glycogen

level is directly related to the metabolism and function of

astrocytes (Zhang et al., 2015). In particular, the main energy

FIGURE 9
Molecular docking charts of isofraxidin [DAO (A), MAOA (B), and MAOB (C)], eleutheroside B1 [GAA (D), HK1 (E), and PYGM (F)], and
eleutheroside C [PYGM (G)].
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substrate source of neurons is glucose, which enters astrocytes

and produces stored glycogen. When astrocytes cannot provide

glycogen to the brain in time, neurons will shrink and die. If the

glycogen content in the central nervous system is reduced,

neurotransmitters and action potentials will be severely

affected immediately (Ibrahim et al., 2011). The study has

shown that a low level of hippocampal glycogen may be one

of the mechanisms that induce depression-like behavior in mice

(Zhang et al., 2015).

HK1, mainly distributed in the brain, is a kind of hexokinase

that initiates the first step of glycolysis by the phosphorylation of

glucose (JE, 2003). HK1 attached to the outer mitochondrial

membrane (OMM) is one of the crucial features of brain energy

metabolism, and also prevents apoptosis and oxidative damage,

which ensures the survival of neurons and other cells (Regenold

et al., 2012). A study has found in postmortem parietal cortex

brain tissue with depression, a decrease in HK1 attachment to the

OMM and schizophrenia compared to the health controls

(Regenold et al., 2012). In addition, HK1 mitochondrial

attachment has also been linked to neural growth (Wang

et al., 2008) and brain development (Land et al., 1977). The

survival and growth of neurons involved in mood and cognitive

functions are critical to the treatment of depression (Cristy,

2017). Also, a series of infections or just simply inflammation

during pregnancy may increase the risk of autism and depression

in the child (Al-Haddad et al., 2019).

PYGM, a muscle glycogen phosphorylase or

myophosphorylase, is mainly involved in glycogenolysis and

provides sufficient energy for cell biological processes

(Migocka-Patrzałek and Magdalena, 2021). PYGM is highly

expressed in human skeletal muscle, but it is also present in

other tissues and organs, such as different parts of the brain, liver,

lymphatic tissue (tonsils), blood (granulocytes), salivary glands,

and adipose tissue (Uhlén et al., 2015). Lack of PYGM in the liver

can cause Hers disease, a glycogen-storage disease (Burwinkel

et al., 1998). The research has found that in the astrocytes of

schizophrenia, the levels of PYGM and RAC1 (a kinase that

regulates the activity of PYGM) involved in astrocytes

metabolism are reduced, leading to a transient partial energy

deficiency in the dorsolateral prefrontal cortex (Pinacho et al.,

2016). In the dorsolateral prefrontal cortex, glutamate-mediated

neurotransmission disorders and changes in energy metabolism

are commonly observed in schizophrenia (Uno and Coyle, 2019;

Sears and Auid-Orcid, 2021). RAC1 promotes glycogenolysis by

activating PYGM and provides instant energy for neurons. Also,

this source of energy is essential for the processes of

glutamatergic neurotransmission and glucose utilization

(Migocka-Patrzałek and Magdalena, 2021). The hypothesis of

glutamate-mediated neurotransmission disorder has gradually

become popular in depression research in recent years. A vast

majority of brain neurons and synapses are glutamatergic, and

glutamate synaptic transmission mainly mediates cognition and

emotion (Pessoa, 2008). Decreased levels of glutamatergic

metabolites have been observed in the medial frontal cortex of

MDD patients (Moriguchi et al., 2019). Therefore, for the

neuropsychiatric disease treatment, the regulation of

glycogenolysis may be crucial.

In the results of molecular docking, eleutheroside B1 was

bound well to GAA, HK1, and PYGM, while eleutheroside C had

a good docking with PYGM. Therefore, we proposed that GAA

and PYGM might affect the occurrence and development of

depression by regulating glycogen metabolism in the brain, while

HK1 affects the survival and growth of neurons by regulating

glycolysis, and eventually affects the mood of depressed patients.

Also, it was implied that eleutheroside B1 and eleutheroside C

play an antidepressant effect by regulating energy metabolism.

Our study provides clues for the mechanism and material

basis of ASH treatment of depression, but the current research

still has some limitations. First of all, this study is based on the

hepatic metabolomics study. Although hepatic metabolites may

also enter the blood circulation and interact with the target or

drug-active components, they still need to be compared with

components in blood circulation and brain. Second, only part of

the active components of ASH can be directly absorbed and pass

through the blood–brain barrier. Although they are closely

related to many depression targets in the prediction of

network pharmacological targets, their actual binding sites in

the body are still unclear. Also, based on the current results, it is

speculated that the liver may play an important role in the

antidepressant effect of ASH, and the targets may not be

limited to the central nervous system. Finally, the current

findings are still preliminary, and further validation is under

design, such as the effect of administration of a single ingredient

of ASH on depression and changes in distribution and expression

of the predicted targets, as well as targeted, quantitative

experiments for validating the role of those targets in the

regulation of MDD by ASH.

5 Conclusion

In our study, first, ASH administration improved depression-

like behaviors and simultaneously ameliorated hepatic

metabolomic alterations in CUMS mice. Second, combined

with network pharmacology and molecular docking

techniques, the potential active components, targets, and

related metabolic pathways of ASH in the treatment of

depression were predicted, that is, isofraxidin, quercetin,

kaempferol, and acacetin might target DAO, MAOA, and

MAOB to regulate glycine, serine, and threonine metabolism,

while eleutheroside B1 and eleutheroside C seemed to regulate

starch and sucrose metabolism by targeting GAA, HK1, and

PYGM. As the components in ASH and their targets are

primarily derived from the literature and network

pharmacology rather than direct experiments, these

conclusions are predictive and require validation by both
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qualitative and quantitative experiments on compounds to single

targets. In addition, there is a certain gap between the metabolic

pathway results derived from the depression model mice and the

clinical patients, so validation studies based on the quantitative

analysis of metabolites in clinical samples are needed.
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Glossary

5-HT 5-hydroxytryptamine

AMY1A amylase alpha 1A

ASH Acanthopanax senticosus (Rupr. et Maxim.) Harms

BBB blood–brain barrier

CUMS chronic unpredictable mild stress

DA dopamine

DAO D-amino acid oxidase

DL drug-likeness

FC fold change

FST forced swimming test

GC–MS gas chromatography–mass spectrometry

GAA alpha glucosidase

GI gastrointestinal

HK1 hexokinase 1

HPA hypothalamus–pituitary–adrenal

HPLC high-performance liquid chromatography

MAOA monoamine oxidase A

MAOB monoamine oxidase B

MDD major depressive disorder

NE norepinephrine

NMDA N-methyl-D-aspartate

OB oral bioavailability

OMM outer mitochondrial membrane

OPLS-DA orthogonal partial least squares-discriminant analysis

PCA principal component analysis

PLS-DA partial least squares-discriminant analysis

PYGM glycogen phosphorylase muscle associated

SPT sucrose preference test

TST tail suspension test

VIP variable importance in projection
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