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Glioma is the most common type of central nervous system tumor with

increasing incidence. 7-methylguanosine (m7G) is one of the diverse RNA

modifications that is known to regulate RNA metabolism and its

dysregulation was associated with various cancers. However, the expression

pattern of m7G regulators and their roles in regulating tumor immune

microenvironments (TIMEs) as well as alternative splicing events (ASEs) in

glioma has not been reported. In this study, we showed that m7G regulators

displayed a close correlation with each other and most of them were

differentially expressed between normal and glioma tissues. Two m7G

signatures were then constructed to predict the overall survival of both GBM

and LGG patients with moderate predictive performance. The risk score

calculated from the regression coefficient and expression level of signature

genes was proved to be an independent prognostic factor for patients with

LGG, thus, a nomogram was established on the risk score and other

independent clinical parameters to predict the survival probability of LGG

patients. We also investigated the correlation of m7G signatures with TIMEs

in terms of immune scores, expression levels of HLA and immune checkpoint

genes, immune cell composition, and immune-related functions. While

exploring the correlation between signature genes and the ASEs in glioma,

we found that EIF4E1B was a key regulator and might play dual roles depending

on glioma grade. By incorporating spatial transcriptomic data, we found a

cluster of cells featured by high expression of PTN exhibited the highest

m7G score and may communicate with adjacent cancer cells via SPP1 and

PTN signaling pathways. In conclusion, our work brought novel insights into the

roles of m7G modification in TIMEs and ASEs in glioma, suggesting that

evaluation of m7G in glioma could predict prognosis. Moreover, our data

suggested that blocking SPP1 and PTN pathways might be a strategy for

combating glioma.
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Introduction

Glioma is one of the most common and devastating tumors

accounting for approximately 25.6% of all brain and other

central nervous system (CNS) tumors and about 82.4% of all

malignant tumors (Ostrom et al., 2020, 2013–2017). Gliomas

are classified into lower-grade gliomas (LGG) consisting of

WHO grade 2 and 3 gliomas and glioblastomas (GBM)

belonging to WHO grade 4 gliomas. Despite the integration

of treatment modalities such as surgical resection, radiotherapy,

and chemotherapy, the clinical outcome of glioma patients is

still far from satisfactory (Ho et al., 2014). Thus, discovering

new therapeutic targets and prognostic markers for glioma is of

great importance.

Diverse RNA modifications play critical roles in RNA

metabolisms including pre-mRNA splicing, nuclear

exportation, transcript stabilization, and translation

initiation, and also take part in the regulation of

tumorigenesis (Shi et al., 2020). Following transcription,

RNA can undergo more than 170 chemically distinct types

of modifications (Wiener and Schwartz, 2021), and m7G is one

of these modifications that exist in the internal site of tRNA,

rRNA (Rong et al., 2021), and the 5′ cap of mRNA (Malbec

et al., 2019). During the past few years, internal m7G sites

within mRNA and miRNA were also identified (Pandolfini

et al., 2019; Zhang et al., 2019). m7G modification of tRNA

occurs most frequently at position 46 in the variable region,

stabilizing tRNA via base pair with C13-G22 in the three-

dimensional core (Tomikawa, 2018). The yeast small

ribosomal subunit (SSU) rRNA and bacterial SSU and large

ribosomal subunit (LSU) rRNA are also m7G-modified (Rong

et al., 2021). In mRNAs, m7G modification at the 5′ cap

regulates their export, translation, and splicing. Besides,

METTL1 was identified as a methyltransferase that

mediates m7G modification within a subset of mRNA and

miRNA that can affect mRNA translation and miRNA

maturation respectively (Pandolfini et al., 2019; Zhang

et al., 2019). The dysregulation of m7G RNA modification

was reported to be associated with various cancers. For

example, METTL1/WDR4 mediated m7G tRNA

modification increased the translation of oncogenic mRNA

with a higher frequency of m7G tRNA-decoded

codons, promoting the progression of lung cancer (Ma

et al., 2021) and intrahepatic cholangiocarcinoma (Dai

et al., 2021).

In recent years, the prognostic value of RNA modification in

glioma has been extensively studied. For example, m6A RNA

methylation regulator-based risk models were constructed for the

prediction of prognosis in astrocytoma (Guo F. et al., 2022), low-

grade gliomas (Liu et al., 2021; Zheng et al., 2021), glioblastomas

(Cai et al., 2021), and glioma (Guan et al., 2021). However, the

expression pattern and prognostic value of genes related to m7G,

a newly discovered form of RNAmodification, remains unknown

in glioma.

In the present study, we characterized the expression pattern

of m7G regulators and analyzed their association with TIMEs.

Additionally, we constructed m7G signatures and evaluated their

role in predicting prognosis. We also investigated the regulatory

effect of m7G in alternative splicing.

2 Material and methods

Data extraction

RNA sequencing (RNA-seq) data of 698 glioma samples

(169 GBM and 529 LGG) and 5 normal controls were obtained

from The Cancer Genome Atlas (TCGA) database. After

removing samples of recurrent tumor, 667 primary glioma

samples (156 GBM and 511 LGG) were left for analyzing the

expression profile of m7G regulators. Among them,

659 patients (153 GBM and 506 LGG) with complete

follow-up information were further selected for analyzing

the correlation between m7G regulators and prognosis,

TIMEs, and ASEs. The corresponding clinical information

was downloaded from UCSC Xena (http://xena.ucsc.edu/).

The clinical characteristics of patients involved in this study

were summarized in Table 1. Proteomic data of 100 GBM

patients and 10 normal controls were downloaded from the

CPTAC database (PDC000204). The protein level of signature

genes was obtained online from the Human Protein Atlas

(HPA, www.porteinatlas.org). 33 m7G-related genes were

collected from the literature (Tomikawa, 2018) and the

Gene Set Enrichment Analysis website (http://www.gsea-

msigdb.org). The m7G-related genes were presented in

Supplementary Table S1

The expression profile of m7G regulators

The correlation network and correlation heatmap of m7G

regulators were constructed via the “igraph” and “corrplot” R

packages respectively. The expression levels of m7G regulators

among normal tissue, GBM, and LGG were compared by the

Kruskal-Wallis test. The Wilcox test was applied to compare

the difference in the expression level of m7G regulators

between any two of the three groups. A p-value of less than

0.05 was considered statistically significant.
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Construction of prognostic m7G signature

The univariate Cox regression analysis was performed to

screen prognostic m7G regulators (p-values<0.05) and the

multivariate Cox regression was applied to construct

prognostic m7G signatures for both GBM and LGG cohorts.

The risk score was then calculated for each patient as follow:

Risk score � β(Gene1)p exp(Gene1) + β(Gene2)p exp
(Gene2) + . . . . . . β(Gene n)p exp(Gene n) (β: coefficients; exp:
gene expression level).

Patients were then further stratified into low- and high-risk

groups according to the median risk score. The survival

difference between two risk groups was assessed by the

Kaplan-Meier method via the “survival” and “survminer” R

packages. The accuracy of the m7G signature in predicting

prognosis was evaluated by the ROC curve and the area under

the curve (AUC). Univariate and multivariate Cox regression

analyses were employed to examine whether the m7G signature

was an independent risk factor for OS.

Building of prognostic nomogram

The risk score and available clinicopathological parameters

with possible prognostic values were subjected to the univariate

Cox regression and multivariate Cox regression analyses to

identify independent prognostic factors. Based on independent

prognostic factors, a nomogram was constructed to predict the

survival probability by using the “rms” R package. The

discrimination of the nomogram was assessed by calculating

the concordance index (C-index). The relationship between the

predicted and observed risk for the outcomes of the nomogram

was graphically displayed as calibration plots.

Analysis of immune microenvironment

The expression level of HLA-related genes and immune

checkpoint genes were extracted from the RNA sequencing

data. The Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data (ESTIMATE)

algorithm was used to estimate the immune score and stromal

score. The CIBERSORT algorithm was used to estimate the

infiltration level of immune cells. The single-sample gene set

enrichment analysis (ssGSEA) was conducted by the “gsva” R

package to quantify the infiltrating immune cells and the

immune-related functions of each sample.

Analysis of alternative splicing events

The imputed Percent Spliced In value (PSI) of 7 alternative

splice event (ASE) types (AA: Alternate Acceptors; AD: Alternate

Donors; ES: Exon Skip; RI: Retained Intron; AP: Alternate

Promoters; AT: Alternate Terminators; ME: Mutually

Exclusive Exons) for patients in TCGA-GBM and TCGA-LGG

cohorts were downloaded from the TCGA SpliceSeq database

(https://bioinformatics.mdanderson.org/TCGASpliceSeq/). The

univariate Cox model was performed to identify OS-related

splice events (OS-SEs), which were then presented in UpSet

plots (“UpSetR” R package). Moreover, the top 20 OS-SEs of each

type of ASEs were shown in bubble plots. Regulatory networks

between signature genes and OS-SEs were constructed via

Cytoscape (3.9.0) based on Pearson correlation analyses.

Analysis of spatial gene expression data

Spatial gene expression data of a human glioblastoma case was

downloaded from 10xGENOMICS (https://www.10xgenomics.com/)

TABLE 1 Clinical characteristics of patients involved in this study.

Characteristics TCGA-GBM
(n = 153)

TCGA-LGG
(n = 506)

Age(years)

<65 96 471

S65 57 35

Gender

Male 99 280

Female 54 226

Race

Asian 5 8

American Indian 0 1

Black or Africa
American

10 21

White 137 466

Unknown 1 10

WHO grade

WHO2 0 245

WHO3 0 260

WHO4 153 0

Unknown 0 1

Vital status

Alive 29 380

Dead 122 125

Unknown 2 1

Radiotherapy

Yes 123 273

No 21 167

Unknown 9 66

Person tumor status

With tumor 123 237

Tumor free 13 167

Unknown 17 102
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datasets and processed via R packages “hdf5r”, “Seurat” and

“CellChat”.

Statistical analysis

Statistical analyses were performed using R software v 4.1.3.

p-value <0.05 was considered statistically significant

3 Results

The expression profile of 7-
methylguanosine regulators in glioma

Firstly, we extracted the expression data of 33m7G regulators

from the TCGA data set. The correlation network (Figure 1A)

and the spearman analysis of correlation coefficients (Figure 1B)

FIGURE 1
The expression profile of m7G regulators in glioma. (A) The correlations network of 33 m7G regulators (red lines represent positive correlation
and blue lines represent negative correlation, the darkness of color represents the strength of correlation). (B) The correlation heatmap of 33 m7G
regulators (red dots represent positive correlation and blue dots represent negative correlation, the darkness of color represents the strength of
correlation). (C) The expression levels of m7G-related genes among normal tissue, GBM and LGG (Kruskal-Wallis test, *p < 0.05; **p < 0.01;
***p < 0.001)
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indicated an intensive connection among them. By comparing

the expression level of m7G regulators among normal tissue,

GBM and LGG, 23 were found to be differentially expressed (p <
0.05). Specifically, 16 genes (CYFIP1, DCPS, EIF3D, EIF4A1,

GEMIN5, LSM1, METTL1, NCBP1, NCBP2, NSUN2, NUDT1,

NUDT16L1, NUDT4B, NUDT5, SNUPN, and WDR4) were up-

regulated while 8 genes (CYFIP2, EIF4E1B, EIF4E3, EIF4G3,

LARP1, NUDT10, NUDT3) were down-regulated in tumor

tissue (Figure 1C). We noticed that the expression level of

most m7G regulators was similar between GBM and LGG

except for DCPS, EIF4E1B, NUDT1, and NUDT16L1

(Supplementary Figures S1A–C). Given the fact that GBM has

a worse prognosis compared to LGG, the higher level of these

4 m7G regulators in GBMmight suggest their contribution to the

malignancy of glioma.

The prognostic value of 7-
methylguanosine regulators in glioma

In the GBM cohort, 3 OS-related m7G regulators

(NUDT5, EIF4E1B, and NUDT11) were identified by the

univariate Cox regression analysis (p < 0.05, Figure 2A).

Among them, EIF4E1B was associated with poor prognosis

(HR > 1) while NUDT5 and NUDT11 were predictors of

favorable outcomes (HRs<1). These 3 genes were further

incorporated by the multivariate Cox regression model to

construct the prognostic m7G signature for GBM

(Figure 2B). The risk scores based on regression coefficient

and expression level of genes in the signature were calculated

as follow: Risk score = 1.843* exp (EIF4E1B)—0.230* exp

(NUDT11)—0.587* exp (NUDT5). By using the median risk

score as a cutoff value, 153 GBM patients were subdivided into

low- (n = 77) and high-risk (n = 76) groups. A significant

difference in survival probability between the two risk groups

was revealed by Kaplan-Meier survival analysis (p value <
0.05, Figure 2C). Then, the ROC analysis was performed to

evaluate the predictive sensitivity and specificity of our risk

model at 0.5, 1.5, and 2.5 years and the corresponding AUC

value was 0.63, 0.61, and 0.71 respectively (Figure 2D). In the

LGG cohort, 15 prognostic m7G regulators (METTL1,

CYFIP1, CYFIP2, NUDT11, NUDT10, EIF3D, WDR4,

GEMIN5, NCBP1, NUDT5, NUDT1, EIF4G3, EIF4E3,

SNUPN, and NSUN2) were screened by the univariate Cox

regression analysis (p < 0.05, Figure 2E). Among them, 9 genes

(METTL1, CYFIP1, WDR4, GEMIN5, NCBP1, NUDT1,

EIF4G3, SNUPN, and NSUN2) were risk genes with

HRs>1 while the other 6 genes (CYFIP2, NUDT11,

NUDT10, EIF3D, NUDT5, and EIF4E3) were favorable

genes with HRs<1. Subsequently, 7 genes were incorporated

by the multivariate Cox regression model to construct the

prognostic m7G signature (Figure 2F). Similarly, the risk

scores for each LGG patient were calculated as follow: Risk

score = 0.708* exp (CYFIP1)—0.233* exp (CYFIP2) – 1.364*

exp (EIF3D)—0.839* exp (EIF4E3) + 1.187* exp (GEMIN5) +

0.417* exp (NUDT1)—1.270* exp (NUDT5). Based on the

median risk score, 506 LGG patients were evenly assigned into

the low- and high-risk groups with significant survival

difference (Figure 2G). The AUC value of the ROC curve at

1, 3, and 5 years were 0.83, 0.77, and 0.69 respectively

(Figure 2H). These data suggested that prognostic

signatures constructed on m7G regulators can predict the

overall survival of both GBM and LGG patients with

moderate performance.

To better characterize the expression of m7G signature

genes, mRNA expression data of the GBM cohort (169 GBM

cases and 5 normal controls) were extracted from the TCGA

database, and proteomic data of 100 GBM cases and 10 normal

controls were downloaded from the CPTAC database

(PDC000204) and the immunohistochemical data of GBM

cases and normal controls were obtained online from the

Human Protein Atlas. As illustrated in Supplementary Figure

S2.1–S2.3, the mRNA level and protein levels of CYFIP1,

EIF3D, GEMIN5, and NUDT1 were higher in GBM samples

compared with normal controls, while the mRNA and protein

levels of CYFIP2 were lower in GBM samples. As for EIF4E3,

NUDT5, and NUDT11, though the difference in mRNA levels

was observed between normal and GBM tissues, their protein

levels were similar. The mRNA level of EIF4E1B was higher in

normal tissue compared to GBM, however, mass spectrometry

failed to detect its protein product, constantly,

immunohistochemical staining of EIF4E1B was negative in

both normal and GBM tissues.

The independent prognostic value of the
m7G signatures

Furthermore, univariate and multivariate Cox regression

analyses were performed in both cohorts to evaluate whether

the risk score could be an independent prognostic predictor

for OS in glioma patients. Our results indicated that in the

GBM cohort, the risk score was not an independent prognostic

predictor with HRs (95% CI) of 1.7217 (1.3126–2.2582) and

1.29 (0.958–1.73) in the univariate and multivariate Cox

regression analyses respectively (Figures 3A,B). In the LGG

cohort, the risk score was proved to be an independent poor

prognosis predictor with HRs (95% CI) of 1.2095

(1.593–1.2618) and 1.15 (1.10–1.2) in the univariate and

multivariate Cox regression analyses respectively (Figures

3C,D). Based on the independent prognostic parameters

(risk score, age, cancer status, and WHO grade), we

constructed a nomogram to predict the 1-, 3-, and 5-year

survival probabilities of LGG patients (Figure 3E). The

C-index of the nomogram was 0.837. The 1-, 3-, and 5-year

calibration curves showed a favorable consensus between the
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FIGURE 2
Construction of the prognostic m7G signature. (A) 3 prognostic m7G regulators in the GBM cohort were screened by the univariate cox
regression analysis. (B) 3 m7G regulators were incorporated by the multivariate cox regression analysis to build the prognostic m7G signature in the
GBM cohort. (C) Kaplan-Meier survival curve for the OS of patients in the high-risk (yellow) group and low-risk group (blue) in the GBM cohort. (D)
AUC of the time-dependent ROC analysis for evaluating the prognostic performance of the risk score in the GBM cohort. (E) 15 prognostic m7G
regulators in the LGG cohort were screened by the univariate cox regression analysis. (F) 7m7G regulators were incorporated by themultivariate cox
regression analysis to build the prognostic m7G signature in the LGG cohort. (G) Kaplan-Meier survival curve for the OS of patients in the high-risk
(yellow) group and low-risk group (blue) in the LGG cohort. (H) AUC of the time-dependent ROC analysis for evaluating the prognostic performance
of the risk score in the LGG cohort.
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FIGURE 3
The independent prognostic value of the m7G signature and the construction of a predictive nomogram. Univariate (A,C) andmultivariate (B,D)
Cox regression analysis of the risk score and clinical factors in the GBM cohort (A,B) and the LGG cohort (C,D). A nomogram was constructed based
on independent predictive factors for predicting the 1-, 3-, and 5- year survival probability of LGG patients (E). Calibration plot for validating the
accuracy of the nomogram (F).
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FIGURE 4
The immune landscape in GBM and LGG subgroups. The violin plot and boxplots showed the immune score (A,F), expression level of immune
checkpoint genes (B,G) and HLA genes (C,H), infiltration level of various immune cell types (D,I), and activity of immune functions (E,J) between
high-risk (yellow) and low-risk groups (blue) in the GBM (A–E) and LGG (F–J) cohorts (Wilcox test, *p < 0.05; **p < 0.01; ***p < 0.001)
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survival predicted by nomogram and the actual survival

(Figure 3F)

The relationship between m7G signature
and the immune microenvironment in
glioma

To depict the immune landscape in two risk groups

stratified by m7G signatures in both GBM and LGG

cohorts, we first calculated the immune score from

transcriptomic data using the ESTIMATE algorithm. The

immune score was similar between the two risk groups in

the GBM cohort (Figure 4A) but significantly higher in the

high-risk group in the LGG cohort (Figure 4F). Next, we

compared the expression of the immune checkpoint genes

between two risk groups. In the GBM cohort, up-regulation of

CD274 and down-regulation of LAG3 were observed in the

high-risk group compared to the low-risk group (Figure 4B).

In the LGG cohort, the expression level of all immune

checkpoint genes (CD274, HAVCR2, CD276, LAG3,

PDCD1, and CTLA4) increased significantly in the high-

risk group (Figure 4G). We also explored the expression of

HLA-related genes in both cohorts. The result showed a

significantly higher expression level of HLA-E, HLA-DOB,

HLA-C, and HLA-B in the high-risk group of the GBM cohort

(Figure 4C). In the LGG cohort, the expression levels of all

HLA genes were higher in the high-risk group (Figure 4H).

We then quantified the infiltration level of 16 immune

cells and the activity of 13 immune-related pathways

between the low- and high-risk groups via ssGSEA. We

found that tumor tissues from GBM patients in the high-

risk group had a significantly higher infiltration level of

pDCs and Tregs (Figure 4D), however, neither of them

were associated with patient outcomes (Supplementary

Figures S3A,B). In the LGG cohort, tumor tissues from

the high-risk group were predicted to contain a higher

level of many immune cell types, including B cells, CD8+

T cells, iDCs, macrophages, neutrophils, pDCs, T helper

cells, Tfh, Th1 cells, Th2 cells, TIL, and Treg (Figure 4I).

Among them, the higher infiltration level of

macrophages, pDCs, Th1 cells, Th2 cells, TIL, and Treg

was associated with poor clinical outcomes in the LGG

cohort (Figure 5 and Supplementary Figures S3C–H). In

terms of immune pathways, the activity of pathways

relating to APC co-inhibition, CCR, MHC class1, and

para-inflammation were predicted to be higher in the

high-risk group in the GBM cohort (Figure 4E). In the

LGG cohort, all the 13 immune pathways assessed showed

higher activity in the high-risk group than in the low-risk

group (Figure 4J).

The relationship between m7G regulators
and alternative splicing in glioma

In mRNA, m7G modification at the 5′ cap was implied to

regulate RNA splicing, to explore the possible regulatory effect of

m7G regulators on alternative splicing in glioma, PSI scores of

7 types of ASEs for 154 GBM patients and 510 LGG patients were

obtained from the TCGA SpliceSeq database. Among them

45610 ASEs in 10434 genes were identified in GBM cases,

including 3827 AAs (2,684 genes), 3269 ADs (2,270 genes),

8686 APs (3,476 genes), 8456 ATs (3,696 genes), 18360 ESs

(6,935 genes), 184 MEs (181 genes) and 2828 RIs (1,898 genes)

(Figure 6A). A total number of 48050 ASEs in 10788 genes were

recognized in LGG cases, containing 3876 AAs (2,720 genes),

3351 ADs (2,353 genes), 9964 APs (3,976 genes), 8718 ATs

(3,810 genes), 18931 ESs (7,076 genes), 273 MEs (262 genes) and

2937 RIs (1,971 genes) (Figure 6B). These results indicated that one

gene can undergo several types of splicing events and the

predominant splicing pattern in both cohorts was ES.

Subsequently, univariate Cox analysis revealed 975 and

7,213 ASEs to be correlated with OS of GBM and LGG patients

respectively (Figures 6C–D). We showed the top 20 OS-ASEs of the

7 types of splicing patterns as bubble plots (Supplementary Figure

S4–S5) and the most significant OS-SE was the ZNF280D-30765-

AP for GBM and the UGP2-53745-AP for LGG. Next, we used

Pearson correlation analysis to explore the underlying connection

between 23 differentially expressed m7G regulators and OS-SEs,

those with p < 0.001 and |correlation coefficient|>0.6 were kept for
regulatory network construction. In the GBM cohort, EIF4E1B was

the only signature gene that correlated with OS-SEs (Figure 6E,

Supplementary Table S2). Specifically, EIF4E1B was positively

correlated with risk ASEs (HR > 1) and negatively correlated

with protective ASEs (HR < 1). In the LGG cohort, CYFIP1,

CYFIP2, EIF3D, EIF4A1, EIF4E1B, EIF4E3, EIF4G3, GEMIN5,

NSUN2, NUDT1, NUDT10, and NUDT16L1 were predicted to

be associated with many OS-SEs (Supplementary Figure S6,

Supplementary Table S3). Interestingly, EIF4E1B was positively

correlated with almost all protective ASEs and negatively

correlated with risk ASEs in the LGG cohort (Figure 6F,

Supplementary Table S3). Indicating that EIF4E1B might be a

risk factor in GBM while a protective factor in LGG. To test this

notion, we subdivided patients into EIF4E1B-high and EIF4E1B-low

expression groups based on cutoff values determined by the

“surv_cutpoint” function of R package “survminer”

(0.1252297 for GBM and 0.02686604 for LGG) and compared

the survival difference by the Kaplan-Meier method. It is

revealed that though statistically not significant, GBM patients in

EIF4E1B high expression group tend to have worse clinical

outcomes (Figure 6G), however, in the LGG cohort, high

EIF4E1B expression was significantly associated with better

survival probability (Figure 6H).
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Intra-tumoral heterogeneity in the
context of m7G regulators

A distinct pathological feature of glioma, especially GBM

is the high degree of inter- and intra-tumoral heterogeneity

(Gularyan et al., 2020). The above exploration of m7G

regulators’ expression profile and their correlation with

TIMEs as well as alternative splicing events described the

inter-tumoral heterogeneity in the context of RNA m7G

modification. To further investigate the intra-tumoral

heterogeneity of m7G modification within an individual

tumor, we analyzed spatial gene expression data of a case

of GBM obtained from 10XGENOMICS datasets. Firstly,

using resolution determined by the “clustree” R package

(resolution = 0.2, Supplementary Figure S7), 7 clusters of

cells were identified by unsupervised clustering (Figure 7A),

and the top 10 highly expressed genes were recognized as

maker genes of a given cluster (Supplementary Table S4). We

then establish a m7G score for each cell based on 16 m7G

regulators whose expression was significantly higher in GBM

compared to normal tissue. The violin plot showed that cluster

1, marked by high expression of PTN, exhibited the highest

m7G score (Figures 7C,D). We noticed that cells from cluster

3 (characterized by high expression of gene SREBF1,

Figure 7E) and cluster 5 (characterized by high expression

of THY1, Figure 7F) embedded with cluster 1 spatially,

implying possible intercellular crosstalk. We then predict

the communication among these 3 cell types using the

“CellChat” R package (Figure S8). As shown in Figures

7G–J, the two most significant communicating pathways

were SPP1 and PTN.

4 Discussion

Among central nervous system tumors in adults, glioma

represents the most common type, and the incidence of diffuse

glioma is about 1000,000 cases per year (Molinaro et al., 2019).

Epidemiology data indicated an increased incidence of brain

tumors during the past decades (Grech et al., 2020), arguing

FIGURE 5
Infiltration level of immune cells predicts OS of LGG patients. Kaplan-Meier survival curve for theOS of LGG patients subdivided bymacrophage
(A), pDC (B), Th1 cell (C), Th2 cell (D), TIL (E), and Treg (F) infiltration level (yellow lines represent high infiltration group and blue lines represent low
infiltration group)
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FIGURE 6
Relationship betweenm7G regulators and alternative splicing in glioma The Upset plot of seven types of ASEs in the GBM (A) and LGG (B) cohort
derived from the TCGA database. The Upset plot of seven types of ASEs associated with the overall survival of GBM (C) and LGG (D) patients. The
splicing correlation network between EIF4E1B and OS-SEs in GBM (E) and LGG (F) (risk SEs with HRs>1 were represented by red dots, favorable SEs
with HRs<1 were represented by blue dots. Red arrows indicate positive correlation while blue arrows indicate negative correlation). The
Kaplan-Meier survival curves showed different survival probabilities in GBM (G) and LGG (H) patients stratified by EIF4E1B expression level. (Yellow
lines represent the high expression group and blue lines represent the low expression group).
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FIGURE 7
Intra-tumoral heterogeneity in the context of m7G regulators expression. (A)Hematoxylin and eosin (H,E) staining of tissue section labeledwith
cluster information. (B) The Spatial relationship between a cluster of cells with the highest m7G score (Cancer_PTN) and two clusters of cells
(Cancer_SREBF1, and Cancer_THY1) in its proximity. (C) Violin plots showed them7G score of 7 clusters of cells identified by unsupervised clustering.
(D–F) Cell markers of cluster 1, cluster 3, and cluster 5. Cell-cell communications via the SPP1 (G,I) and PTN (H,J) pathway predicted by the
“CellChat” R package were shown.
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for the discovery of novel therapeutic targets and prognostic

markers.

Methylation signature has been reported to be associated

with survival in glioma, for example, a two-CpG site DNA

methylation signature was constructed to predict the

prognosis of lower-grade glioma with high accuracy (Guo W.

et al., 2022). Additionally, a DNA methylation-driven genes

signature was established for risk stratification in GBM (Yu

et al., 2021). m6A RNA methylation was reported to regulate

the tumorigenesis of glioma. A recent study comprehensively

investigated the m6A regulators in glioma revealed that m6A-

readers were more significantly involved in the stability,

translation efficiency, alternative splicing, and localization of

mRNA in LGG than in GBM (Zhao et al., 2021). Besides,

prognostic m6A RNA methylation signatures have been

constructed in CNS tumors (Cai et al., 2021; Guan et al.,

2021; Liu et al., 2021; Zheng et al., 2021; Guo F. et al., 2022).

However, the prognostic value of other methylation signatures

like 7-methylguanosine is not yet determined despite its

involvement in cancer development being validated by recent

studies.

In this study, we first characterized the expression pattern

of m7G regulators based on expression data from TCGA.

Close connections were observed among 33 m7G regulators

and 23 out of them were differentially expressed between

normal and glioma tissues. Univariate and multivariate Cox

analyses were subsequently performed to construct m7G

signatures to predict the overall survival probability in both

GBM and LGG. Here, we discussed the specific roles and

clinical relevance of m7G regulators in the signatures as

follows:

Translation initiation is a critical step in controlling protein

expression levels. In most cases, translation initiation in

eukaryotes is mediated by the assembly of the eukaryotic

translation initiation complex eIF4F to the 5’ m7G cap

(Hinnebusch, 2014). eIF4F comprises the cap-binding protein

eIF4E, eIF4G, and the RNA helicase eIF4A (Hinnebusch, 2014).

EIF4E1B gene was thought to arise in tetrapoda as a result of the

ancestral EIF4E locus duplication. (Evsikov and Marín de

Evsikova, 2009). In contrast to the ubiquitously expressed

eIF4E protein, eIF4E1b expression is confined to ovaries,

oocytes, and early embryos in mice, zebrafish, and Xenopus

(Kubacka et al., 2015). Though eIF4E1b is a paralog of eIF4E

with conserved cap-binding residues, its cap-binding affinity is 3-

fold less well than eIF4E (Kropiwnicka et al., 2015; Kubacka et al.,

2015) and hence promote translation initiation at a lower rate

compared with eIF4E (Patrick et al., 2014). It is reported that

eIF4E1b is a component of the CPEB (cytoplasmic

polyadenylation element-binding protein) mRNP repressor

complex, which inhibits protein synthesis in Xenopus oocytes

(Minshall et al., 2007; Standart and Minshall, 2008). However,

the expression and function of EIF4E1B gene and eIF4E1b

protein have not been reported in humans, our results showed

that the mRNA level of EIF4E1B decreased in glioma tissue,

indicating possible anti-tumor effects. We also revealed that the

expression of EIF4E1B was positively correlated with risk ASEs

and negatively correlated with protective ASEs in GBM.

Oppositely, it is positively correlated with protective ASEs and

negatively correlated with risk ASEs in LGG. These findings

suggested that EIF4E1B might perform dual roles depending on

glioma grade. However, immunohistochemical staining and

proteomic technique failed to detect the eIF4E1b protein in

both normal cortex and glioma tissues. There could be two

explanations that remained to be further validated by

experiments, one is that eIF4E1b was degraded rapidly after

functioning and the other one is that EIF4E1B functions in form

of RNA rather than protein.

The assembly of eIF4F on the 5′ terminal m7G cap is often

regulated by the 4E binding protein (4E-BPs), which interferes

with the eIF4E-eIFG interaction. The cytoplasmic fragile x

mental retardation protein-interacting protein 1 (CYFIP1)

functions as a 4E-BP to interact with the eIF4F and the

Fragile X mental retardation protein (FMRP). In the brain,

the eIF4E-CYFIP1-FMRP complex is present at synapses,

repressing protein translation (Napoli et al., 2008).

CYFIP1 was reported to be associated with brain diseases

(Schenck et al., 2001) such as schizophrenia (Zhao et al., 2013)

and autism spectrum disorders (Waltes et al., 2014). CYFIP2 is

another member of the CYFIP family that was associated with

Alzheimer’s disease (Tiwari et al., 2016), intellectual disability

(Zweier et al., 2019), and early-onset epileptic

encephalopathy (Nakashima et al., 2018). Though being

recognized as an RNA 7-methylguanosine cap-binding

protein, the specific role of CYFIP2 in m7G modification

has not yet been determined.

Alternative to eIF4F mediated translation initiation,

EIF3 can bind to the m7G cap of mRNA to promote the

translation of specific mRNA containing structures that

prevent the actions of eIF4F (Cate, 2017). EIF3D is a subunit

of EIF3 that facilitates the cap-dependent translation of

approximately 20% of mRNA (de la Parra et al., 2018).

EIF3D was widely studied in cancer and was known to

promote the progression of cervical cancer (Zhong and Lan,

2022, 78), gallbladder cancer (Zhang et al., 2017), and renal cell

carcinoma (Pan et al., 2016; Huang et al., 2019). Besides, EIF3D

might serve as an independent poor prognostic marker in lung

adenocarcinoma (Wang et al., 2019)

Gemin5 is a multitasking protein that was reported to

crosstalk with the translation machinery in different ways

(Piñeiro et al., 2015). Gemin5 can interact with the eIF4E

(Fierro-Monti et al., 2006) or displays m7G cap-binding

capacity (Bradrick and Gromeier, 2009) to regulate cap-

dependent translation, besides, it can also interact with the

internal ribosome entry site (IRES) of foot-and-mouth disease

virus (FMDV) and hepatitis C virus (HCV) to regulate IRES-

driven translation (Pacheco et al., 2009).
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NUDT1, NUDT5 and NUDT11 are proteins with m7G(5′)
pppN-diphosphatase activity that catalyze the reaction 7-

methylguanosine 5′-triphospho-5′-polynucleotide + H2O = 7-

methylguanosine 5′-phosphate + polynucleotide. Hydrolysis of

oxidized DNA precursors by NUDT1(MTH1) is a way to prevent

mutagenesis (Nakabeppu et al., 2017). Cancer cells usually

exhibit unregulated ROS production that might oxidize DNA

as well as free dNTP. It was shown that cancer cells require

NUDT1 to sanitize oxidized dNTP, preventing DNA damage and

cell death caused by the incorporation of oxidized dNTP. In the

same study, NUDT1 inhibition by small molecules was validated

to suppress cancer growth by accumulating oxidative damage

(Gad et al., 2014). In addition to NUDT1, NUDT5 is also capable

of degrading oxidized DNA precursors, avoiding the occurrence

of mutations (Ishibashi et al., 2003). Elevated NUDT5 level has

been reported as a poor prognostic marker of breast cancer (Tong

et al., 2021), non-small cell lung cancer (Li et al., 2021),

esophageal squamous cell carcinoma (Wang et al., 2020), and

clear cell renal cell carcinoma (Wang et al., 2017).

NUDT11 might associate with encephalitozoonosis

(Desoubeaux et al., 2017), prostate cancer (Grisanzio et al.,

2012), and ovarian cancer (Fortner et al., 2017; Katchman

et al., 2017; Kaaks et al., 2018)

Then risk scores calculated from m7G signatures were

used to subdivide glioma patients into two risk groups with

distinct immune microenvironments. We also created a m7G

score using the “AddModuleScore” function of the “Seurat”

R package to investigate the expression landscape of m7G

regulators in a spatial expression dataset of GBM. It turned

out that a cluster of cancer cells featured by high expression

of PTN scored highest among the 7 clusters identified. These

cells were embedded with SREBF1- and THY1-high

expressing cancer cells. The SPP1 and PTN signaling

pathways were then recognized by the “CellChat” R

package as the most significant pathways of cell

communication among these 3 cell types.

The secreted phosphoprotein 1 (SPP1) is an integrin-

binding phosphorylated glycoprotein that has been reported

to play important roles in several tumor-associated processes,

including proliferation, invasion, migration, angiogenesis, and

metastasis (Huang et al., 2017; Zeng et al., 2018; Chiou et al.,

2019). In glioma, it is reported that tumor cells including

glioma stem cells (GSCs) elaborate OPN into the local

microenvironment where it acts as a chemokine for tumor-

supportive monocytes and macrophages. OPN-mediated

chemokine activity of macrophages depends on the

interaction of OPN with integrin αvβ5 and CD44 (Zhu

et al., 2004). The glioma infiltrating macrophages (GIMs)

can also secrete OPN to further amplifies the recruitment

of additional immune-suppressive monocyte and

macrophages (Wei et al., 2018). Besides, OPN secreted by

GIMs can also sustain glioma cell survival and stimulate

angiogenesis (Chen et al., 2019). Moreover, OPN might also

regulate the mesenchymal phenotype of glioma by interacting

with CD44 on tumor cells (He et al., 2021).

The pleiotrophin (PTN) is a critical cytokine that regulates

diverse physiological functions (Mitsiadis et al., 1995). PTN

functions mainly through its receptor PTPRZ1 to increase

phosphorylation of the downstream effectors, thereby activating

the signal transduction related to cell growth, migration, and cellular

activities (Meng et al., 2000; Kawachi et al., 2001; Deuel et al., 2002;

Pariser et al., 2005). GIMs can secret abundant pleiotrophin (PTN)

to stimulate glioma stem cells (GSCs) through its receptor

PTPRZ1 thus promoting GBM malignant growth through PTN-

PTPRZ1 paracrine signaling (Shi et al., 2017). Interestingly, our data

suggested that cells with the highest m7G score also exhibited a high

expression level of microglia/macrophage markers CD63

(Supplementary Table S6), and these cells were predicted to

communicate with a cluster of cells with high expression of

cancer stem cell maker THY1 via PTN pathway.

Our study illustrated thatm7Gmodificationwas associated with

glioma since most m7G-related genes were differentially expressed

between normal and glioma tissues. Moreover, risk scores calculated

from prognostic m7G signatures can predict outcomes of glioma

patients. Our analyses also revealed that the tumor immune

microenvironment was significantly different between the two

risk groups stratified by risk scores in terms of HLA genes,

immune checkpoint genes, the composition of infiltrated

immune cells, and the activity of immune-related pathways.

mRNA m7G modification is known to regulate RNA metabolism

including alternative splicing. EIF4E1B was found to associate with

OS-SEs most significantly among differentially expressed m7G

regulators and we also reported the dual functions of this gene

depending on glioma grade. Additionally, using spatial expression

data, we found that the m7G score was highest in a cluster of cells

that featured by high PTN level, which might communicate with

adjacent tumor cells through SPP1 and PTN signaling pathways,

further implying the regulatory role of m7G modification in the

tumor-promoting microenvironment.

However, there are some limitations to be improved: Firstly,

though we described a close connection in the expression of m7G

regulators and a close correlation between m7G modification and

TIMEs as well as ASEs, we failed to explain the mechanism behind

these phenomena due to the lack of evidence in this filed currently.

Secondly, in the section where independent prognostic factors were

screened for constructing nomogram, only limited

clinicopathological factors were included due to a considerable

amount of missing data in the TCGA database, thus some

potential prognostic factors (such as Karnofsky performance

score, weight, and size of the tumor) might be omitted.

Therefore, cohorts of glioma patients with transcriptomic data

and well-documented clinical information are still needed to

complement the current prediction model. Thirdly, we failed to

find a cohort of glioma patients who share a similar genetic

background to those in the TCGA cohort with transcriptomic

data processed through a similar workflow to externally validate
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our result, thus there could be a high risk of selection bias. Studies

should be carefully designed to further validate the current results.

Last but not the least, this is a preliminary study whose results were

derived from the analyses and interpretation of multi-omics data,

thus experiments are needed to further support our findings.

In conclusion, our preliminary work provided novel

insights into the relationship between m7G modification and

the immune microenvironment of glioma as well as the

regulatory role of m7G modification in alternative splicing in

glioma, but further studies are needed to supplement and

validate the current results.
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