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Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily
available and frequently used for bone regeneration in clinics. Osteogenic differentiation of
BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-
coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including
microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-
derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role
of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and
inhibitory effects on osteogenic differentiation of BMSCs. During the physiological
condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are
downregulated. The opposite effects might occur during bone degenerative disease
conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via
exosomes participate in the regulatory process of osteogenic differentiation of BMSCs.
In this review, we summarize the recent advances in the regulatory role of ncRNAs on
osteogenic differentiation of BMSCs during physiological and pathological conditions. We
also discuss the prospects of the application of modulation of ncRNAs function in BMSCs
to promote bone tissue regeneration in clinics.
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1 INTRODUCTION

The bone defect is mainly caused by trauma, severe infection, bone diseases, tumor resection, and
various congenital malformations (Gaihre et al., 2017). The number of bone transplantation-related
surgery is over two million all over the world (Li et al., 2018). Currently, autologous bone grafts are
regarded as the gold standard for bone defect reconstruction (Nicot et al., 2020). The risks of
autologous bone grafts such as limited source, infection, pain, loss of sensation, scars, and donor site
morbidity limit the clinical applications (Younger and Chapman, 1989; Tessier et al., 2005).
Allografts and synthetic bone grafts are used as alternatives to autologous bone grafts (Eppley
et al., 2005). However, bone allografts may lead to complications such as fracture, nonunion, and
infection (Delloye et al., 2014). While bone substitutes materials such as ceramics have
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osteoconductivity and weak osteoinductivity. The variable
resorption rate and higher brittleness of biomaterial-based
bone grafts lead to impaired graft osseointegration (Sohn and
Oh, 2019). Stem cell-based approaches for bone tissue
engineering have shown promising results in the clinic. The
combination of precursor cells, bone grafts, and growth factors
have the potential to replace auto-/allo-bone grafts (Steinhardt
et al., 2008; El-Rashidy et al., 2017; Zhao et al., 2020). Studies have
shown bone marrow-derived mesenchymal stem cells (BMSCs)
as a promising source of seed cells for bone tissue engineering
applications (Qi et al., 2017; Arthur and Gronthos, 2020; Chen
et al., 2021; Jiang et al., 2021). Autologous or human leukocyte
antigen matched allogeneic BMSCs are commonly used for bone
regeneration in clinics.

The osteogenic differentiation of BMSCs is a complex process,
which is regulated by multiple signaling pathways. Various non-
coding RNAs (ncRNAs) had been reported to regulate the
osteogenic differentiation of BMSCs. NcRNAs are transcribed
from the genome, do not directly translate into proteins, but
participate in the protein translation process of coding mRNAs
(Guttman et al., 2013). MicroRNAs (miRNAs), long non-coding
RNAs (lncRNAs), circular RNAs (circRNAs), ribosomal RNAs
(rRNAs), transfert RNAs (tRNAs), tRNA-derived small RNAs
(tsRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs

(snoRNAs) and PIWI-interacting RNAs (piRNAs) are key
ncRNAs that regulate basic cellular function such as cell
metabolism (Sun et al., 2020a), proliferation (Song et al.,
2016), autophagy, apoptosis (Li et al., 2018) as well as various
diseases (Peng et al., 2021; Li et al., 2020) (Figure 1). MiRNAs
promote mRNAs degradation and regulate mRNAs translation,
and participate in various cellular processes (Zealy et al., 2017).
LncRNAs have many biological functions, including genes
imprinting, chromatin modification, cell cycle, apoptosis,
mRNA decay, and protein translation regulation (Zhu et al.,
2013). CircRNAs may be by-products of precursor mRNAs. It
demonstrated that circRNAs act as a sponge to regulate the
function of miRNAs, participate in the splicing of target genes,
translate genes into proteins, and interact with RNA-binding
proteins (RBPs) (Zang et al., 2020). The report showed that
rRNAs are an important part of ribosomes, which are widely
involved in cell translation (Sloan et al., 2017). The main function
of tRNAs is to carry amino acids and enter ribosomes for protein
synthesis with the participation of mRNAs (Liu R. et al., 2021).
TsRNAs are produced by tRNAs cleavage, which participate in
the processes such as RNAs silencing, ribosome biogenesis,
retrotransposition, epigenetics, and regulate translation.
tsRNAs also indirectly regulate gene expression by binding
RBPs (Chen et al., 2021; Liu et al., 2021a). SnRNAs are the

FIGURE 1 | Illustration of biological functions of different kinds of ncRNAs. (Created with BioRender.com).
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main component of RNA spliceosomes in the post-
transcriptional processing of eukaryotes and participate in the
processing of precursor RNAs (pre-mRNAs) (Karijolich and Yu,
2010). SnoRNAs modify snRNAs and rRNAs, and participate in
the processing of rRNAs during the maturation of ribosomal
subunits (Xing and Chen, 2018). PiRNAs maintain the structure
of the genome and mRNAs stability, and regulate protein
synthesis by binding with members of PIWI protein family
(Xu et al., 2020). The piRNA complex formed by the
combination of piRNA and PIWI further regulates the
function of germ and stem cells by silencing the process of
gene transcription (Xu et al., 2020). NcRNAs also mediate
osteogenic differentiation of mesenchymal stem cells (MSCs)
via regulating various signaling pathways (Yang et al., 2018;
Mazziotta et al., 2021). It had been demonstrated that Runt-
related transcription factor 2 (RUNX2) is the main regulator
responsible for the differentiation of MSCs into preosteoblasts
(Bruderer et al., 2014). RUNX2 expression is regulated by several
signaling pathways, especially bone morphogenetic protein
(BMP) and Wnt (Narayanan et al., 2019). As an important
factor in Wnt/β-catenin signaling pathway, β-catenin also
regulates genes related to osteogenic differentiation (Zhang
and Wang, 2020). Furthermore, Osterix (OSX) is an
osteoblast-specific transcription factor, which activates a
repertoire of genes during preosteoblasts differentiation into
mature osteoblasts (Sinha and Zhou, 2013). Reports from the
literature had shown ncRNAs in MSCs as possible targets to
induce osteogenic differentiation and bone regeneration (Liu
et al., 2018; Peng et al., 20182018; Yang et al., 2019; Hu et al.,
2020; Chen et al., 2021). This review focuses on the regulatory role
of ncRNAs in the osteogenic differentiation of BMSCs to provide
detailed information for the application of ncRNAs in BMSCs-
based bone tissue engineering. We also summarize the recent
advances, challenges, and prospects of targeting ncRNAs in
BMSCs for bone tissue engineering applications in the clinic.

2 MIRNAS INVOLVED IN THE OSTEOGENIC
DIFFERENTIATION OF BMSCS

2.1 The Biogenesis and Function of miRNAs
MiRNAs are a broad family consisting of single-stranded
ncRNAs, ranging in size from 19 to 25 nucleotides (Lu and
Rothenberg, 2018). MiRNAs were first discovered in
Caenorhabditis elegans controlling gene expression in 1993
(Lee et al., 1993). The classical production of miRNAs is a
multi-step process that requires the participation of multiple
enzymes. The gene encoding miRNA is mainly transcribed by
RNA polymerase II in the nucleus to produce a primary miRNA
(pri-miRNA). The pri-miRNA is processed into a pre-miRNA by
a microprocessor containing the RNase III enzyme Drosha.
Exportin-5 is a cytoplasmic transport protein that transports
pre-miRNA from the nucleus into the cytoplasm with the
assistance of Ran-mediated guanosine triphosphate.
Subsequently, the pre-miRNA is further processed by the
RNase III enzyme Dicer, and finally, the mature miRNA is
released (Lin and Gregory, 2015). Intriguingly, the maturity of

some miRNAs bypass one or more steps in the classical pathway.
These nonclassical miRNAs are similar to classical miRNAs in
structure and function (Divisato et al., 2021). The maturation
process of nonclassical miRNAs, derived from introns, snoRNAs,
endogenous short hairpin RNAs, and tRNAs, does not depend on
the processing ofDrosha/Dgcr8, but onlyDicer (Abdelfattah et al.,
2014). Dicer is almost indispensable in the production of both
standard and non-standard miRNA. But surprisingly, several
miRNAs can also be produced in the absence of Dicer, such as
miR-451 (Abdelfattah et al., 2014).

Usually, the gene silencing mechanism is determined by the
degree and nature of complementarity between the miRNA
binding sites and the 3′ untranslated region (3′UTR) of its
target genes. The target gene undergoes degradation when the
miRNAs and target genes are fully complementary (Huntzinger
and Izaurralde, 2011). However, miRNAs inhibit the translation
of the target genes while the binding is not complementary
(Huntzinger and Izaurralde, 2011). MiRNAs are involved in
various cellular processes, such as proliferation, differentiation,
apoptosis, etc., (Morgado et al., 2016; Wang et al., 2019; Ding
et al., 2019). Drosha and Dicer are endonucleases involved in
miRNA synthesis, which are closely related to the osteogenic
differentiation of BMSCs (Macfarlane and Murphy, 2010; Feng
et al., 2020). Knockout of Dicer or Drosha inhibits the osteogenic
differentiation of BMSCs (Oskowitz et al., 2008). Furthermore,
miRNAs could directly regulate the osteogenic differentiation of
BMSCs through complex mechanisms (Mazziotta et al., 2021).

2.2 Mechanisms Involved in
miRNAs-Induced Osteogenic
Differentiation of BMSCs
2.2.1 The Regulation in Physiological Conditions
A range of miRNAs has the potential to promote osteogenic
differentiation of BMSCs. BMP3 is the most abundant member of
BMP family, accounting for about 65% of the total content
(Bahamonde and Lyons, 2001). MiR-34a promotes the
osteogenic differentiation of BMSCs by directly targeting
BMP3 (Zeng et al., 2021). MiR-19b significantly promotes the
osteogenic differentiation of BMSCs by targeting WW domain-
containing E3 ubiquitin protein ligase 1 (WWP1) and Samd
ubiquitin regulatory factor 2 (SMURF2) through the kruppel like
factor (KLF) 5/β-catenin signaling pathway (Huang et al., 2021)
(Figure 2 and Table 1). Short-term or intermittent hypoxia is an
inducer of osteogenic differentiation of BMSCs (Ciapetti et al.,
2016; Sha et al., 2017). Epigallocatechin gallate promotes
osteogenic differentiation of BMSCs under hypoxia, in which
miR-210 is upregulated and targets to inhibit ephrin-A3 (EFNA3)
(Qiu et al., 2016). Overexpression of miR-27b and miR-130a
promotes the osteogenic differentiation of BMSCs by directly
targeting peroxisome proliferator-activated receptor γ (PPARγ)
to increase RUNX2 expression (Seenprachawong et al., 2018).
Wang et al. found that miR-28 upregulation inhibits signal
transducer and activator of transcription 1 (STAT1)
expression, thus promoting the osteogenic differentiation of
BMSCs (Wang et al., 2022). The expression level of miR-34c-
5p is increased during the osteogenic differentiation of BMSCs
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(Liu et al., 2021b). B-cell lymphoma 2 (BCL2) is an anti-apoptotic
protein (Ebrahim et al., 2016), and miR-34c-5p promotes the
osteogenic differentiation of BMSCs via inhibition of BCL2
expression and upregulation of RUNX2 and osteocalcin
(OCN) (Liu et al., 2021b). MiR-99a-5p boosts osteogenic
differentiation of BMSCs, while downregulation of miR-99a-5p
expression inhibits the differentiation, but the regulatory
mechanism is unclear (Xu et al., 2018).

2.2.2 The Regulation of miRNAs in Pathological
Conditions
MiRNAs participate in the BMSCs differentiation in several
diseases such as osteoporosis (OP), osteonecrosis, etc. OP is
one common disease in the elderly and menopausal women
(Tella and Gallagher, 2014). Postmenopausal osteoporosis
(PMOP) is a common type of OP caused by estrogen
deficiency. The osteogenic differentiation potential of BMSCs
is compromised in OP patients (Zeng et al., 2021). The expression
of miR-486-3p is significantly downregulated in the bone marrow
of OP patients. Catenin beta interacting protein 1 (CTNNBIP1) is
an inhibitor of Wnt/β-catenin signaling and mechanistically,
miR-486-3p promotes the osteogenic differentiation of BMSCs
by targeting CTNNBIP1 to active the Wnt/β-catenin pathway
(Zhang et al., 2021). MiR-27a-3p shows lower serum level in OP
patients compared with the control group. Overexpression of
miR-27a-3p promotes the osteogenic differentiation of BMSCs by

directly targeting activating transcription factor (ATF) 3 (Fu et al.,
2019). MiR-27a is significantly decreased in the serum of PMOP
patients. And miR-27a promotes the expression of osteogenesis-
related markers such as alkaline phosphatase (ALP), RUNX2, and
OCN by targeting myocyte enhancer factor 2C (MEF2C) (You
et al., 2016). Similarly, miR-203 which is downregulated in the
serum of OP patients increases the levels of osteogenic genes by
targeting dickkopf 1 (DKK1) (Qiao et al., 2018). DKK1 is an
important molecule in the development of embryo and adult
bone, and is involved in the occurrence of OP (Glinka et al.,
1998). Sprouty 1 (SPRY1) is a negative regulator of fibroblast
growth factor (FGF) and extracellular signal-regulated kinase-
mitogen-activated protein kinase (ERK-MAPK) signaling
pathways, which is considered to be related to promoting
MSCs osteogenesis (Ge et al., 2007; Ng et al., 2008). Yang
et al. (2013) found that miR-21 is downregulated in BMSCs
from estrogen deficiency-induced OP and promotes the
osteogenic differentiation of BMSCs by targeting SPRY1.

Exogenous usage of glucocorticoids is the main risk factor for
nontraumatic osteonecrosis of the femoral head (ONFH), which
is termed as glucocorticoids associated ONFH and belongs to one
type of steroid-associated osteonecrosis of the femoral head
(SONFH). It had been demonstrated that miR-155-5p
promotes osteogenic differentiation of BMSCs from SONFH
by targeting glycogen synthetase kinase 3 beta (GSK-3β) and
activating β-catenin signaling (Wu et al., 2021). Dai et al. (2019)

FIGURE 2 | Illustration of the role and regulatory mechanism of miRNAs-induced osteogenic differentiation of BMSCs. Several miRNAs promote osteogenic
differentiation of BMSCs by regulating the expression of target genes and related signaling pathways. (Created with BioRender.com).
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TABLE 1 | MiRNAs that promote osteogenic differentiation of BMSCs and underlying mechanisms.

miRNA Study model Signaling pathway Effect References

miR-19b BMSCs from healthy donors Targets WWP1/SMURF2 to promote
KLF5 expression via the Wnt/β-catenin
signaling

Promotes the expression of ALP, RUNX2, and
COL1

Huang et al. (2021)

miR-21 BMSCs in vitro —— Promotes the expression of COL1, RUNX2,
OPN, and OCN, as well as osteogenic
differentiation

Zhongshan Whao et al.
(2016)

BMSCs from healthy donors and OP
patients and ectopic bone formation in
nude mice

Targets SPRY1 to indirectly activate
FGF and ERK-MAPK signaling
pathways

Promotes the expression of ALP, RUNX2, and
OSX, as well as bone formation

Yang et al. (2013)

miR-27a BMSCs from healthy donors and OP
patients

Targets MEF2C Promotes the expression of ALP, RUNX2, and
OCN, as well as bone formation

You et al. (2016)

miR-27a BMSCs from femoral neck fracture and
ONFH patients

Targets PI3K to regualte PI3K/Akt/
mTOR signaling pathway

Promotes the expression of ALP, BMP2,
COL1A1, OSX, and RUNX2

Tang et al. (2021)

miR-27a-3p BMSCs from healthy donors and OP
patients

Targets ATF3 Promotes the expression of ALP, RUNX2,
and OCN

Fu et al. (2019)

miR-27b,
miR-130a

BMSCs in vitro Targets PPARγ Promote the expression of RUNX2, OSX, and
COL1A1

Seenprachawong et al.
(2018)

miR-28 BMSCs in vitro Targets STAT1 Promotes the expression of ALP and RUNX2 Wang et al. (2022)
miR-34a BMSCs in vitro Targets BMP3 Promotes the expression of RUNX2, ALP,

OSX, COL1, and OCN, as well as alleviates OP
progression

Zeng et al. (2021)

miR-34c-5p BMSCs in vitro Targets BCL2 Promotes the expression of RUNX2 and OCN Bin Liu et al. (2021)
miR-
99a-5p

BMSCs in vitro —— Increases calcium salt deposition Xu et al. (2018)

miR-101 BMSCs from in vitro and skull defects
model of nude mice

Targets EZH2 to activate Wnt/β-catenin
signaling pathway

Promotes the expression of RUNX2, ALP,
OPN, and OCN, as well as bone repair

Hongrui Wang et al.
(2016)

miR-
128–3p

BMSCs from patients with open
fractures and iliac bone grafts

Targets WNT3A to activate Wnt
signaling

Promotes the expression of OCN, RUNX2, and
BMP2

Lin et al. (2021)

miR-130a BMSCs in vitro Targets SMURF2 Promotes the expression of ALP, OCN,
RUNX2, and OSX

Lin et al. (2019)

miR-
136–3p

BMSCs in vitro Targets PTEN Promotes the expression of OCN, as well as
rescues ethanol-mitigated bone formation
ability

Yixuan Chen et al.
(2020)

miR-146a BMSCs in vitro —— The inhibition of miR-146a decreases the
expression of RUNX2, COL1, ALP and OCN

Xianfeng Zhou et al.
(2016)

miR-
148b-3p

BMSCs in vitro —— Promotes the expression of ALP and COL1 Mollazadeh et al.
(2019)

miR-
155–5p

BMSCs from femoral neck fracture and
ONFH patients

Targets GSK-3β to activate β-catenin
signaling

Promotes the expression of RUNX2, COL1A1,
ALP, OCN, and OSX

Fei Wu et al. (2021)

miR-
199b-5p

BMSCs in vitro Targets GSK-3β to activate GSK-3β/β-
catenin signaling pathway

Promotes the expression of ALP and RUNX2 Ruibo Zhao et al.
(2016)

miR-200c BMSCs in vitro Targets MYD88 to activate AKT/β-
catenin signaling pathway

Promotes the expression of BMP2, RUNX2,
RANKL, OSX, OCN, OPN, and COL1

Xia et al. (2019)

miR-200c BMSCs in vitro Targets SOX2 and KLF4 to activate
Wnt/β-catenin signaling

Promotes the expression of RUNX2 and OCN,
as well as bone formation and bone
regeneration

Akkouch et al. (2019)

miR-200c BMSCs in vitro —— Promotes the expression of ALP and RUNX2,
as well as calcium content

Hong et al. (2016)

miR-203 BMSCs from healthy donors and OP
patients

Targets DKK1 Promotes the expression of ALP, OCN and
RUNX2

Qiao et al. (2018)

miR-210 BMSCs in vitro Targets EFNA3 Promotes the expression of ALP, BMP2, and
RUNX2

Qiu et al. (2016)

miR-217 BMSCs from femoral neck fracture and
ONFH patients

Targets DKK1 Promotes the expression of RUNX2 and
COL1A1

Dai et al. (2019)

miR-
335–5p

BMSCs in vitro —— Promotes the expression of BMP2, OCN,
OPN, and RUNX2

Zhenming Huang et al.
(2020)

miR-346 BMSCs in vitro Targets GSK-3β to activate Wnt/β-
catenin pathway

Promotes the expression of RUNX2, ALP,
and OPN

Wang et al. (2013)

miR-
486–3p

BMSCs from healthy donors and OP
patients

Targets CTNNBIP1 to activate Wnt/β-
catenin signaling

Promotes the expression of RUNX2, ALP,
COL1A1, and OCN

Zheng Zhang et al.
(2021)

miR-
548d-5p

BMSCs in vitro Targets PPARγ Promotes the expression of RUNX2 and OCN Sun et al. (2014)

miR-
664a-5p

BMSCs in vitro Targets HMGA2 Promotes the expression of RUNX2, ALP,
and OCN

Yan Zhang et al. (2020)

(Continued on following page)
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reported that the expression level of miR-217 in BMSCs from
patients with SONFH is decreased significantly, and miR-217
promotes the osteogenic differentiation of BMSCs by targeting
DKK1. While miR-27a is downregulated in BMSCs from patients
with SONFH. MiR-27a impairs the activation of
phosphoinositide 3-kinase/protein kinase B/mammalian target
of rapamycin (PI3K/AKT/mTOR) pathway by targeting PI3K,
thereby reversing the inhibitory effect of glucocorticoids on
osteogenic differentiation of BMSCs (Tang et al., 2021).

2.2.3 The Regulation of miRNAs in Bone Regeneration
and Bone Tissue Engineering
Si(OH)4 inhibits nuclear factor kappa B (NF-κB) by inducing the
expression of miR-146a that activates RUNX2 expression to
promote osteogenic differentiation of BMSCs (Zhou et al.,
2016), suggesting miR-146a upregulation as a possible
approach to promote the bone regenerative potential of
BMSCs. Overexpression of miR-200c activates the AKT/β-
catenin signaling pathway by targeting myeloid differentiation
factor 88 (MYD88), which promotes the osteogenic
differentiation of BMSCs (Xia et al., 2019). Similarly, miR-
200c was found to promote the osteogenic differentiation of
BMSCs in vitro by targeting sex-determining region Y-box 2
(SOX2)-mediated Wnt signaling and KLF4 (Akkouch et al.,
2019). SOX2 is a major transcription factor affecting stem cell
differentiation (Ma et al., 2014). Moreover, Hong et al. (2016)
showed that polyethylenimine nanoparticle-based delivery of
miR-200c improves the osteogenic differentiation of BMSCs
and promotes bone regeneration. MiR-21 delivered by
chitosan/hyaluronic acid nanoparticles promotes the
osteogenesis of BMSC sheets (Zhao et al., 2016). These
findings indicate the possible applications of nanomaterial-
based exogenous miRNAs delivery for bone regeneration.
Thus, the increased expression of osteogenesis promoting
miRNAs has the potential application in bone repair. The
regulatory function and mechanism of miRNAs-induced
osteogenesis in BMSCs are summarized in Figure 2 and Table 1.

2.3 Mechanisms Involved in
miRNAs-Inhibited Osteogenic
Differentiation of BMSCs
2.3.1 The Regulation of miRNAs in Physiological
Conditions
Reports from literature had shown the inhibitory role of various
miRNAs in the osteogenic differentiation of BMSCs. Low-density
lipoprotein receptor-related protein 5 (LRP5) is an important
Wnt receptor and plays an important role in Wnt/β-catenin
signaling pathway. Li et al. found that miR-23a decreases the
osteogenic differentiation of BMSCs by targeting LRP5 (Wang

et al., 2016) (Figure 3 and Table 2). MiR-98 inhibits the
osteogenic differentiation of BMSCs by targeting BMP2
(Zhang et al., 2017). Furthermore, miR-145 inhibits the
osteogenic differentiation of BMSCs by targeting semaphorin
3A (SEMA3A) (Jin et al., 2020). Retinol (vitamin A) is a
micronutrient essential for cell proliferation and
differentiation. Its metabolite, retinoic acid, can promote
osteoblast differentiation together with BMP2 (Skillington
et al., 2002). MiR-223 regulates retinol metabolism by directly
inhibiting the expression of retinoic acid-inducible
dehydrogenase reductase 3 (DHRS3), reducing the osteogenic
differentiation of BMSCs (Zhang et al., 2018). MiRNAs mediate
the osteogenic differentiation processes of drugs, factors, etc.
Overexpression of miR-625-5p reverses the promoting effect of
quercetin on osteogenic differentiation of BMSCs (Bian et al.,
2021). Wang et al. (2016) showed that miR-150-3p targets β-
catenin and inhibits tumor necrosis factor-α (TNF-α) induced
osteogenic differentiation of BMSCs, which inhibits the
inflammation response during bone formation. Lin et al.
showed that interleukin-1β (IL−1β) inhibits osteogenic
differentiation of BMSCs via miR-496-mediated inhibition of
β-catenin signaling. This study claimed miR-496 as a possible
target to treat inflammation-related bone loss (Huang and Chen,
2017). MiR-143-3p is involved in cadmium suppression of the
Wnt/β-catenin pathway and inhibits osteogenic differentiation of
BMSCs by targeting adenosine diphosphate-ribosylation factor-
like protein 6 (ARL6) (Wu et al., 2020). Therefore, miR-143-3p
could be targeted to treat cadmium poisoning-related bone loss.
MiR-153 is a mechanosensitive miRNA that inhibits the
osteogenic differentiation of BMSCs by directly targeting BMP
receptor (BMPR) 2 (Cao et al., 2015).

2.3.2 The Regulation of miRNAs in Pathological
Conditions
MiR-23, miR-16-2*, miR-210-3p, miR-889 were found to be
upregulated in bone tissues or BMSCs from OP patients. MiR-
23 overexpression significantly inhibits the osteogenic
differentiation of BMSCs by targeting MEF2C through the
MEF2C/MAPK signaling pathway, thus accelerating OP
development (Jiang et al., 2020). MiR-16-2* could interfere
with Wnt signal transduction by targeting WNT5A to inhibit
osteogenic differentiation of BMSCs (Duan et al., 2018).
Furthermore, miR-210-3p inhibits the osteogenic
differentiation of BMSCs by targeting Kirsten rat sarcoma
viral oncogene (K-RAS) and the downstream MAPK signal
(Hu et al., 2021). MiR-889 reduces the osteogenic capability
of BMSCs by targeting WNT7A through the Wnt/β-catenin
signaling pathway (Xu et al., 2019). In BMSCs of age-associated
OP, miR-29b-1-5p significantly downregulates the expression of
stromal cell-derived factor 1 (CXCL12)/C-X-C chemokine

TABLE 1 | (Continued) MiRNAs that promote osteogenic differentiation of BMSCs and underlying mechanisms.

miRNA Study model Signaling pathway Effect References

miR-920 BMSCs from healthy donors and OP
patients

Targets HOXA7 through MAPK
signaling pathway

Promotes the expression of ALP and OSX Zha et al. (2020)
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receptor type 4 (SDF-1(CXCL12)/CXCR4) axis as well as BMP2
and RUNX2, thus negatively regulating the osteogenic
differentiation of BMSCs (Eisa et al., 2021). The levels of
miR-200a-3p, miR-365a-3p, miR-579-3p, and miR-1297 are
increased significantly in the serum of OP patients (Cheng
et al., 2019; Luo et al., 2019; Lv et al., 2019; Wang et al.,
2019). MiR-365a-3p decreases the osteogenic differentiation
of BMSCs by targeting RUNX2 and promotes the progress of
OP (Cheng et al., 2019). Sirtuin1 (SIRT1) is an important
regulator of Wnt signaling pathway, which promotes the
expression of downstream differentiation related factors by
de-acetylating β-catenin, thus regulating the differentiation of
MSCs (Simic et al., 2013). MiR-579-3p inhibits the osteogenic
differentiation of BMSCs by targeting SIRT1 (Luo et al., 2019).
MiR-1297 overexpression interferes with the regulation of the
Wnt signaling pathway by targetingWNT5A, thereby inhibiting
the osteogenic differentiation of BMSCs (Wang et al., 2019).
MiR-375 was shown to be increased in the serum of OP patients.
Polypeptide drug teriparatide promotes osteogenic
differentiation of BMSCs through decreasing miR-375, while
the increased expression of miR-375 reverses this process (Lei
et al., 2019). Forkhead box (FOX) O1 belongs to the forkhead
family and is a key transcription factor regulating cell
physiological function, including osteoblasts (Kitamura et al.,
2005; Kim et al., 2012). Yang et al. (2021). reported a higher
expression of miR-1271-5p, which is higher in osteoporotic
trabecular bone tissues, and inhibits the osteogenic

differentiation of BMSCs by downregulating its target
FOXO1 as well as the expression of RUNX2, ALP, and OCN.
In addition, miR-133 expression is significantly enhanced in
BMSCs from PMOP patients. Solute carrier family 39 member
one (SLC39A1) encodes zinc transporter 1, which plays an
important role in the initiation of MSCs osteogenic lineage
(Tang et al., 2006). MiR-133 regulates the osteogenic
differentiation of BMSCs by inhibiting SLC39A1 expression
(106). It has been demonstrated that diabetes increases the
risk of OP (Chau et al., 2003). MiR-337 negatively regulates
osteogenic differentiation of BMSCs by targeting ras-related
protein 1A (RAP1A) under hyperglycemic conditions (Liu et al.,
2021). Dead-box helicase 17 (DDX17) regulates the RUNX2
expression in osteoblast differentiation (Fuller-Pace and Ali,
2008), and miR-9-5p knockout promotes the osteogenic
differentiation of BMSCs through targeting DDX17 under
hyperglycemic conditions (He et al., 2021).

The role of miRNAs in ONFH-related diseases is also
reported. Zhang et al. (2017) found that miR-93-5p is
upregulated in the peripheral blood of trauma-induced ONFH
patients, which inhibits osteogenic differentiation of BMSCs by
targeting BMP2. MiR-181d and miR-596 are upregulated in the
bone marrow of SONFH patients, while miR-708 is increased in
BMSCs. These miRNAs inhibit the osteogenic differentiation of
BMSCs by targeting Smad3, thereby promoting the progression
of SONFH (Hao et al., 2016; Xie et al., 2018; Fu et al., 2020).
Furthermore, miR-144-3p was found to be downregulated in

FIGURE 3 | Illustration of the role and regulatory mechanism of miRNAs-inhibited osteogenic differentiation of BMSCs. (Created with BioRender.com).
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TABLE 2 | MiRNAs that inhibit the osteogenic differentiation in BMSCs and underlying mechanisms.

miRNA Study model Signaling pathway Effect References

miR-9-5p BMSCs in vitro Targets DDX17 Involves in high glucose-mediated
downregulation of COL1, OCN, OPN, and
RUNX2

He et al. (2021)

miR-10a-5p BMSCs in vitro —— Inhibits the expression of ALP and RUNX2, as
well as bone formation

Yingjie Zhang et al.
(2020)

miR-16–2* BMSCs from OP patients Targets WNT5A to interfere Wnt
signaling

Inhibits the expression of RUNX2, OSX, ALP,
OCN, OPN, and COL1A1

Duan et al. (2018)

miR-23 BMSCs from healthy donors and OP patients Targets MEF2C to regulate p38/
MAPK signaling pathway

Inhibits the expression of RUNX2, OSX, ALP,
and OCN

Jiang et al. (2020)

miR-23a BMSCs from human iliac bone with jaw cysts Targets CXCL12 Inhibits the expression of ALP, COL1, and
RUNX2

Zhuang and Zhou,
(2020)

BMSCs in vitro Targets LRP5 to inhibit Wnt/β-
catenin signaling pathway

Inhibits the expression of RUNX2, ALP, and OPN Nan Wang et al.
(2016)

BMSCs in vitro —— Inhibits the expression of ALP, OPN, and RUNX2 Li et al. (2014)
miR-23a-5p BMSCs in vitro Targets MAPK13 to regulate

p38MAPK signaling pathway
Inhibits the expression of RUNX2, ALP, and OPN Ren et al. (2018)

miR-23b BMSCs in vitro Targets RUNX2 Reduces ALP activity and calcium deposition
leads to bone loss and inhibits bone formation

Deng et al. (2018)

miR-23b-3p BMSCs from healthy donors and PMOP
patients

Targets MRC2 to inhibit Wnt/β-
catenin signaling

Inhibition of miR-23b-3p promotes expression of
RUNX2, OSX, and OCN

Ran Li et al. (2021)

miR-29b-
1-5p

BMSCs in vitro Regulate SDF-1/CXCR4 axis Inhibits the expression of COL1A1, RUNX2,
OCN, and BMP2

Eisa et al. (2021)

miR-30d-5p BMSCs from healthy donors and PMOP
patients

—— Inhibits the expression of RUNX2 Zhi-Hao Wu et al.
(2018)

miR-31 BMSCs from patients with ethanol-induced
osteonecrosis

Targets SATB2 Inhibits the expression of BMP2, RUNX2, OSX,
OCN, and OPN

Yu et al. (2019)

miR-93–5p BMSCs from femoral neck fracture and ONFH
patients

Targets BMP2 Inhibits the expression of ALP, OPN, RUNX2,
and OSX

Ying Zhang et al.
(2017)

miR-98 BMSCs in vitro Targets BMP2 Inhibits the expression of RUNX2, ALP,
and OCN

Guo-Ping Zhang
et al. (2017)

miR-103 BMSCs in vitro Targets SATB2 Inhibits the expression of RUNX2 and OCN Lv et al. (2020)
miR-124 BMSCs in vitro Targets OSX Inhibits the expression of RUNX2 and OCN, and

ALP activity
Jia-Zhen Tang
et al. (2019)

miR-124 BMSCs in vitro and ectopic bone formation
model

Targets DLX2, DLX3 and DLX5 Inhibits bone formation in vivo Qadir et al. (2015)

miR-125b BMSCs in vitro and femoral defect in nude
mice

Targets BMPR1b Inhibits the expression of RUNX2, OSX, and
OCN, miR-125b inhibitor promotes bone
formation in vivo

Huaqing Wang
et al. (2017)

miR-125b BMSCs from healthy donors and OP patients Targets OSX Inhibits the expression of RUNX2, ALP,
COL1A1, and OCN

Chen et al. (2014)

miR-125b BMSCs in vitro Targets Smad4 Inhibits the expression of Smad4 Lu et al. (2013)
miR-126 BMSCs in vitro Regulates PI3K/AKT and MEK1/

ERK1 signaling pathways
Inhibits the expression of ALP, OPN, and RUNX2 Kong et al. (2020)

miR-133 BMSCs from healthy donors and OP patients Targets SLC39A1 Inhibits the expression of ALP, RUNX2, and OSX Zhang et al. (2015)
miR-135b BMSCs from healthy donors and MM patients Targets Smad5 Inhibits the ALP activity Xu et al. (2013)
miR-138 BMSCs in vitro and ectopic bone formation in

NOD/SCID mice
Targets FAK and regulates FAK
downstream signaling

Inhibits the expression of RUNX2, OSX, ALP,
and OCN, and bone formation in vivo

Eskildsen et al.
(2011)

miR-138–5p BMSCs in vitro Targets FOXC1 —— Lan Zhang et al.
(2021)

miR-139–5p BMSCs in vitro Targets CNNB1 and FZD4 to
regulate Wnt/β-catenin pathway

Inhibits the expression of ALP, RUNX2, COL1,
and OCN

Long et al. (2017)

miR-143–3p BMSCs in vitro Targets ARL6 to down-regulate
Wnt/β-catenin pathway

Inhibits the expression of ALP and RUNX2 Lu Wu et al. (2020)

miR-144–3p BMSCs from healthy controls and aplastic
anemia patients

Targets TET2 Inhibits the expression of ALP and OCN Haojie Wi et al.
(2020)

miR-144–3p BMSCs from healthy donors and ONFH
patients

Targets FZD4 Inhibits the expression of RUNX2 and COL1A1 Sun et al. (2020b)

miR-145 BMSCs in vitro Targets SEMA3A —— Yucui Jin et al.
(2020)

miR-150–3p BMSCs in vitro Targets β-catenin Inhibits the activity of ALP, calcium contents, and
the expression of RUNX2 and OSX

Nan Wang et al.
(2016)

miR-153 BMSCs from young donors and elderly OP
patients

Targets BMPR2 Inhibits the expression of ALP, OCN, and
COL1A1

Cao et al. (2015)

(Continued on following page)
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TABLE 2 | (Continued) MiRNAs that inhibit the osteogenic differentiation in BMSCs and underlying mechanisms.

miRNA Study model Signaling pathway Effect References

miR-181d BMSCs from femoral neck fracture and ONFH
patients

Targets Smad3 Inhibits the expression of RUNX2 and Smad3 Xie et al. (2018)

miR-181d-5p BMSCs in vitro Targets MAPK1 Inhibits RUNX2 and OSX expression as well as
ALP activity, and bone formation on a rough
titaum surface

Yanping Liu et al.
(2021)

miR-200a-3p Blood from healthy donors and OP patients Targets GLS Inhibits the expression of OCN, RUNX2
and OPN

Lv et al. (2019)

miR-
203a-3p.1

BMSCs from healthy donors and multiple MM
patients

Targets Smad9 to inhibit
WNT3A/β-catenin signaling
pathway

Inhibits expression of ALP, OPN and OCN Fan et al. (2019a)

miR-204 BMSCs in vitro Targets RUNX2 Inhibits the expression of BMP2 Zhao et al. (2014)
miR-206 BMSCs in vitro Targets GLS Inhibits the expression of RUNX2 and OPN Ying Chen et al.

(2019)
miR-210–3p BMSCs from healthy donors and OP patients Targets K-RAS and downstream

MAPK signaling activation
Inhibits the expression of ALP, OCN, RUNX2,
and OSX

Hu et al. (2021)

miR-212 and
miR-384

BMSCs in vitro Targets RUNX2 and regulate
OPG/RANKL pathway

Inhibit OSX expression and ALP activity Yun Zhang et al.
(2020)

miR-221–5p BMSCs from healthy donors and MBD
patients

Targets Smad3 and inhibits
PI3K/AKT/mTOR pathway

Inhibits the expression of ALP, OPN, and OCN Fan et al. (2019b)

miR-223 BMSCs in vitro Targets DHRS3 miR-223 antagomir upregulates the expression
of RUNX2, OPN and OCN

Shijie Zhang et al.
(2018)

miR-223–3p BMSCs in vitro Targets FOXO3 Inhibits the expression of ALP, RUNX2, OCN,
and Smad4

Long et al. (2021)

miR-320a BMSCs in vitro Targets HOXA10 Inhibits the expression of RUNX2, ALP,
and OCN

Huang et al. (2016)

miR-320a BMSCs in vitro Targets Smad5 Inhibits the expression of OCN, OPN, and
RUNX2

J-L Wang et al.
(2020)

miR-337 BMSCs in vitro Targets RAP1A Inhibits the expression of RUNX2, ALP, OCN,
OPN, and BMP2

Shuai Liu et al.
(2021)

miR-340 BMSCs in vitro Targets β-catenin Inhibits the expression of OSX and RUNX2,
and ALP

Du et al. (2017)

miR-346–5p BMSCs in vitro Targets transmembrane
protein 9

Inhibits the expression of OSX and RUNX2, and
decreases ALP activity and calcium deposition

Yicai Zhang et al.
(2020)

miR-365a-3p BMSCs in vitro and blood from healthy donors
and OP patients

Targets RUNX2 Inhibits the expression of OCN, OPN, and COL1 Cheng et al. (2019)

miR-375 BMSCs in vitro and blood from healthy donors
and OP patients

Targets RUNX2 Inhibits the expression of ALP, OCN, and
RUNX2

Lei et al. (2019)

miR-376c-3p BMSCs in vitro Targets IGF1R and negatively
regulate IGF1R/AKT signaling

Inhibits the expression of RUNX2, OPN,
and OCN

Camp et al. (2018)

miR-381 BMSCs in vitro Targets WNT5A and FZD3 to
inhibit Wnt signaling pathway

Inhibits the expression of RUNX2, ALP, and
COL1

Long et al. (2019)

miR-496 BMSCs in vitro —— Inhibits the expression of OSX and RUNX2, and
ALP activities

Huang and Chen,
(2017)

miR-506–3p BMSCs in vitro and bone tissues from healthy
donors and OP patients

Targets BMP7 Inhibits the expression of OCN, OPN, and
RUNX2

Jun Li et al. (2021)

miR-579–3p Blood from healthy donors and OP patients Targets SIRT1 Inhibits the expression of ALP, and RUNX2 B Luo et al. (2019)
miR-596 BMSCs from femoral neck fracture and

SONFH patients
Targets Smad3 Inhibits the expression of ALP, OPN, RUNX2,

and OSX
Fu et al. (2020)

miR-625–5p BMSCs in vitro —— Inhibits the expression of BMP2, OCN, and
RUNX2, as well as ALP activity

Bian et al. (2021)

miR-708 BMSCs from GC-induced ONFH patients and
ONFH patients after a previous fracture of the
femoral neck

Targets Smad3 to regulate TGF-
β signaling pathway

Inhibits the expression of Smad3 and RUNX2 Hao et al. (2016)

miR-765 BMSCs in vitro Targets BMP6 to inhibit BMP6/
Smad1/5/9 signaling

Inhibits the expression of RUNX2 and OCN J-LWangang et al.
(2020)

miR-889 BMSCs from healthy donors and OP patients Targets WNT7A and inhibit Wnt/
β-catenin signaling pathway

Inhibits the expression of ALP, BMP2, RUNX2,
OPN, and OCN

Xu et al. (2019)

miR-
1271–5p

BMSCs in vitro Targets FOXO1 Inhibits the expression of RUNX2, ALP and OCN Qining Yang et al.
(2021)

miR-1297 BMSCs and blood from healthy donors and
OP patients

Targets WNT5A and affect Wnt
signaling pathway

Inhibits the expression of RUNX2, OSX, ALP,
OCN, OPN, and COL1A1

Q Wang et al.
(2019)

miR-1827 BMSCs in vitro Targets OSX Inhibits the expression of OSX, OPN, COL1A,
and OCN

Liu Liu et al. (2020)
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BMSCs from patients with SONFH, and inhibit the osteogenic
differentiation of BMSCs by targeting frizzled (FZD) 4 (Sun et al.,
2020b). Special AT-rich sequence-binding protein 2 (SATB2) is a
key regulator involved in gene expression and chromatin
remodeling. SATB2 overexpression can induce the
differentiation of pluripotent stem cells in vitro and
significantly enhance bone regeneration and bone repair in
vivo (Zhou. et al., 2016). In BMSCs from ethanol-induced
osteonecrosis, the expression of miR-31 is increased. MiR-31
inhibits the osteogenesis of BMSCs by targeting SATB2 (Yu et al.,
2019). Thus, the expression of these miRNAs could be inhibited
in BMSCs to treat ONFH.

In addition, miRNAs play an important role in hematologic
diseases. The expression of miR-203a-3p.1 is significantly
decreased in BMSCs from patients with multiple myeloma
(MM). MiR-203a-3p.1 inhibits the osteogenic differentiation of
BMSCs by directly targeting Smad9 through the WNT3A/β-
catenin signaling pathway (Fan et al., 2019a). MiR-135b is
abnormally upregulated in BMSCs from MM patients.
Mechanistically, miR-135b directly targets Smad5 and
negatively regulates its expression, finally inhibiting the
osteogenic differentiation of BMSCs (Xu et al., 2013).
Myeloma bone disease (MBD) is one of the clinical features of
MM. Aggressive osteolysis and low bone mass phenotype are
frequently observed in MBD patients. Fan et al. (2019b) showed
that miR-221-5p inhibition significantly promotes the osteogenic
differentiation of BMSCs fromMBD patients by targeting Smad3
and activating the PI3K/AKT/mTOR signaling pathway.
Inhibition of these miRNAs in bone marrow might prevent
MBD-induced bone loss. Ten-eleven translocation (TET)
family is an important epigenetic modifier, which can
demethylate DNA and play a key role in stem cell
differentiation (Dawlaty et al., 2014; Su et al., 2019). MiR-144-
3p inhibits osteogenic differentiation of BMSCs of patients with
aplastic anemia (AA) by inhibiting TET2 (Li et al., 2020).
Furthermore, miR-204 inhibits the osteogenic differentiation of
BMSCs from AA by directly inhibiting RUNX2 (Zhao et al.,
2014).

2.3.3 The Regulation of miRNAs in Bone Regeneration
and Bone Tissue Engineering
BMSCs infected with these miRNAs sponges may be used in
regenerative medicine. Titanium surface modification can change
the shape and activity of MSCs, promote the differentiation of
these cells into osteoblast lineage and upregulate osteogenic
genes. MiR-23a inhibits the osteogenic differentiation of
BMSCs on the surface of titanium nanotubes by targeting
CXCL12 (Zhuang et al., 2019). Furthermore, the micro-arc
oxidation surface of titanium implant promotes osteogenic
differentiation by activating ERK1/2-miR-1827-OSX, while the
overexpression of miR-1827 significantly inhibits the osteogenic
differentiation of BMSCs (Liu et al., 2020). MiR-181d-5p
regulates the implants’ surface roughness-induced osteogenesis.
Inhibition of miR-181d-5p enhances osteogenic differentiation of
BMSCs by targeting MAPK1 (Liu et al., 2021). Furthermore, the
addition of miR-23a and miR-1827 inhibitors in BMSCs with
titanium may increase bone integration. MiR-138 inhibits

osteogenic differentiation of BMSCs by targeting focal
adhesion kinase (FAK) signaling, thus reducing the ectopic
bone formation of BMSCs in vivo by the combination of
hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds
(Eskildsen et al., 2011). MiR-125b inhibits osteogenic
differentiation of BMSCs by targeting BMPR1b. The
application of demineralized bone matrix with BMSCs treated
with miR-125b inhibitor could be used to repair bone defects in
vivo (Wang et al., 2017). BMSC transfected with miR-124
combined with HA/TCP scaffolds were subcutaneously
transplanted into nude mice, demonstrating the inhibitory
effect of miR-124 on the formation of ectopic bone in vivo
(Qadir et al., 2015). Thus, sponges of these inhibitory miRNAs
on osteogenic differentiation may be used in bone regeneration
and bone repair. The regulatory function and mechanism of
miRNAs that inhibit osteogenesis in BMSCs are summarized in
Figure 3 and Table 2.

3 LNCRNAS AND OSTEOGENIC
DIFFERENTIATION OF BMSCS

3.1 The Biogenesis and Function of lncRNAs
LncRNAs are a group of ncRNAs with a length >200 nucleotides.
According to their gene structure and the position relationship
with protein-coding genes, lncRNAs are categorized into five
groups: (Gaihre et al., 2017): long intergenic ncRNAs, which are
located between coding genes, (Li et al., 2018), intronic lncRNAs,
which originate from the intronic region of coding genes, (Nicot
et al., 2020), antisense lncRNAs, which share same sequences with
coding mRNA on the non-coding strand genes, (Tessier et al.,
2005), bidirectional RNA, which possess the same transcription
start sites with coding genes, and (Younger and Chapman, 1989)
sense RNAs, which overlap with coding mRNAs on the coding
strand of genes (Ponting et al., 2009; McCabe and Rasmussen,
2021). Also, lncRNAs could be divided depending on their
functions and regulatory mechanisms as decoy lncRNAs, guide
lncRNAs, scaffold lncRNAs, stabilizing lncRNAs, and
competitive endogenous lncRNAs (ceRNAs) (McCabe and
Rasmussen, 2021). LncRNAs can derive from diverse
sequences of genes, including their own sequences and other
promoter sequences, as well as the enhancer sequences. The
biogenesis of lncRNAs differs with cell type and cell stage
(Jiang and Zhang, 2021). Sharing a similar biogenesis process
to mRNAs, lncRNAs are transcribed by RNA polymerase II and
then capped at the 5′ region, polyadenylated at the 3′ region, and
spliced (Goff and Rinn, 2015). In addition, they are expressed in a
specific spatial and temporal manner influencing their functions.
Recent studies demonstrate the existence of a small open reading
frame in lncRNAs, which indicates their potential in various
cellular processes (Ji et al., 2015).

3.2 LncRNAs Promote the Osteogenic
Differentiation of BMSCs
LncRNAs are now known to exert influence on diverse biological
processes, such as cell cycle (Guiducci and Stojic, 2021),
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proliferation (Liu et al., 2021), metastasis (Hong et al., 2021), and
differentiation (Li. et al., 2021), as well as several diseases (Li et al.,
2021; Liu et al., 2021; Xin and Liu, 2021). Moreover, emerging
evidence shows that lncRNAs participate in the osteogenic
differentiation of BMSCs. During osteogenic differentiation,
lncRNAs may play their biological functions via four major
ways including serving as miRNAs sponges or precursors
(Huang et al., 2015), modulating epigenetic modification (Huo
et al., 2017), and mediating other regulatory mechanisms.

3.2.1 The Regulation of lncRNAs in Physiological
Conditions
Several lncRNAs are involved in promoting osteogenesis through
direct interaction with miRNAs. H19 is one of the most studied
lncRNA in osteogenic differentiation. The increased expression of
H19 during fetal development indicates its highly conserved
characteristic throughout evolution. H19 not only influences
various biological processes such as RNA progression, and
cellular proliferation but also implicates in multiple human
disorders (Shermane Lim et al., 2021; Wang and Qi, 2021).
Quercetin has been proved to affect osteogenesis and
osteoclastgenesis by regulation of a number of mechanisms,
including mediating the expression of osteoprotegerin, and
MAPK signaling (Wong et al., 2020). Quercetin also plays a
significant role in accelerating osteogenesis via interaction with
H19 by sponging miR-625-5p, and ultimately activates Wnt/β-

catenin pathway (Bian et al., 2021) (Figure 4 and Table 3). Bi
et al. (2020) found that H19 expression is increased in a time-
dependent manner during osteogenesis. Further studies
elucidated that H19 promotes osteogenic differentiation via
miR-140-5p/SATB2 axis in BMSCs. Besides, H19 binds to
miR-138, an miRNA targeting the gene encoding FAK called
PTK2, thus upregulates downstream FAK expression, playing an
important role in mechanical tension-induced osteogenic
differentiation of BMSCs (Wu et al., 2018). Cai et al. (2020)
found that LINC00707 is increased during osteogenic
differentiation. Further studies demonstrated that LINC00707
modulates LRP5 expression by sponging miR-145, which
activates the Wnt/β-catenin pathway and promotes the
osteogenic differentiation of BMSCs. LINC01535 contributes
to the osteogenic process via acting as a sponge of miR-3619-
5p to alter BMP2 expression (Zhao et al., 2020). Similarly,
lncRNA NEAT1 binds with miR-29b-3p which targets BMP1
to accelerate the osteogenic process (Zhang et al., 2019).

LncRNAs could influence osteogenic differentiation of BMSCs
by epigenetic regulation. WD Repeat-Containing Protein 5
(WDR5) is a transcription factor binding with the promoter of
β-catenin. Upregulation of lncRNA HOX transcript at the distal
tip (HOTTIP) promotes ectopic bone formation in vivo. The
interaction of HOTTIP and WDR5 facilitates WDR5
translocation into the nucleus and β-catenin transcription,
thus increasing osteogenic differentiation (Liu et al., 2020).

FIGURE 4 | Illustration of the role and regulatory mechanism of lncRNAs-induced osteogenic differentiation of BMSCs. Various lncRNAs promote BMSCs
osteogenesis through sponging miRNA (orange), activating epigenetic regulation, and mediating other regulatory mechanisms. (Created with BioRender.com).
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Tang et al. (2019) used customized microarrays to reveal a novel
lncRNA, osteogenesis-associated lncRNA (lncRNA-OG), which
was upregulated by almost 12-fold during BMSCs osteogenesis.
LncRNA-OG overexpression induces osteogenic differentiation
of BMSCs in vitro and ectopic bone formation in nude mice.
Mechanically, lncRNA-OG regulates BMP signaling pathway
through direct interaction with heterogeneous nuclear
ribonucleoprotein K (hnRNPK). Moreover, hnRNPK is
associated with lncRNA-OG transcriptional activity by
involving in the H3K27 acetylation of the lncRNA-OG promoter.

3.2.2 The Regulation of lncRNAs in Pathological
Conditions
LncRNAs dysregulation is widely associated with bone-related
diseases. The dysfunction of osteogenesis plays a key role in
SONFH. A decline in lncRNAMALAT1 expression was found in
SONFH tissues (Huang et al., 2020). ATF4, a vital regulator in
bone formation, transactivates numerous osteogenic genes like
RUNX2, BSP, OSX (Chan et al., 2021). MALAT1 influences
ATF4 expression through sponging miR-214, ultimately
increasing osteogenesis (Huang et al., 2020). What’s more, the

TABLE 3 | LncRNAs that promote osteogenic differentiation of BMSCs and underlying mechanisms.

LncRNA Study model Signaling pathway Effect References

SNHG14 BMSCs from the femoral head of patients with or
without OP receiving THA

Targets miR-185–5p/WISP2 to
activate Wnt/β-catenin signaling

Promotes expression of ALP,
OCN, and OPN

Z H Liu et al. (2021)

MALAT1 BMSCs from SONFH tissues and femoral neck
fracture tissues

Targets miR-214 to regulate ATF4 Promotes expression of RUNX2,
ALP, and OCN

Xian-Zhe Huang
et al. (2020)

BMSCs from femoral head tissues during THAwith or
without OP

Targets miR-143 to regulate OSX Promotes expression of ALP,
OCN, OPN, and OSX

Gao et al. (2018)

LINC00707 BMSCs in vitro Targets miR-145/LRP5 to activate
Wnt/β-catenin signaling

Promotes expression of ALP,
OCN, RUNX2, and OSX

Cai et al. (2020)

BMSCs in vitro and ectopic bone formation model Targets miR-370–3p/WNT2B to
activate Wnt/β-catenin signaling

Promotes expression of ALP,
RUNX2, and OCN

Jia et al. (2019)

PWRN1-209 BMSCs in vitro Activates integrin-FAK-ALP
signaling

Promotes expression of ALP
and COL1A1

Mingyue Wang
et al. (2020)

H19 BMSCs in vitro Targets miR-625–5p to activate
Wnt/β-catenin signaling

Promotes expression of BMP2
and RUNX2

Bian et al. (2021)

BMSCs in vitro Regulates miR-140–5p/SATB2
axis

Promotes expression of
COL1A1, RUNX2, OCN,
and OPN

Bi et al. (2020)

BMSCs in vitro Regulates miR-138/FAK axis Promotes expression of OPN,
RUNX2, and OCN

Jiajing Wu et al.
(2018)

LINC01535 BMSCs in vitro Targets miR-3619–5p to activate
BMP signaling

Promotes expression of OCN,
OSX, and RUNX2

Yiwen Zhao et al.
(2020)

XIXT BMSCs from femoral head tissues during THAwith or
without OP

Targets miR-30a-5p to regulate
RUNX2

Promotes expression of ALP
and RUNX2

H-L Zhang et al.
(2019)

NEAT1 BMSCs from femoral head tissues during THAwith or
without OP

Targets miR-29b-3p to activate
BMP signaling

Promotes expression of ALP,
OCN, and OPN

Yingzi Zhang et al.
(2019)

SNHG16 BMSCs from healthy donors and OP patients Targets miR-485–5p to activate
BMP signaling

Promotes expression of ALP,
OCN, and OPN

Asila et al. (2021)

GAS5 BMSCs from healthy donors and OP patients Targets miR-498 to regulate
RUNX2

Promotes expression of RUNX2 Feng et al. (2019)

DGCR5 BMSCs from healthy premenopausal women and
PMOP patients

Targets miR-30d-5p to regulate
RUNX2

Promotes ALP activity Zhi-Hao Wu et al.
(2018)

XIST BMSCs from femoral head tissues during THAwith or
without OP

Targets miR-9-5p to regulate ALP Promotes expression of OCN
and OPN

Zheng et al. (2020)

FAM83H-AS1 BMSCs in vitro Targets miR-541–3p/WNT3A to
activate Wnt/β-catenin signaling

Promotes expression of RUNX2,
OCN, and OSX

Haojie Wu et al.
(2020)

MEG3 BMSCs from pediatric AA patients and healthy
donors

Activates BMP signaling pathway —— Huanhuan Li et al.
(2021)

BMSCs in vitro Activates BMP signaling pathway Promotes expression of RUNX2,
ALP, OSX, and OCN

Chen et al. (2018)

MIR22HG BMSCs in vitro Targets PTEN to activate AKT
signaling

Promotes expression of RUNX2,
ALP, and OCN

Chanyuan Jin et al.
(2020)

ENST00000563492 BMSCs from patients with bone nonunion or normal
fracture healing; bone formation in nude mice

Targets miR-205–5p to regulate
CDH11 and VEGF.

Promotes expression of
COL1A1, RUNX2, and OCN

Ouyang et al. (2020)

HOTTIP BMSCs from blood, and in ectopic bone formation Targets WDR5 to activate Wnt/β-
catenin signaling

Promotes expression of RUNX2,
OSX, ALP, and OCN

Ruiduan Liu et al.
(2020)

lncRNA-OG BMSCs in vitro and ectopic bone formation model Targets hnRNPK to activate BMP
signaling

Promotes expression of RUNX2,
ALP, OSX, and OCN

Su’an Tang et al.
(2019)

lncAIS BMSCs from AIS patients and healthy donors;
ectopic bone formation

Interacts NF90 to enhance the
mRNA stability of HOXD8

Promotes expression of ALP,
RUNX2, LPL, and PPAR

Qianyu Zhuang
et al. (2019)
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expression of MALAT1 is significantly lower in BMSCs from
discarded femoral head tissues under THA with OP than that
without OP. MALAT1 could elevate an essential osteogenesis-
related gene OSX expression through miR-143, affecting the
osteogenic process and the development of OP (Gao et al.,
2018). LncRNAs are related to the development and therapy
of OP. LncRNA XIXT is downregulated, while miRNA-30a-5p is
upregulated in the serum of OP patients. Mechanistically,
lncRNA XIXT promotes osteogenesis by serving as a sponge
of miR-30a-5p to upregulate RUNX2 (Zhang et al., 2019).
Aberrant expression of small nucleolar RNA host gene 16
(SNHG16) had been reported in BMSCs from OP patients.
And the promoting effect of SNHG16 on the osteogenic
differentiation of BMSCs is modulated by SNHG16/miR-485-
5p/BMP7 axis (Asila et al., 2021). Feng et al. (2019) demonstrated
that lncRNA GAS5 is downregulated in BMSCs isolated from OP
patients. Osteoblastic differentiation is promoted by the
regulatory effect of GAS5 on miR-498, leading to increased
RUNX2 expression and alleviating the development of OP.
DEP domain-containing mTOR interacting protein (DEPTOR)
is the endogenous inhibitor of mTOR, which is crucial to
osteogenic differentiation and involved in OP. DEPTOR binds
with the promoter of lncRNAmaternally expressed 3 (nonprotein
coding) (MEG3) to inhibit its transcription, consequently
inactivating BMP4 signaling to restrain the osteogenic
differentiation of BMSCs. Further study showed that
downregulation of DEPTOR contributes to bone formation in
vivo (Chen et al., 2018). Downregulated in BMSCs from
osteoporosis patients, lncRNA X inactivate-specific transcript
(XIST) promotes osteoblast differentiation and represses OP
by regulating miR-9-5p and increasing the expression of its
target ALP (Zheng et al., 2020). Sharing similar expression
pattern in BMSCs from patients with PMOP, lncRNA DGCR5
upregulates RUNX2 to induce osteogenic differentiation, by
sponging miR-30d-5p, thus, beneficial to delaying PMOP
development (Wu et al., 2018). It has proved that
osteomyelitis impedes the differentiation of BMSCs. A decline
in the expression of lncRNA FAM83H-AS1 was identified in
BMSCs during staphylococcal protein A-induced osteomyelitis.
Mechanically, FAM83H-AS1 improves osteogenic differentiation
of BMSCs by serving as a ceRNA of miR-541-3p, which brings
augmentation in the expression of WNT3A, a critical member of
the Wu et al. (2020)signaling pathway. Besides, AA, a common
hematological disease, is characterized by inhibition of
osteoblastic differentiation. Lower expression of MEG3 was
detected in BMSCs of AA patients. DNA cytosine-5-
methyltransferase 1 is correlated with the hypermethylation of
the MEG3 promoter. MEG3 increases the transcriptional activity
of BMP4 and positively affects osteoblastic differentiation of
BMSCs (Li et al., 2021). Decreased osteogenic capability of
BMSCs exhibits in adolescent idiopathic scoliosis (AIS)
patients. Zhuang et al. (2019) reported downregulation of
novel lncAIS in BMSCs from AIS patients. The interplay
between lncAIS and NF90 promotes HOXD8 mRNA stability
and eventually promotes the osteogenesis in normal BMSCs
in vitro and in vivo.

3.2.3 The Regulation of lncRNAs in Bone Regeneration
and Bone Tissue Engineering
LncRNAs, which have a promoting effect on osteogenic
differentiation, are overexpressed in BMSCs. The modified
BMSCs with beneficial lncRNAs loaded on biomaterials maybe
used to repair bone defect in vivo. A novel lncRNA Prader-willi
region ncRNAs 1–209 (PWRN1-209) was proved to enhance
osteoblast differentiation on microtopography titanium surfaces
possibly through integrin/FAK/ALP signaling (Wang et al.,
2020). Acting as a ceRNA for miR-370-3p, LINC00707
influences osteogenic differentiation via the Wnt/β-catenin
pathway in vitro. And LINC00707 modified BMSCs loaded on
HA/TCP promote ectopic bone formation in NOD/SCID mice
(Jia et al., 2019). Various studies have revealed the indispensable
role of the PTEN/AKT pathway in bone formation (Nielsen-
Preiss et al., 2003). Targeting PTEN/AKT pathway, lncRNA
MIR22HG serves as a positive regulator of osteogenic
differentiation in BMSCs in vitro and Bio-Oss mediated
ectopic bone formation in vivo (Jin et al., 2020). Reports
demonstrated that the poor osteogenic potential of BMSCs
typifies bone nonunion (Tawonsawatruk et al., 2014). LncRNA
ENST00000563492 functions as a sponge of miR-205-5p to
elevate Cadherin-11 (CDH11) and vascular endothelial growth
factor (VEGF) expression, enhancing osteogenesis of BMSCs
in vitro and bone formation by a combination of matrigel in
vivo. ENST00000563492 was considered a new therapeutic target
for bone nonunion (Ouyang et al., 2020). The osteogenesis
promoting lncRNAs may be further evaluated.

3.3 LncRNAs That Inhibit Osteogenic
Differentiation in BMSCs
Likewise, multiple lncRNAs are involved in the suppression of
osteogenic differentiation of BMSCs by sponging pro-osteogenic
miRNAs. The expression of SNHG1 is decreased in a time-
dependent manner during osteogenic differentiation. LncRNA
SNHG1 inhibits osteogenesis via the miR-101/DKK1 axis and
modulation of the Wnt/β-catenin signaling pathway by acting as
a ceRNAs of miR-101 (Xiang et al., 2020) (Figure 5 and Table 4).
LncRNA differentiation antagonizing non-protein coding RNA
(DANCR) is downregulated during osteogenesis. DANCR
inhibits osteogenesis of BMSCs as a sponge of miR-1301-3p
which modulates prospero homeobox 1 (PROX1) expression
(Weng et al., 2021). DANCR can also mediate cell
proliferation and osteoblastic differentiation through the
inactivation of the p38/MAPK pathway (Zhang et al., 2018).
Inhibitory lnRNAs are related to bone diseases. Abnormal
expression of lncRNA LOXL1 antisense RNA 1 (LOXL1-AS1)
was found in peripheral blood from PMOP patients. LOXL1-AS1
suppresses osteogenic differentiation by mediating HMGA2
expression and subsequent C/EBPβ-mediated PPARγ
expression by binding with miR-196a-5p in BMSCs from
PMOP (Zhang et al., 2020). The expression of lncRNA MEG3
is upregulated in BMSCs of patients with PMOP.MEG3 regulates
miR-133a-3p, accompanied by decreased SLC39A1 expression, to
repress the osteogenic differentiation of BMSCs (Wang et al.,
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2017). The inhibitory effect of MEG3 on the osteogenesis of
BMSCs is different from the previous reports (Chen et al., 2018; Li
et al., 2021), whichmay be resulted from the BMSCs isolated from

patients with different diseases. Increased in BMSCs from OP
patients, lncRNA HCG18, which regulates miR-30a-5p/notch
receptor 1 (NOTCH1) axis, suppresses osteogenic

FIGURE 5 | Illustration of the role and regulatory mechanism of lncRNAs-inhibited osteogenic differentiation of BMSCs. Some lncRNAs inhibit BMSCs
osteogenesis through sponging pro-osteogenic miRNAs (orange). (Created with BioRender.com).

TABLE 4 | LncRNAs that inhibit osteogenic differentiation of BMSCs and underlying mechanisms.

LncRNA Study model Signaling pathway Effect References

SNHG1 BMSCs in vitro Targets miR-101/DKK1 to inactivate
Wnt/β-catenin signaling

Inhibits expression of RUNX2, OCN,
and OPN

Jie Xiang et al. (2020)

LOXL1-
AS1

BMSCs in vitro and peripheral blood from PMOP
patients or healthy donors

Regulates miR-196a-5p/HMGA2 axis Inhibits expression of ALP, OPN,
and RUNX2

Ling Zhang et al. (2020)

MEG3 BMSCs from healthy premenopause women and
PMOP patients

Regulates miR-133a-3p/SLC39A1
axis

Inhibits expression of RUNX2, OCN,
and OPN

Qiujun Wang et al.
(2017)

DANCR BMSCs in vitro Regulates miR-1301–3p/PROX1 axis Inhibits expression of ALP, RUNX2,
OCN, and OSX

Weng et al. (2021)

BMSCs in vitro Inactivates p38/MAPK signaling
pathway

Inhibits expression of OCN, COL1,
and RUNX2

Jinlong Zhang et al.
(2018)

BMSCs from PMOP patients and healthy donors Targets CTNNB1 to inactivate β-
catenin signaling pathway

Inhibits expression of TCF-1,
RUNX2, OPN, and OCN

Cheng-Gong Wang
et al. (2020)

HOTAIR BMSCs from non-traumatic ONFH and
osteoarthritis patients

Targets miR-17–5p to inactivate
Smad7

Inhibits expression of RUNX2,
COLA1, and ALP

Wei et al. (2017)

BMSCs from OP patients and healthy donors Inactivates Wnt/β-catenin signaling
pathway

Inhibits expression of ALP, RUNX2,
and OCN

J-J Shen et al. (2019)

TUG1 BMSCs in vitro —— Inhibits expression of RUNX2,
and OGN

Weiwei Zhang et al.
(2019)

ZBTB40-
IT1

BMSCs in vitro Inactivates Wnt signaling pathway Inhibits expression of RUNX2, OSX,
ALP, and COL1A1

Mei et al. (2019)

HCG18 BMSCs from femoral head tissues during THA
with or without OP

Targets miR-30a-5p to activate
NOTCH1 signaling

Inhibits expression of ALP, OCN,
and OPN

Che et al. (2020)
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differentiation of BMSCs in OP patients and mice (Che et al.,
2020). Wang et al. identified the aberrant expression of lncRNA
DANCR, miR-320a, and CTNNB1 in BMSCs derived from OP
patients. Furthermore, during the osteogenesis in BMSCs,
DANCR and miR-320a regulate the Wnt/β-catenin signaling
pathway through CTNNB1 inhibition, ultimately inhibiting the
process (Wang et al., 2020). It has been suggested that the
abnormal osteoblast differentiation of BMSCs is responsible
for the pathogenesis of nontraumatic ONFH. In BMSCs of
patients with nontraumatic ONFH, lncRNA HOX transcript
antisense RNA (HOTAIR) expression was remarkably higher
than normal. The sponging effect of HOTAIR on miR-17-5p
leads to the decreased expression of Smad7, thus suppressing
osteoblast differentiation of BMSCs in ONFH (Wei et al., 2017).

Additionally, lncRNAs inhibit the osteogenic process via
epigenetic regulation. LncRNA ZBTB40-IT1 exerts an adverse
effect on osteogenic differentiation in the manner of
modulating WNT4, a crucial gene of the Wnt signaling
pathway, while ZBTB40 has the opposite function (Mei
et al., 2019). HOTAIR is significantly upregulated in OP
patients both in serum and BMSCs levels. It suppresses the
differentiation of BMSCs into osteoblasts through the Wnt/β-
catenin signaling pathway (Shen et al., 2019). Taurine
Upregulated Gene 1 (TUG1), a notably increased lncRNA
after irradiation, abolishes the Smad5 signaling using the
reciprocal action with the 50–90 amino acid region of
Smad5 and blocking the nuclear translocation of p-Smad5
that serves as a negative regulator of osteogenic differentiation
(Zhang et al., 2019). Thus, silencing the expression of
inhibitory lncRNAs may increase the application potential
in bone regeneration.

4 CIRCRNAS AND THE OSTEOGENIC
DIFFERENTIATION OF BMSCS
4.1 The Biogenesis and Function of
circRNAs
CircRNAs are a kind of covalently closed ncRNAs (Kristensen
et al., 2019). Unlike linear RNAs, circRNAs are more stable due to
the lack of 5′ to 3′ polarity and polyadenylated tail. CircRNAs
were first discovered in eukaryotic cells and were found in almost
all organisms. They are abundant and evolutionarily conservative
in eukaryotic cells (Hsu and Coca-Prados, 1979). Since then,
thousands of circRNAs have been found in animals ranging from
Drosophila melanogaster to Homo sapiens (Huang et al., 2017).
CircRNAs are mostly produced from exons and have a wide
variety of species, such as exon circRNAs, exon-intron circRNAs,
intron circRNAs, antisense circRNAs, intergenic circRNAs, and
sensory-overlap circRNAs (Guarnerio et al., 2019). The
production of circRNAs mainly depends on two mechanisms.
RBPs bind to introns with long inverted repeats at two ends of
linear RNA and promote the binding of the two ends of linear
RNA together to allow circRNAs formation. Some RBPs have
been found to promote the formation of some circRNAs
including the splicing factor muscleblind (Ashwal-Fluss et al.,
2014), Quaking (Conn et al., 2015), RNA-binding motif protein

20 (Khan et al., 2016), and the RBP FUS (Errichelli et al., 2017),
Muscleblind (Ashwal-Fluss et al., 2014), and so on. Furthermore,
the RNA pairing of the complementary sequences at two ends of
linear RNAs leads to circRNA formation (Patop et al., 2019).

Functionally, circRNAs play an important role in regulating
gene expression in various ways, such as modulating
transcription, alternative splicing, RNA processing reactions,
being translated into polypeptides, interacting with RBPs, and
sequestrating of miRNAs or proteins (Kristensen et al., 2019).
Several studies have revealed that circRNAs are involved in the
physiological and pathological processes, such as OP (Shen et al.,
2020), osteosarcoma (Liu et al., 2017), Alzheimer disease, diabetes
mellitus, malignant tumors (Li et al., 2018), and osteoarthritis
(Ouyang et al., 2017; Shen et al., 2019). Also, circRNAs are
implicated in neuronal function, innate immune responses,
cell proliferation, and pluripotency (Li et al., 2019; Shi et al.,
2020; Li and Chen, 2021). CircRNAs participate in the osteogenic
differentiation of several kinds of MSCs including BMSCs by
sponging miRNAs (Gu et al., 2017; Ouyang et al., 2019; Peng
et al., 2019).

4.2 CircRNAs That Promote Osteogenic
Differentiation in BMSCs
Circ_0113689 originated from gene DAB1 binds miR-1270 and
miR-944 to enhance the osteogenic differentiation of BMSCs,
finally exerted promoting role in chondrogenesis through
NOTCH/RBPJ pathway (Chia et al., 2020) (Figure 6 and
Table 5). During NOTCH/RBPJ signaling pathway, the Notch
intracellular domain translocates to the nucleus and binds with
RBPJ and co-activators, forming a complex that induces the
transcription of downstream gene DAB1 (Luo et al., 2019).
CircRNA AFF4 activates the expression of fibronectin type III
domain-containing protein 5 (FNDC5)/Irisin through Smad1/5
pathway via sponging miR-135a-5 p, which induces the
osteogenic differentiation of BMSCs in vitro and ectopic bone
formation in vivo (Liu et al., 2021). Moreover, circ_AFF4 was
reported to promote osteoblastic proliferation by acting as a miR-
7223-5p sponge (Mi et al., 2019). During the bone-related
diseases progression, the expressions of circ_0076906 is greatly
decreased both in the bone tissue and serum of OP patients.
Circ_0076906 promotes osteogenic differentiation of BMSCs
through regulating to miR-1305 and its target osteoglycin
(OGN), finally alleviates the OP progression (Wen et al.,
2020). Circ_0006393 was decreased in the bone tissue of
patients with glucocorticoid-induced OP. Further study
demonstrated that circ_0006393 overexpression increases bone
metabolism through miR-145-5p-FOXO1 pathway (Wang et al.,
2019). CircFOXP1 regulates PTEN gene expression, thereby
promoting the osteogenic differentiation of BMSCs through
PI3K/AKT pathway, which may be used as the therapeutic
targets in bone-related diseases such as ONFH (Xin et al.,
2021). In addition, The expressions of circ_0000219 and
circ_0005936 are significantly decreased in the bone marrow
tissue of ONFH patients, which may be related to the
proliferation and osteogenic capacity of BMSCs from ONFH
patients (Xiang et al., 2020).
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FIGURE 6 | Illustration of the role and regulatory mechanism of circRNAs-promoted (green) and inhibited (red) osteogenic differentiation of BMSCs. Some
circRNAs inhibit BMSCs osteogenesis through sponging pro-osteogenic miRNAs (orange). (Created with BioRender.com).

TABLE 5 | CircRNAs that regulate the osteogenic differentiation in BMSCs and underlying mechanisms.

CircRNAs Study model Signaling pathway Effect References

circ-DAB1
(has_circ_0113689)

BMSCs in vitro Binds miR-1270 and miR-944 to activate
NOTCH/RBPJ pathway

Promotes expression of ALP, RUNX2,
OSX, OCN, and COL1A1

Chia et al. (2020)

circ_0,076906 BMSCs in vitro Targets miR-942–5p to increase the
expression of RUNX2 and VEGF via the
miR-1305/OGN pathway

Promotes expression of RUNX2 and OCN Wen et al. (2020)

hsa_circ_0066523
(circFOXP1)

BMSCs in vitro Promotes PTEN gene expression via the
PI3K/AKT pathway

Promotes expression of RUNX2, OPN,
and OCN

Xin et al. (2021)

circ_0000219,
circ_0005936

BMSCs from healthy donors and
patients with SONFH

—— Changes cellular functions and aberrantly
expressed miRNAs and circRNAs in bone
marrow stem cells in ONFH

Shuai Xiang et al.
(2020)

circRNA CDR1as BMSCs from patients with steroid-
induced ONFH and femoral head
fracture in vitro

Sponges miR-7-5p to promote CDR1as
and WNT5B expression via the Wnt/β-
catenin signaling

Inhibits expression of RUNX2, OSX, BMP2,
ALP, and OCN

Gaoyang Chen
et al. (2020)

CircIGSF11 BMSCs in vitro Targets miR-199b-5p to promote
osteogenesis via the GSK-3β/β-catenin
signaling pathway

Inhibits expression of ALP, RUNX2, OCN,
and OSX

Ouyang et al.
(2019)

hsa-circ-0000885 BMSCs from OP patients —— The expression of hsa-circ-0000885 was
upregulated in peripheral blood
mononuclear cells of OP patients

Zhao et al. (2021)

Circ_0,006,393 BMSCs from healthy donors and
glucocorticoid-induced OP
patients

increases bone metabolism through miR-
145-5p-FOXO1 pathway

Promotes expression of RUNX2, OPG,
BMP2, and OSX transcription factor

Xing-Bo Wang
et al. (2019)

circ_0,003,865 BMSCs in vitro circ_0,003,865 spongesmiR-3653–3p to
regulate GAS1 gene expression through
NF-κB pathways

Inhibits expression of RUNX2, ALP,
and OPN

Wang et al.
(2021)

Circular RNA AFF4 BMSCs in vitro, facture model in
nude mice

activates the expression of FNDC5/Irisin
through Smad1/5 pathway via sponging
miR-135a-5p

Promotes expression of ALP, BMP4,
RUNX2 at both mRNA and protein levels

Chao Liu et al.
(2021)
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4.3 CircRNAs That Inhibit Osteogenic
Differentiation in BMSCs
CircIGSF11 is downregulated during osteogenic differentiation of
BMSCs. Silencing of circIGSF11 may promote osteogenesis
through regulating miR-199b-5p of BMSCs (Ouyang et al.,
2019). Chen et al. (2020) determined that circRNA CDR1as
suppresses the expression of CDR1as and WNT5B via
sponging miR-7-5p, which inhibits the osteogenic
differentiation of BMSCs from patients with SONFH.
Furthermore, circ_0003865 sponges miR-3653-3p to regulate
growth arrest-specific gene 1 (GAS1) gene expression through
NF-κB pathways, thereby inhibiting the osteogenic
differentiation of BMSCs in the bone marrow tissue of OP
patients (Wang et al., 2021). The expression of hsa-circ-
0000885 was upregulated in peripheral blood mononuclear
cells of OP patients. Circ-0000885 silencing has the potential
to promote cell proliferation, osteogenic differentiation, and
inhibit apoptosis of BMSCs (Zhao et al., 2021). The regulatory
function and mechanism of circRNAs on osteogenic
differentiation of BMSCs are summarized in Figure 6 and
Table 5.

5 PIRNAS AND OSTEOGENIC
DIFFERENTIATION OF BMSCS

In addition, piRNAs also participate in the osteogenic
differentiation of BMSCs. PiRNAs are a kind of linear
ncRNAs with a length of 26–31 nucleotides, which are to
perform their biological functions by binding with PIWI
protein (PIWIL) proteins (Iwasaki et al., 2015). The piRNA
biogenesis pathways are complex and conserved, including de
novo piRNA production, the ping-pong cycle, and self-
amplification mechanisms, resulting in mature piRNAs (Zhang
et al., 2022). Some studies have suggested that piRNA plays an
essential role in maintaining the functionality of stem cells,
formatting, and differentiating germ cells and somatic cells
(Vagin et al., 2006; Lin et al., 2020; Li et al., 2021). In the
Drosophila germline, the binding of piRNA and repeat-
associated small interfering RNA ensure genomic stability by
silencing transposable elements and participate in the whole
process of spermatogonial generation, development, and
differentiation (Vagin et al., 2006). The change of chromatin
state during cell differentiation creates a circumstance in which
specific transposons can be expressed, the binding of piRNA and
PIWIL SMEDWI-2 participates in the regulation of somatic
differentiation by specifically silencing these transposons in
different cell types (Li et al., 2021). Reports demonstrated that
piRNAs are involved in the osteogenic differentiation of BMSCs.
RNA sequencing confirmed that 8 piRNAs are upregulated and
46 piRNAs are downregulated in the early osteogenic
differentiation of BMSCs, but it is not clear whether these
piRNAs are involved in the osteogenic differentiation of
BMSCs (Della Bella et al., 2020). According to these
dysregulated piRNAs, Liu et al. further confirmed that the
binding of piR-36741 and PIWIL4 protein suppresses

methyltransferase like 3-mediated BMP2 m6A level and
promotes BMP2 expression, thereby increasing the osteogenic
differentiation in BMSCs (Liu et al., 2021). The functional
regulation and mechanism of piRNAs on osteogenic
differentiation in BMSCs should be revealed. And the
potential in bone regeneration of piRNAs and whether
piRNAs are involved in bone-related diseases should be
further evaluated.

6 EXSOSOMAL NCRNAS AND
OSTEOGENESIS

Exosomes are a kind of extracellular vesicles with a diameter of
40–100 nm (Raposo and Stoorvogel, 2013). Exosomes exist in
human body fluids such as saliva, blood, and breast milk (Admyre
et al., 2007; Michael et al., 2010), and can be secreted by various
cells including MSCs (Raposo and Stahl, 2019). Exosomes are
encapsulated by lipid bilayers, which could protect their contents
from degradation. According to the different source cells, the
components of exosome contents include miRNAs, lncRNAs,
proteins, lipids, amino acids, etc., (Kalluri and LeBleu, 2020).
Exosomes deliver these small molecules to recipient cells, thus
participating in bone regeneration and other processes (Huang
et al., 2020).

The expression of miR-199b, miR-218a, miR-148a, miR-135b,
miR-203, miR-219, miR-299-5p, andmiR-302b were significantly
increased during the osteogenic differentiation of BMSCs, while
the expression of miR-221, miR-155, miR-885-5p, miR-181a and
miR-320c is decreased (Xu et al., 2014). Li et al. (2021) found that
exosomal miR-101 derived from BMSCs promotes the osteogenic
differentiation of BMSCs by targeting F-box and WD repeat
domain containing 7 (FBXW7), as well as modulating FBXW7-
mediated hypoxia-inducible factor-1α (HIF1α)/FOXP3 axis
(Figure 7). In addition, overexpression of exosomal miR-375-
5p derived from human adipose mesenchymal stem cells
(AMSCs) promotes the osteogenic differentiation of BMSCs by
targeting insulin-like growth factor binding protein 3 (IGFBP3)
(Chen et al., 2019). Some exosomal miRNAs inhibit the
osteogenic differentiation of BMSCs. Jiang et al. (2018) found
an increased level of miR-21 in exosomes extracted from BMSCs
in OP patients that inhibits the osteogenic differentiation of
BMSCs by targeting Smad7. Furthermore, exosomal miR-23a
secreted by human gingival fibroblasts inhibits the osteogenic
capacity of BMSCs by targeting CXCL12 (Zhuang and Zhou,
2020). Exosomal miR-100-5p inhibits the osteogenic
differentiation of BMSCs by targeting BMPR2 through
BMPR2/Smad1/5/9 signaling pathway (Yang et al., 2021).
Intriguingly, exosomal miR-1260a, which is also derived from
BMSCs treated with Fe3O4 and a static magnetic field, promotes
osteogenic differentiation of BMSCs by targeting, which provides
the potential for bone regeneration of tissue engineering (Wu
et al., 2021).

Similar to miRNAs, several lncRNAs from exosomes of
BMSCs exert great functions in osteogenic differentiation.
SATB2 was proved to promote osteogenic differentiation of
BMSCs in patients with osteonecrosis (Yang et al., 2019).
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Exosomes containing MALAT1 promote osteogenic
differentiation of BMSCs through the interaction between
MALAT1 and miR-34c/SATB2 axis in vitro (Yang et al.,
2019). Moreover, exosomal H19 derived from BMSCs reverses
poor the osteogenic differentiation of BMSCs during obesity-
induced fracture healing via miR-467/HOXA10 axis (Zhi et al.,
2021).

CircRNAs are abundant in exosomes, and more than one
thousand exosomal circRNAs have been identified in human
serum (Fanale et al., 2018). The expression of circ_0006859 in
exosomes is upregulated in OP patients. Exosomal circ_0006859
suppresses osteogenesis of BMSCs by sponging miR-431-5p and
then elevated Rho-associated coiled-coil containing protein
kinase 1 (ROCK1) expression (Zhi et al., 2021).

TsRNAs, which are classified into tRNA-derived stress-
induced RNAs and tRNA-derived fragments are small
fragments of RNAs generated from tRNAs by specific
ribonucleases, such as dicer and angiogenin (Zong et al.,
2021). Several reports showed that tsRNAs are involved in the
physical and diseases processes (Kim et al., 2017; Zhu et al., 2019).
Furthermore, tsRNAs are found to be dysregulated in the exomes
during osteogenic differentiation of BMSCs. Yan et al.
demonstrated that several tsRNAs including Ser-ACT, Ser-
GCT, Sup-TTA, Phe-GAA, Ile-AAT, Lys-TTT, Leu-TAG, and

Thr-CGT are significantly upregulated, while the expression of
Gly-CCC, Gly-GCC, and His-GTG is downregulated in the
exosomes during the osteogenic differentiation in BMSCs.
However, the specific function of these tsRNAs should be
further revealed. The regulatory function and mechanism, and
potential application in bone regeneration of more ncRNAs
should be further explored. Exosomal ncRNAs in the
regulating of osteogenic differential in BMSCs are shown in
Figure 7.

7 CHALLENGES AND PERSPECTIVES

BMSCs are an important source of stem cells in bone tissue
engineering, which have a good application prospect in the fields
of bone tissue engineering and bone regeneration. BMSCs also
have great potential in the therapy of bone-related diseases such
as OP and OFNH (Qi et al., 2017). The osteogenic differentiation
of BMSCs is a complex physiological process. There is increasing
evidence that this process is regulated by different epigenetic
factors, including ncRNAs. This review focused on the function
and regulatory mechanism of ncRNAs in the osteogenic
differentiation of BMSCs. It has made great progress on the
osteogenic differentiation of BMSCs regulated by ncRNAs.

FIGURE 7 | Exosomal ncRNAs derived from BMSCs (brown), AMSCs (blue) and human gingival fibroblasts (pink) can promote (green) or inhibit (red) osteogenic
differentiation of BMSCs via various regulatory mechanisms. (Created with BioRender.com).
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However, there are still much more to know about the functions
and mechanisms of ncRNAs in regulating the osteogenic
differentiation of BMSCs.

Firstly, more ncRNAs should be explored by sequencing. As we
reviewed above, exosomes derived ncRNAs are not fully elucidated.
Currently, only a few piRNAs and tsRNAs are identified during the
osteogenic differentiation of BMSCs. And the function and
regulation of these new piRNAs and tsRNAs are not clear. To
our knowledge, no reports show that other ncRNAs such as rRNAs,
snRNAs, snoRNAs are involved in influencing the osteogenic
capability of BMSCs, which needs much more attention. Mostly,
the regulatorymechanism of lncRNAs and circRNAs are involved in
sponging miRNAs during the osteogenic processes of BMSCs.
PiRNAs may also have the binding potential to lncRNAs and
circRNAs. Thus, the regulatory network needs much deeper
mining through bioinformatic analysis. Furthermore, the
epigenetic regulation of lncRNAs such as methylation, and
binding of transcription factors during the osteogenesis of
BMSCs should be paid more attention.

Secondly, lncRNA and circRNA-encoded small peptides were
identified by the computational and analytical methods used to
forecast prospective ncRNAs encoding oligopeptides (Wu et al.,
2020). These peptides have specific biological functions such as
tumor development and inflammatory responses (Huang. et al.,
2017; Niu et al., 2020; Wu et al., 2020; Gao et al., 2021). However,
few reports show that lncRNA and circRNA-encoded peptides
participate in the osteogenic differentiation of MSCs.

Finally, more efforts should be made to increase the clinical
application for bone regeneration and bone-related diseases in the
future. These ncRNAs influenced the osteogenic differentiation of
BMSCs has the potential as targets by overexpression or inhibition.
The efficient delivery system into BMSCs is rather important. These
ncRNAs could be incorporated into exosomes and then delivered
into the BMSCs. These modified BMSCs alone or in combination
with biomaterials can be directly injected into bone defect sites.

8 CONCLUSION

In summary, research on the function of ncRNAs in the
regulation of osteogenic differentiation of BMSCs has made
great processes. The ncRNAs could be biomarkers of bone-
related diseases. MiRNAs, circRNAs, and lncRNAs are the
most extensively investigated ncRNAs for their regulatory role
in the osteogenic differentiation of BMSCs and the underlying
mechanisms. The osteogenic differentiation regulation potentials
of piRNAs, tsRNAs, rRNAs, snRNAs, and snoRNAs are still
unclear. The current understanding of the regulatory role of
different miRNAs, circRNAs, and lncRNAs in osteogenic
differentiation of BMSCs could be applied for bone tissue
regeneration, such uses of exosomes or nanoparticles carrying
osteo-stimulatory ncRNAs. However, the clinical applications of
ncRNAs in bone tissue engineering are hardly reported.
Therefore, future preclinical studies are mandatory to evaluate
the efficacy and safety of ncRNAs-mediated BMSCs-based bone
tissue engineering.
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GLOSSARY

AA aplastic anemia

AIS adolescent idiopathic scoliosis

AKT protein kinase B

ALP alkaline phosphatase

AMSC adipose mesenchymal stem cells

ARL6 adenosine diphosphate-ribosylation factor-like protein 6

ATF activating transcription factor

BCL2 B-cell lymphoma 2

BMP bone morphogenetic protein

BMPR BMP receptor

BMSC bone marrow derived mesenchymal stem cell

CDH11 cadherin-11

ceRNA competitive endogenous lncRNAs

circRNA circular RNA

CNNB1 Targets catenin beta 1

COL1 collagen type I

COL1A1 collagen type I α1

CTNNBIP1 catenin beta interacting protein 1

CXCR4 C-X-C chemokine receptor type 4

DANCR differentiation antagonizing non-protein coding RNA

DDX17 dead-box helicase 17

DEPTOR DEP domain-containing mTOR interacting protein

DHRS3 retinoic acid-inducible dehydrogenase reductase 3

DKK1 dickkopf 1

DLX distal-less

EFNA3 ephrin-A3

ERK extracellular signal-regulated kinase

EZH2 enhancer of zeste homolog 2

FAK focal adhesion kinase

FBXW7 F-box and WD repeat domain containing 7

FGF fibroblast growth factor

FNDC5 fibronectin type III domain-containing protein 5

FOX forkhead box

FZD frizzled

GAS1 growth arrest-specific gene 1

GLS glutaminase

GSK-3β glycogen synthetase kinase 3 beta

H3K27 trimethylation of lysine 27 on histone H3

HA/TCP hydroxyapatite/tricalcium phosphate

HIF1α hypoxia-inducible factor-1α

HMGA2 high-mobility group A2

hnRNPK heterogeneous nuclear ribonucleoprotein K

HOTAIR HOX transcript antisense RNA

HOTTIP HOX transcript at the distal tip

HOX homeobox

IGF1R insulin growth factor 1 receptor

IGFBP3 insulin-like growth factor binding protein 3

IL-1β interleukin-1β

KLF kruppel like factor

K-RAS kirsten rat sarcoma viral oncogene

lncRNA long non-coding RNA

lncRNA-OG osteogenesis-associated lncRNA

LOXL1-AS1 LOXL1 antisense RNA 1

LRP5 low-density lipoprotein receptor-related protein 5

MAPK mitogen-activated protein kinase

MEF2C myocyte enhancer factor 2 C

MEG3 maternally expressed 3 (nonprotein coding)

miRNA microRNA

MRC2 type 2 mannose receptor C

MSC mesenchymal stem cell

mTOR mammalian target of rapamycin

MYD88 myeloid differentiation factor 88

ncRNA non-coding RNA

NF-κB nuclear factor kappa B

NOTCH1 notch recepetor 1

OCN osteocalcin

OGN osteoglycin

ONFH osteonecrosis of the femoral head

OP osteoporosis

OPN osteopontin

OSX osterix

PI3K phosphoinositide 3-kinase

piRNA PIWI-interacting RNA

PIWIL PIWI protein

PMOP postmenopausal osteoporosis

PPARγ peroxisome proliferator-activated receptor γ

pre-miRNA precursor miRNA

pri-miRNA primary miRNA

PROX1 prospero homeobox 1

PTEN phosphatase and tensin homolog deleted on chromosome ten

PWRN1-209 Prader-willi region ncRNAs 1–-209

RANKL receptor or activator of NF-κB ligand

RAP1A ras-related protein 1 AA

RBP RNA-binding protein

ROCK1 Rho associated coiled-coil containing protein kinase 1

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 90327828

Chen et al. Non-coding RNAs in BMSCs Osteogenesis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


rRNA ribosomal RNA

RUNX2 runt-related transcription factor 2

SATB2 special AT-rich binding protein homeobox 2

SDF-1 stromal cell-derived factor 1

SEMA3A semaphorin 3 AA

SIRT1 sirtuin1

SLC39A1 solute carrier family 39 member 1

SMURF2 Smad ubiquitin regulatory factor 2

SNHG16 small nucleolar RNA host gene 16

snoRNA small nucleolar RNA

snRNA small nuclear RNA

SONFH steroid-associated osteonecrosis of the femoral head

SOX2 sex determining region Y-box 2

SPRY1 Sprouty 1

STAT1 signal transducer and activator of transcription 1

TCF-1 T-cell factor 1

TET2 ten-eleven translocation 2

TGF-β transforming growth factor-β

THA total hip arthroplasty

TNF-α tumor necrosis factor-α

tRNA transfert RNA

tsRNA tRNA-derived small RNA

TUG1 taurine upregulated gene 1

VEGF vascular endothelial growth factor

WDR5 WD Repeat-Containing Protein 5

WISP2 WNT1 inducible signaling pathway protein 2

WNT3A Wnt family member 3 AA

WWP1 WW domain-containing E3 ubiquitin protein ligase 1

XIST X inactivate-specific transcript
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