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Although their physiology and functions are very different, bones, skeletal and smooth
muscles, as well as the heart have the same embryonic origin. Skeletal muscles and bones
interact with each other to enable breathing, kinesis, and the maintenance of posture.
Often, muscle and bone tissues degenerate synchronously under various conditions such
as cancers, space travel, aging, prolonged bed rest, and neuromuscular diseases. In
addition, bone tissue, skeletal and smoothmuscles, and the heart share common signaling
pathways. The RANK/RANKL/OPG pathway, which is essential for bone homeostasis, is
also implicated in various physiological processes such as sarcopenia, atherosclerosis,
and cardiovascular diseases. Several studies have reported bone-skeletal muscle
crosstalk through the RANK/RANKL/OPG pathway. This review will summarize the
current evidence indicating that the RANK/RANKL/OPG pathway is involved in muscle
function. First, we will briefly discuss the role this pathway plays in bone homeostasis.
Then, we will present results from various sources indicating that it plays a
physiopathological role in skeletal, smooth muscle, and cardiac functions.
Understanding how the RANK/RANKL/OPG pathway interferes in several physiological
disorders may lead to new therapeutic approaches aimed at protecting bones and other
tissues with a single treatment.
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INTRODUCTION

Muscles and bones share a common embryonic origin, the mesoderm. Both tissues develop
together, and their proximity and interaction enable, among other things, kinesis, stability, and
support for the body. Bones and muscles are constantly adapting to varying mechanical,
physiological, and biochemical demands. Bone formation and resorption depend largely on
the mechanical load resulting from gravity and muscle contractions (Brotto and Bonewald,
2015). Bone density increases rapidly during the teenage years and continues to increase into the
30s (Greenlund and Nair, 2003) in synchrony with muscle mass, which follows the same
trajectory. In the elderly, physical activity and anabolic hormones such as testosterone and
estrogen decrease, inducing a progressive loss of bone density and muscle mass, an important
component of frailty syndrome. Cast immobilization, prolonged bed rest, microgravity, critical
illness, and neuromuscular diseases can markedly accelerate the osteoporotic and sarcopenic
processes (Hamrick et al., 2006; McKay and Smith, 2008; Russo, 2009; Ness and Apkon, 2014;
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Owen et al., 2015). Bone and skeletal muscles are thus very
dynamic tissues that undergo several modifications
throughout life.

Several reports over the past 10–15 years have demonstrated
that the synchronicity between bones and skeletal muscle extends
beyond solely mechanical loading and that osteokines and
myokines released by these two tissues can potentially
influence bone and skeletal muscle mass (Brotto and
Bonewald, 2015; Boulanger Piette et al., 2018). We
hypothesized over a decade ago that the triad composed of
receptor activator of nuclear factor kappa B (RANK), its
ligand (RANKL), and osteoprotegerin (OPG), an inhibitor of
RANKL that plays a central role in bone remodeling and
homeostasis (Yasuda, 2021), is also involved in the regulation
of skeletal muscle function (Dutka et al., 2021; Yasuda, 2021). In
this review, we take a closer look at the role of RANK/RANKL/
OPG (RRO) in muscle function. We examine current evidence
implicating the triad in cardiac, skeletal, and smooth muscle
function in health and disease.

RANK/RANKL/OPG IN BONE
HOMEOSTASIS AND DISEASE

RANKL is a type II transmembrane protein expressed by the
osteoblasts, osteocytes, and immune cells making up bone tissue.
Structurally, RANKL has a short N-terminal intracellular tail and
a larger C-terminal extracellular region (Nelson et al., 2012). Its
ectodomain is cleaved to generate soluble RANKL, which is
released into the extracellular milieu (Ono et al., 2020).
Precursor messenger RNA (pre-mRNA) alternative splicing
generates soluble and circulating RANKL (Ikeda et al., 2001).
Three isomers of RANKL have been identified, including RANKL
3, a soluble protein devoid of intracellular or transmembrane
domains (Ono et al., 2020; Ikeda et al., 2001). In solution, RANKL
forms a homotrimer that interacts with its receptor RANK and
the decoy receptor OPG (Nelson et al., 2012). RANK is a type I
transmembrane protein located on osteoclast progenitors, mature
osteoclasts, and immune cells (Wada et al., 2006). Osteoblast
membrane-bound RANKL binds to RANK at the surface of
osteoclast progenitor cells to stimulate osteoclastogenesis, bone
remodeling, and calcium homeostasis (Li et al., 2000). The
cytoplasmic region of RANK has no intrinsic kinase activity
and requires adapter molecules for downstream signaling.
Upon activation by RANKL, RANK receptors trimerize and
recruit the tumor necrosis factor (TNF) associated with factor-
6 (TRAF-6), an E3 ubiquitin ligase required for osteoclast
differentiation (Armstrong et al., 2002). While TRAF- 2, 5,
and 6 all have the ability to bind the cytoplasmic domain of
RANK (Hsu et al., 1999), only TRAF-6 mutations lead to
osteopetrosis, or overly dense bones, resulting from the loss of
osteoclast function (Darnay et al., 1998; Lomaga et al., 1999;
Kobayashi et al., 2001). RANKL/RANK binding activates
downstream intracellular signaling pathways through TRAF-6,
including MAPK, NF-κB, and PI3K, resulting in an increase in
the expression of NFATc1, which promotes osteoclastogenesis
and bone resorption (Boyce et al., 2015) (Figure 1). OPG belongs
to the TNF receptor superfamily. It is secreted by osteoblasts and
acts as a soluble decoy receptor of RANKL. The OPG/RANKL
interaction prevents osteoclast formation and bone resorption in
vivo (Yasuda et al., 1998). The RANKL/OPG ratio is an indicator
of bone health and reflects the balance between bone formation
and resorption. Unsurprisingly, RANKL/RANK expression and
bone remodeling are also regulated by other cytokines, hormones,
and environmental factors. For example, cytokines like
interleukin-1 (IL-1 β), IL-11, and TNF-α, and hormones like
1α,25-dihydroxyvitamin D3, parathyroid hormone (PTH), and
prostaglandin (PG) can all stimulate bone resorption by inducing
the membrane expression of RANKL (Hofbauer et al., 2000;
Udagawa et al., 2000). Adding to this complexity, the RANKL/
RANK interaction is also implicated in bone formation. A study
has reported that vesicular RANK, which is secreted from
maturing osteoclasts, promotes bone formation by triggering
RANKL reverse signaling and the activation of Runt-related
transcription factor 2 (Runx2). This reverse signaling occurs
via the proline-rich motif of the RANKL cytoplasmic domain
(Ikebuchi et al., 2018) (Figure 1). The disruption of components
of the RRO triad causes bone dysfunction and results in a

FIGURE 1 | The RANK/RANKL/OPG signaling pathway in bone. RANKL
is produced by osteoblasts in membrane form and is cleaved by
metalloproteinases to its soluble form. The soluble form of RANKL is
neutralized by circulating OPG or is bound to RANK at the osteoclast
membrane, inducing a signaling cascade involving TRAF−2, −5, −6, PI3K, and
MAPK, leading to the activation of the transcription factors NFATC1 and NF-
κB, which are essential for bone resorption. Mature osteoclasts can also
produce small extracellular RANK vesicles on their surface. These vesicles
bind to the membrane form of RANKL on osteoblasts, inducing reverse
signaling and promoting osteoblast differentiation. Created with
BioRender.com.
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pathological condition. RANKL-deficient mice exhibit a
significant increase in bone mass, causing severe osteopetrosis
with a lack of marrow spaces, dental eruption, and a total absence
of osteoclasts. These mice show signs of growth retardation
affecting several bones of the limbs, skull, and vertebrae (Kim
et al., 2000). Similarly, RANK-deficient mice are resistant to bone
resorption induced by TNF-α, IL-1β, calcitriol, and parathyroid
hormone-related protein (PTHrP) (Li et al., 2000). In addition,
osteoclast differentiation is blocked, resulting in significant
osteopetrosis (Dougall et al., 1999) (Figure 2, left box). On the
other hand, OPG-deficient mice develop early onset osteoporosis
(Bucay et al., 1998) (Figure 2, left box). In humans, genetic
mutations affecting the RANK, RANKL, and OPG genes are
associated with familial forms of bone abnormalities. Mutations
in the signal peptide region of RANK have been linked to familial
Paget disease (Hughes et al., 2000) and to forms of singular
anomalies such as expansile skeletal hyperphosphatasia. This
anomaly, which has been observed in a daughter and her
mother, is caused by a 15-base pair duplication in the RANK
gene and is characterized by accelerated bone remodeling that
results in bone, dental, and metabolic dysfunctions (Whyte and
Hughes, 2002). Mutations in the gene encoding OPG cause
idiopathic hyperphosphatasia, an autosomal recessive bone
disease characterized by deformities of long bones, kyphosis,
and acetabular protrusion (Cundy et al., 2002). The severity of
the condition increases during adolescence. Polymorphisms in
the OPG gene are also associated with osteoporotic fractures
(Langdahl et al., 2002). A recent study showed that RANKL is
involved in the pathophysiology of fibrous dysplasia of bone

(FD), a genetic disease affecting the skeleton where postnatal
skeletal stem cells acquire a fibroblastic phenotype and
proliferate, replacing bone marrow resident cells and causing
bone demineralization, an increase in osteoclast density, and,
consequently, the dysregulation of osteoclastogenesis (de Castro
et al., 2019). Patients with FD exhibit a 12-fold increase in serum
RANKL/OPG ratios, which is significantly correlated with the FD
burden (de Castro et al., 2019). The RANKL/RANK signaling
pathway is also implicated in osteoporosis associated with
estrogen deficiency in early postmenopausal women. Increased
cell surface expression of RANKL by bone marrow cells has been
observed, which directly correlates with increased osteoclast
formation and bone resorption in aging women (Eghbali-
Fatourechi et al., 2003). Targeting the RRO signaling pathway
remains a promising therapeutic strategy to reduce bone
resorption and ultimately bone loss. Denosumab, a human
monoclonal antibody targeting RANKL, has received FDA
approval for treating osteoporosis in men and postmenopausal
women and minimizing bone loss associated with metastases in
patients with advanced solid tumors (Cummings et al., 2009;
Lacey et al., 2012). Denosumab has recently been shown to be
more effective in treating glucocorticoid (GC)-induced
osteoporosis than bisphosphonates (Yanbeiy and Hansen,
2019). RRO has also been reported to be involved in osteoclast
formation and bone resorption in rheumatoid arthritis (RA), a
systemic autoimmune disease (Tanaka and Tanaka, 2021). A
recent case-controlled study and meta-analysis has indicated that
the RANKL gene polymorphism increases the risk for RA.
However, RANK and OPG gene locus polymorphisms are not

FIGURE 2 | The roles of the RANK/RANKL/OPG triad in bone and skeletal, cardiac, and smoothmuscles. Involvement of RANK/RANKL/OPG in bone homeostasis
(left box). An imbalance between RANKL and OPG leads to either osteoporosis or osteopetrosis (left box). Skeletal muscles also express RANK, RANKL, and OPG
(middle box). The overexpression of RANKL and/or the absence of OPG lead to muscle atrophy (middle box). An imbalance in the RANKL/OPG ratio also affects heart
and smooth muscles and induces cardiac hypertrophy, heart failure, and vascular calcification (right box). Created with BioRender.com.
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associated risk factors (Yang et al., 2019). A recent study has
shown that RANKL serum concentrations are highest in RA
associated with periodontal disease (PD) and that a denosumab
treatment suppresses the progression of RA in a randomized
controlled trial (Panezai et al., 2018; Tanaka and Tanaka, 2021).
Lastly, numerous studies have shown that the RRO pathway is
involved in bone metastases (Ono et al., 2020; Okamoto, 2021)
and that the neutralization of RANKL appears to have a beneficial
effect on bone health. Clinical trials are currently investigating
whether denosumab can be used to treat different cancers (Raje
et al., 2018). However, a recent international randomized
controlled trial with denosumab failed to improve disease-
related outcomes for women with high-risk early breast cancer
(Coleman et al., 2020). The RRO pathway is thus essential for the
regulation of bone homeostasis, while its deregulation may be
involved in bone, autoimmune, and cancerous diseases.

RANK/RANKL/OPG IN CARDIAC AND
SMOOTH MUSCLES

It is now well established that the role of the triad RRO goes
beyond bone homeostasis, mammary gland development, and
immunity. Interestingly, studies of heart failure in rodents
have shown a high and persistent expression of the RANK,
RANKL, and OPG genes in the ischemic and nonischemic
areas of the heart (Ueland et al., 2005; Slavic et al., 2018).
Conversely, the selective inhibition of RANKL in
hematopoietic cells is sufficient to reduce the expression of
pro-inflammatory cytokine IL1-ß and maintain post-ischemic
cardiac function (Slavic et al., 2018). Furthermore, intravenous
post-infarction anti-RANKL treatments in C57BL/6 mice
reduce infarct size and cardiac neutrophil infiltration
(Carbone et al., 2016). Likewise, OPG-deficient mice exhibit
cardiac hypertrophy and myocardial contractile dysfunction at
as early as 2.5 months of age (Hao et al., 2016). These
morphological changes are accompanied by an increase in
the number of apoptotic cells and the activation of TNF-
related apoptosis-inducing ligand (TRAIL). A 28-day
treatment with exogenous OPG partially rescued left
ventricular structure and function in OPG-deficient mice
(Hao et al., 2016). The inhibition of TRAIL decreases
myocardial infarction by preventing cardiac cell death and
inflammation in rats, pigs, and monkeys (Wang et al., 2020).
Mechanistically, TRAIL induces the death of recruited
leukocytes and activated cardiomyocytes, causing cardiac
injury (Wang et al., 2020). In a model of pressure overload,
a marked increase in RANKL expression has been observed in
hypertrophying myocardium while in vitro RANKL stimulates
the expression of TNFα, IL-1α, and IL-1β via the TRAF6-NF-
κB signaling pathway in neonatal cardiomyocytes (Ock et al.,
2012). These results from animal models have been confirmed
in patients with heart failure who also exhibit increased RANK,
RANKL, and OPG protein concentrations, suggesting that
they are involved in the development of heart failure
(Ueland et al., 2005). As such, the RRO pathway is thought
to be involved in cardiac remodeling following

immunoinflammatory myocardial diseases or during
chronic heart failure (Liu et al., 2008) (Figure 2, right box).

Smooth muscles form the dense layers of many tissues,
including blood vessels and hollow organs. Unlike skeletal and
cardiac muscles, smooth muscles do not have transverse
striations. Vascular smooth muscle cells (VSMCs) are involved
in vascular tone, and their contractile function is not under
voluntary control (Iyemere et al., 2006). VSMCs participate in
vascular and valve calcification and share common characteristics
with bone remodeling and metabolism (Kawakami et al., 2016).
Many bone proteins are expressed in calcified vessel plaques,
including bone morphogenetic protein-2 (BMP-2), an osteogenic
differentiation factor capable of differentiating VSMCs into
osteoblast-like cells (Kawakami et al., 2016). Under basal
conditions human aortic smooth muscle cells (HASMCs)
produce OPG whose expression increases with inflammatory
stimuli (Davenport et al., 2018). OPG expression is inhibited
when exogenous RANKL is added to the microenvironment of
HASMCs (Davenport et al., 2018). RANKL acts also on human
aortic endothelial cells (HAECs), increasing the release of BMP-2
fromHAECs, which, in turn, can potentially stimulate osteoblast-
like cell activity in HASMCs (Davenport et al., 2016). OPG is
naturally present in blood vessels. The presence of RANKL
inhibits OPG secretion by HASMCs and disrupts the RANKL/
OPG ratio, promoting vascular calcification (Davenport et al.,
2016; Davenport et al., 2018). Like OPG, matrix Gla protein
(MGP) is an inhibitor of calcification that prevents the
precipitation of calcium salts. Estrogen inhibits RANKL-
mediated BMP-2 release and increases MGP expression
(Osako et al., 2010). This supports the observation that aging
women with estrogen deficiency are more at risk of both
cardiovascular diseases and osteoporosis after menopause
(Lampropoulos et al., 2012; Sprini et al., 2014). The RRO
pathway thus plays an active role in angiogenesis, pathological
inflammation, cell survival, and VSMC calcification (Rochette
et al., 2019), pointing to potential cross-talk between blood vessels
and bones (Figure 2, right box).

A recent review presented current knowledge on the roles of
the different elements of the RRO triad in heart failure and
cardiovascular diseases (Dutka et al., 2021). OPG plays an
important role in the cardiovascular system through its
interactions with endothelial and smooth muscle cells and its
ligands, TRAIL and RANKL. Circulating OPG concentrations
have been proposed as a biochemical marker for assessing the risk
of cardiovascular complications in osteoporotic patients (Barbu
et al., 2017). Elevated OPG concentrations in serum may play a
protective role in the early stages of cardiovascular pathology.
However, the maintenance of high OPG concentrations may have
deleterious effects on the vascular system by participating in
atherogenesis and vascular injury (Dutka et al., 2021). On the
other hand, elevated serum RANKL concentrations may increase
the risk of cardiovascular diseases (Kiechl et al., 2007). To go
further in highlighting the crosstalk between bones and vessels,
few studies have also reported the interaction between the RRO
triad and blood coagulation factors. An in vitro model showed
that differentiated osteoclasts would release RANKL, activating
the extrinsic coagulation pathway and the conversion of
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prothrombin to thrombin (Karlström et al., 2010). Another study
showed that thrombin receptor deficiency leads to a decrease in
RANKL/OPG ratio which was associated with a high bone
density phenotype (Tudpor et al., 2015). Conversely, a
significant increase in the RANKL/OPG ratio and signs of
osteoporosis were noticed in a mouse model of hemophilia
(Yen et al., 2022). Moreover, OPG may play a role in
regulating thrombus formation by binding to Von Willebrand
factor (VWF), an essential factor for platelet adhesion (Wohner
et al., 2022). Although significant progress has been made in the
field, the molecular mechanisms by which RANK, RANKL, and
OPG modulate cardiovascular diseases, heart failure and to some
extent hemostasis remain unclear and need further investigation.

THE RANK/RANKL/OPG PATHWAY IN
DYSTROPHIC SKELETAL MUSCLE,
INFLAMMATION, AND REPAIR
Like bone cells and cardiac and smooth muscles, skeletal
muscles also express the RRO triad (Baud’huin et al., 2013;
Dufresne et al., 2018; Dufresne et al., 2016). A study on healthy
human volunteers has shown that intense exercise-induced
muscle damage increases serum OPG and decreases RANKL
concentrations, suggesting that they are involved in muscle
inflammation and repair processes in response to damage
(Philippou et al., 2009). Changes in circulating OPG and
RANKL concentrations are correlated with the distance
traveled by runners, implying that the positive effects of
long distance running on skeletal mass may, in part, be
mediated by OPG/RANKL (Ziegler et al., 2005). Previous
work from our laboratory has also shown that muscle-
specific RANK deletion modulates the regulation of Ca2+

storage and sarco-endoplasmic reticulum Ca2+-ATPase
(SERCA) activity in skeletal muscle (Dufresne et al., 2016).
In the context of muscle disease, dystrophic mdx muscles
exhibit significantly higher concentrations of RANK than
wild-type muscles, suggesting that RANK is involved in
muscular dystrophy (Dufresne et al., 2018; Guiraud et al.,
2017). We have shown that daily injections of OPG-Fc,
restore the function of the extensor digitorum longus (EDL)
muscle in young dystrophic mdx mice (Dufresne et al., 2015).
The inhibition of the RANKL/RANK interaction with an
antibody specifically targeting RANKL also improves muscle
strength in mdx mice (Hamoudi et al., 2019). We used a severe
myotoxic agent to induce skeletal muscle injury and showed
that the daily administration of the recombinant full-length
OPG-Fc (FL-OPG-Fc) protein improves muscle strength,
regeneration, and repair (Bouredji et al., 2021). On the
other hand, genetic deletion of OPG in mice results in
osteoporosis at as early as 3 months of age, with progressive
muscle atrophy by 5 months (Hamoudi et al., 2020) (Figure 2,
middle box). The concentration of circulating RANKL
increases 20-fold in these OPG-deficient mice (Hamoudi
et al., 2020). We showed that a 2-month treatment with
anti-RANKL significantly improves muscle strength and
reduces osteoporosis in OPG-deficient mice (Hamoudi

et al., 2020). Conversely, mice that overexpress RANKL or
that lack the myogenic factor peroxisome proliferator-
activated receptor beta (Pparb) exhibit lower maximal
strength and velocity and reduced muscle mass (Bonnet
et al., 2019) (Figure 2, middle box). Treatments with
truncated OPG-Fc (TR-OPG-Fc) or denosumab increase the
muscle mass and strength of these two mouse models (Bonnet
et al., 2019). They used a translational experimental approach
to show that postmenopausal women with osteoporosis who
were treated with denosumab for 3 years exhibit improved lean
appendicular mass and grip strength while bisphosphonates
have no effect (Bonnet et al., 2019). Moreover, other
conditions such as chronic cigarette usage or chronic
obstructive pulmonary disease (COPD) correlate with high
serum RANKL concentrations (Bai et al., 2011; Nogueira and
Breen, 2021) and low BMD and muscle dysfunction (Nogueira
and Breen, 2021). A 6-month chronic exposure to cigarette
smoking increases RANK and RANKL concentrations in
skeletal muscle fibers (Xiong et al., 2021). Interestingly, the
neutralization of RANKL restores muscle strength and
function in mice exposed to tobacco smoke particles (Xiong
et al., 2021). Furthermore, the exposure of muscle cells to
tobacco smoke particles in vitro causes an increase in the
expression of RANKL/RANK, which is responsible for the
inflammation and atrophy of muscle fibers (Xiong et al., 2021).
Lastly, mice with non-metastatic ovarian cancer exhibit
cachexia associated with high RANKL concentrations, while
an anti-RANKL treatment reduces bone loss and improves
muscle function (Pin et al., 2021). Taken together, this
evidence shows that RANK and RANKL are involved in
skeletal muscle dysfunction while their inhibitors, anti-
RANKL, TR-OPG-Fc, and FL-OPG-Fc, provide beneficial
effects and may serve as a potential therapeutic approach in
the future.

CROSSTALK BETWEEN BONE AND
SKELETALMUSCLE THROUGHTHERANK/
RANKL/OPG PATHWAY
Physical activity contributes to cytokine release and bone
development and remodeling (Tobeiha et al., 2020). For
example, circulating concentrations of OPG and RANKL
increase significantly immediately following high intensity
aerobic exercise, suggesting that bone remodeling mediators
have been activated (Mezil et al., 2015). Furthermore, a one-
year training program significantly increases OPG
concentrations. This has been associated with a significant
reduction in bone loss in postmenopausal women compared to
sedentary controls (Bergström et al., 2012). Conversely,
mechanical unloading and estrogen deficiency reduce serum
OPG concentrations compared with menstruating women who
exercise, which provides support for the positive osteogenic
effect of OPG and exercise (West et al., 2009). Recent
discoveries have revealed the importance of mutual cross-
talk between muscle-bone through the release of myokines
and osteokines. For instance, transforming growth factor
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(TGF-β), which is mainly produced by osteocytes and is stored
in the bone matrix (Xu et al., 2018), plays a direct role in
skeletal muscle weakness in pathological conditions. The
increase in circulating TGF-β following metastasis-induced
bone destruction increases the oxidation of muscle proteins
and Ca2+ receptors through the upregulation of NADPH
oxidase 4 (Nox4) and contributes to muscle weakness
(Waning et al., 2015). It has been shown that circulating IL-
6, the first identified myokine, increases 100-fold during
exercise (Pedersen and Febbraio, 2008), sending a signal to
osteoblasts to favor osteoclast differentiation and the release of
bioactive osteocalcin, an anabolic hormone that plays an
essential role in bone and muscle mass and muscle
performance (Mera et al., 2016; Chowdhury et al., 2020).
IL-6 also increases the expression of RANKL, which is
important for the release of bioactive osteocalcin
(Chowdhury et al., 2020). Additionally, IL-6 has been
reported to induce the expression of IL-10, another anti-
inflammatory myokine (Steensberg et al., 2003; Santos et al.,
2020). The deletion of IL-10 in mice accelerates bone
resorption and has an impact on bone homeostasis
(Dresner-Pollak et al., 2004). The stimulation of bone cells
in vitro with IL-10 increase the expression of OPG and
decreases the expression of RANKL (Liu et al., 2006) while
the deletion of IL-10 in mice accelerates bone resorption,
suggesting that IL-10 myokine may influence bone by
modulating the RRO pathway. In the same vein, the
administration of irisin, a myokine released from skeletal
muscles after physical exercise, attenuates the negative effect
of unloading on OPG, thus maintaining the equilibrium of
RANKL/OPG ratio in unloaded mice (Colaianni et al., 2017).
Myostatin, a negative regulator of muscle mass is another
myokine that promotes the expression of several bone
regulators, including RANKL, in osteolytic cell cultures
(Qin et al., 2017). Mounting evidence has thus confirmed
the existence of bidirectional and mutual molecular
crosstalk between bone and skeletal muscle that, to some
extent, directly or indirectly impacts the expression of RRO
(Figure 2, left and middle boxes).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

This mini review focuses on the multifaceted aspects of the
RRO pathway. Although the RRO triad is the most important
regulator of bone homeostasis, cumulative evidence has
elegantly demonstrated that it also plays a role in skeletal,
smooth, and cardiac muscles. Targeting similar pathways
that regulate different tissues is undoubtedly a valuable
strategy for addressing pathological and aging conditions
with multiple comorbidities. While the RRO signaling
cascade is well defined in bone cells, the cellular and
molecular mechanisms by which RRO regulates muscle
cell function is far from being well understood. RANKL is
clearly associated with the activation of the inflammatory-
atrophic and inflammatory-hypertrophic pathways in
skeletal muscle and the heart, respectively. Future
research directions should focus on investigating the
clinical relevance of neutralizing RANKL in muscular and
cardiac disorders such as dystrophic diseases, aging, and
cancer-related cachexia. As for OPG, a clear understanding
of the involvement of each of its three domains, that is, the
RANKL-, TRAIL- and heparin-binding domains, is a
prerequisite for deciphering the contribution of RRO in
skeletal, smooth, and cardiac muscles.
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