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The molecular mechanisms that regulate stem cell pluripotency and

differentiation has shown the crucial role that methylation plays in this

process. DNA methylation has been shown to be important in the context of

developmental pathways, and the role of histone methylation in establishment

of the bivalent state of genes is equally important. Recent studies have shed light

on the role of RNA methylation changes in stem cell biology. The dynamicity of

these methylation changes not only regulates the effective maintenance of

pluripotency or differentiation, but also provides an amenable platform for

perturbation by cellular stress pathways that are inherent in immune responses

such as inflammation or oncogenic programs involving cancer stem cells. We

summarize the recent research on the role of methylation dynamics and how it

is reset during differentiation and de-differentiation.
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Introduction

The field of ‘Epigenetics’ has led to a “paradigm shift” in several domains of

biomedical research (Deichmann, 2016). Waddington proposed the “epigenetic

landscape” (EL) model in 1940, depicting a series of developmental options that a

differentiating cell in the embryo could choose from. Epigenetics is now defined as

“mitotically and/or meiotically heritable alterations in gene function that cannot be

explained by changes in the DNA sequence.” The pluripotency of the undifferentiated cell

and the eventual development of specific cell types is heavily reliant on the coordinated

action of hundreds of transcription factors that bind to particular DNA regions to activate

or repress cell lineage specific gene transcription (Srivastava and DeWitt, 2016). This

establishment phase most closely reflects what is regarded as Conrad Waddington’s

description of epigenetics, namely the study of the mechanisms by which the genotype

gives the developmental phenotype. The maintenance phase usually involves a plethora of

non-DNA sequence-specific chromatin cofactors that accumulate and maintain
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chromatin states throughmultiple cell divisions and for extended

periods of time—sometimes even in the absence of the initial

transcription factors (Schuettengruber et al., 2017).

Methylation dynamics in stem cells

The stem cells have been excellent cellular models to

understand the molecular mechanisms of epigenetics. Stem

cells are capable of self-renewal and differentiation to all three

lineages, and can be classified as follows: a) Naïve stem cells

(derived from the zygote of the mammalian embryo, capable of

self-renewal and unrestricted differentiation potential), b)

Primed stem cells/Epiblast stem cells (EpiSCs) (that originate

from the zygotic stage immediately after maternal

redetermination post implantation, capable of self-renewal but

have a more lineage restricted differentiation potential, c)

Embryonic stem cells (ESCs) (derived from the inner cell

mass of the blastocyst, capable of self-renewal and multi-

lineage differentiation potential, d) Adult stem cells (ASCs),

found in adult tissues and organs within their respective niche

responsible for maintaining tissue homeostasis, repair and

regeneration. These stem cells remain in a quiescent state till

activation by a signal like cell damage, and capable of self-renewal

and multi-lineage differentiation potential, e) Cancer stem cells

(CSCs) that are derived from the dedifferentiation of cancer cells

or from the malignant transformation of normal stem cells.

These cells like any other stem cells have self-renewal abilities

and multi-lineage differentiation potential and play a major role

in the prognosis of the disease (Zhou and Zhang, 2008;

Harikumar and Meshorer et al., 2015; Morena et al., 2018).

These unique characteristics of a stem cell are regulated by

molecular mechanisms that involve transcription factors,

signalling pathways, epigenetics and epitranscriptomics.

Transcription factors such as Oct3/4, Sox2, c-Myc and Nanog

bind to their target genes and regulate their expression

(Harikumar and Meshorer et al., 2015). Many signalling

pathways such as the JAK/STAT, PI(3)K, MAPK, Wnt, Notch,

Smad and FGF pathways play major roles in regulating stemness.

The epigenome dynamics contributes to the regulation of

stemness which includes biochemical modification of DNA,

RNA, histone proteins, and chromatin. These modifications

FIGURE 1
Methylation dynamics in stem cells; the readers (pink), writers (brown), and erasers (green) are indicated. SAM (S-adenosyl methionine) is the
commonmethyl donor for histone, DNA and RNAmethylation. The writers, erasers and readers play important roles inmaintaining pluripotency and
lineage commitment of stem cells. Their role in physiology and pathophysiology is depicted in the figure.
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are carried out by specific enzymes where the “writer” and

“eraser” proteins catalyse the addition and removal of the

modifications respectively, while other proteins called “reader”

proteins specifically recognize these modifications (Figure 1).

DNA Methylation: A family of DNA methyltransferases

(DNMTs), catalyzes the Methylation of cytosine’s fifth carbon

position, leading to 5-methylcytosine (5 mC) formation.

DNMT1 copies existing methylation patterns for inheritance

during DNA replication, while DNMT3A and DNMT3B act

as de novomethyltransferases to create new methylation patterns

(Bestor, 2000). A group of methyl-CpG-binding proteins acts as

readers, interpreting the 5 mC signal and mediating its role.

While DNA methylation can be ‘passively diluted’ by cell

division, mechanisms for enzymatic DNA methylation

removal have been recently discovered. The ten eleven

translocation 1 (TET1) enzymes, catalyzes the conversion of

5mC to 5hydroxymethylcytosine (5hmC) (Tahiliani et al.,

2009). Following that, three TET family proteins were

discovered to be able to oxidize 5hmC to 5formylcytosine

(5 fC) and then to 5carboxylcytosine (5caC) (Ito et al., 2010;

He et al., 2011; Ito et al., 2011). In addition, the deaminases

activation induced cytidine deaminase (AID; also known as

AICDA) and apolipoprotein B mRNA editing enzyme

catalytic polypeptides (APOBECs) can convert 5hmC to 5-

hydroxymethyluracil (5hmU). To complete the active DNA

demethylation process, thymine DNA glycosylase excises all of

these derivatives and replaces them with an unmodified cytosine

through the base-excision repair (BER) pathway (Wu and Zhang,

2014).

Histone methylation and demethylation: Histone

methylation is a dynamic process that plays important

functions in differentiation and development (Eissenberg and

Shilatifard, 2010). Basic residues like lysine and arginine undergo

methylation and can have several methylations on their side

chains (Greer and Shi, 2012). H3K4me3 and H3K27me3 are two

histone modifications that have been linked to active and

repressive transcription, respectively. A variety of lysine

methyltransferases (KMTs) as writers and lysine demethylases

as erasers can mediate dynamic methylation of lysine residues.

Many proteins, including the well-known PcG repressive

complex (PRC) and Trithorax active complex (TRXG), have

KMT properties (Schwartz and Pirrotta, 2007; Greer and Shi,

2012). Methylation of H3K4, H3K36, and H3K79 is associated

with transcriptional activation, and methylation of H3K9,

H4K20, and H3K27 is related with transcriptional repression.

Notably, “bivalent domains” which are thought to be crucial for

maintaining pluripotency by silencing developmental genes in

embryonic stem cells (ESCs) and keeping them ready for

activation during developmental stage—are formed when large

regions of H3K27 methylation co-occur with smaller regions of

H3K4 methylation marks (Bernstein et al., 2006; Hu et al., 2013).

RNA Methylation: More than 100 post-transcriptionally

modified ribonucleosides have been found in various forms of

RNA (Jia et al., 2013). N6-methyladenosine (m6A) is a conserved

modification found in most eukaryotic nuclear RNAs, as well as

some viral RNAs replicating in the host nuclei (Carroll et al.,

1990). m6A was discovered as an abundant nucleotide

modification in eukaryotic messenger RNA in 1970

(Desrosiers et al., 1974). In global cellular RNAs, m6A is

found in 0.1–0.4% of all adenosines and accounts for almost

half of all methylated ribonucleotides. m6A modification is

enriched in long internal exons, upstream of stop codons, and

the 3′-UTR of mRNA, suggesting roles in translational

regulation, affecting RNA binding protein affinities, or

distinctive m6A derived transcriptome topology (Dominissini

et al., 2012; Meyer et al., 2012; Batista et al., 2014). The discovery

of proteins involved in m6A regulation, as well as their roles as

“writers” (m6A methyltransferases), “erasers” (m6A

demethylases), and “readers” (effectors recognizing m6A), has

been one of the most significant achievements in this field of

study (Lee et al., 2014), together facilitate various functional

outcomes, including nuclear RNA export, splicing, mRNA

stability, circRNA translation, miRNA biogenesis, and lncRNA

metabolism (Roignant and Soller, 2017; Yang et al., 2017) thus

regulating physiological and pathological events such as Yeast

meiosis, plant development, immunoregulation obesity, and

carcinogenesis (Wang et al., 2017; Wei et al., 2017).

The epigenome in embryonic stem cells

Nucleosomes of stem cells show a higher level of

modifications marks that are involved in active gene

expression such as histone H3 lysine four trimethylation

(H3K4me3), histone H4 lysine 9 and 14 acetylation (H3K9ac,

H3K14ac). The two methyl modifications on H3K4 and

H3K27 form a bivalent chromatin mark which is seen in the

chromatin of stem cells. In stem cells, the highly conserved non-

coding elements (HNCE) were found to be enriched with

bivalent histone modifications, an active chromatin mark,

H3K4me3 and a repressive chromatin mark, H3K27me3

(Bernstein, et al., 2006; Harikumar and Meshorer, 2015).

These modifications are also abundant at promoter regions of

genes that code for other factors required during development

(Lessard and Crabtree, 2010). It is proposed that this bivalent

chromatin mark resolves and there is activation of a few genes to

regulate stemness while keeping other genes required for

development poised for activation during development and

cell differentiation (Bernstein et al., 2006; Lessard and

Crabtree, 2010; Harikumar and Meshorer, 2015; Paranjpe and

Veenstra, 2015). Recent studies have shown that many lineage-

commitment genes have the bivalent mark and RNA polymerase

II may be stalled at the promoters of these genes. During

differentiation, the chromatin modifications are resolved into

either an active or repressed state depending on the lineage

commitment and these modifications can be newly established or
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maintained in differentiating cells (De Gobbi et al., 2011). Many

early genes involved in the determination of the mesodermal

lineage including various members of the GATA and Tbx

families, Mixl1, and Brachyury, have bivalent domains in ES

cells, supporting the notion that they are important early

contributors (Pan et al., 2007). Histone arginine methylation

has been shown to be important for pluripotency maintenance as

well as lineage specification (Torres-Padilla et al., 2007; Selvi

et al., 2015; Cui et al., 2017). Recent studies have shown that the

RNA modifications have an important role in stem cell

maintenance. The writer proteins are involved in controlling

the expression of critical transcripts that are essential for stem cell

self-renewal. m6A is shown to regulate molecular switches for

differentiation and generation of EpiSCs, as well as in adult stem

cells, like myeloid differentiation of hematopoietic stem cells

(HSCs) (Morena et al., 2018).

The epigenome during differentiation

The embryonic stem cells undergo multiple rounds of

differentiation, resulting in multipotent or unipotent adult

stem cell progenitors. Extrinsic differentiation signals and

intrinsic pathways interact and tightly regulate how stem cells

differentiate. The formation of neurons and other ectodermal

lineage cell types, has been one of the most well studied

differentiation pathways. The perturbation of DNA

methylation, histone methylation or RNA methylation leads to

defects in neurogenesis. In mice, a mutation in any of the three

main Dnmt genes causes significant developmental defects and

embryonic or early postnatal death (Li et al., 1992; Okano et al.,

1999). Methyl-CpG binding domain protein 1 (MBD1) binds to

hypermethylated CpG islands in gene promoter regions

preferentially, and its absence impairs adult hippocampal

neurogenesis and genomic stability in vitro (Zhao et al., 2003).

PcG proteins and TRXG have also been linked to neurogenesis

regulation. In embryonic cortical NPCs, deletion of Enhancer of

zeste homologue two in PRC2 (Ezh2) causes a global loss of

H3K27me3, derepression of a large number of neuronal genes,

and disrupted neuronal differentiation (Pereira et al., 2010). The

RNA demethylase FTO has been shown to be expressed in adult

neural stem cells and neurons and exhibits dynamic expression

during postnatal neurodevelopment.

The role of the epigenome on differentiation has also been

well studied in the hematopoietic stem cells (HSC). Hox genes,

critical for maintaining the balance between self-renewal and

differentiation of HSC and progenitor cells are associated with

bivalent domains in undifferentiated ESCs and its sequential

expression during differentiation is regulated by PcG and TRXG

proteins (Deng et al., 2013). Hematopoietic specific genes such as

CD45, CD34 among others exhibited repressive DNA

methylation marks prior to differentiation of the ESC which

are subsequently lost upon differentiation correlating with gene

expression (Suelves et al., 2016). DNMT3a and DNMT3b act to

repress self-renewal genes in HSCs and their combined loss

enhances self-renewal by activating β-catenin signalling

(Sharma and Gurudutta, 2016). DNMT1 aids in efficient

hematopoietic differentiation and is crucial for the progression

of cells to multipotent progenitors to lineage-restricted myeloid

and lymphoid progenitor cells. DNMT3b is responsible for the de

novo methylation of hematopoietic genes during early

embryogenesis (Suelves et al., 2016). Deletion of the histone

demethylase JARID1b compromises the self-renewal capability

of the HSCs (Sharma & Gurudutta, 2016). The RNA m6A

modification writer METTL, has also been shown to be

essential for the symmetric division of HSCs (Cheng et al., 2019).

The epigenome in CSCs, during
dedifferentiation

Cancer Stem Cells (CSCs) are a small subpopulation of cells

within tumors, which are capable of self-renewal, differentiation,

and tumorigenicity when transplanted into an animal host. CSCs

can be distinguished from other cells within the tumor by

differences in their cell division and gene expression (Rosen

and Jordan, 2009). The first evidence for the presence of CSCs

was shown in a study where leukemia initiating cell population

from AML patients was identified based on the expression of

(CD34+/CD38−) cell surface markers, by transplantation into

severe combined immune-deficient (SCID) mice (Lapidot et al.,

1994). The existence of Glioma stem cells (GSC) was first

hypothesized in 2002, when it was considered to have

migrated from the sub-ventricular niche. (Ignatova et al.,

2002). It has now been shown that the genome-wide

distribution of epigenetic signatures is associated with the

differential programming of GSC and Neuronal Stem Cells

(NSC) (Valor Luis and Hervás-Corpión 2020). CSCs are

resistant to conventional chemotherapy or radiation treatment

and can contribute to metastasis through the dedifferentiation

process (Meirelles et al., 2012). High methylation can contribute

to the self-renewing ability of CSCs during tumor progression

(Muñoz et al., 2012). The epigenome modifications of CSCs play

a major role in recurrence, metastasis, and therapeutic failure.

Resetting the epigenome through
methylation dynamics

The dynamicity of the methylation mark on DNA, histones

or RNA serves as an important biochemical rheostat for

regulating stem cell pluripotency and lineage commitment

along with other regulatory factors (Berdasco and Esteller,

2011; Völker-Albert et al., 2020; Sun et al., 2021). The

reversible nature of these modifications provide an easy and

efficient modulatory node that is used by cancer stem cells
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(Vincent et al., 2019; Carvalho, 2020). The expression of

transcription factors, signalling pathways and other regulatory

proteins in stem cell biology are under the control of this

reversible modification.

A meta analysis of the available datasets was done to assess

the changes that occur during these stages, as shown in

Figure 2A. The transcription factors Oct3/4, Sox2, and Nanog

expression are upregulated in ESCs because they are the core

transcription factors in maintaining the pluripotency of the

embryonic stem cells (Boyer et al., 2005). At the same time,

Elf5, Gata4, Wt1, Stat6, Klf2, Tbx3, Cdx2, etc., are downregulated

in ESCs. In Neural Stem Cells (NSCs) (NSCs), almost all of the

TFs have average expression levels (Figure 2A, Panel I), with

Sox2 at the highest level of expression. The cancer stem cells

(CSCs) in gliomas, that would have undergone a

dedifferentiation, show a very different expression level

compared to the NSCs. Sox2, Sox9, and HIF1A show

increased expression, whereas Cdx2, Esrrb, Wt1, etc., show

decreased expression in CSCs. These expression levels could

be the markers of cancer stem cells (Zhao et al., 2017). On

comparing the three germ layers (Ectoderm, Endoderm, and

Mesoderm), the expression level of TFs changes significantly,

FIGURE 2
Resetting the Epigenome Dynamics in Differentiation and Dedifferentiation. (A) Heat map of Panel I, Transcription Factors (26) expression and
Panel II modifiers (11) such as Histone methyltransferase/demethylase, DNMT/demethylase, RNA methyltransferase/demethylase in different cell
types- embryonic stem cells (ESCs), neural stem cells (NSCs), cancer stem cells (CSCs), ectoderm (Ec), endoderm (En), mesoderm (Me). The red color
indicates a lower expression level, and the green indicates a high expression level. Yellow represents intermediary expression levels. The
intensity of the color indicates the expression level. Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) was used to
gather the data for the six types of cells/tissues EMBRYONIC STEM CELLS (Datasets- GSE220881 and GSE775182), NEURAL STEM CELLS (Datasets-
GSE380453 and GSE353904), CANCER STEM CELLS (Datasets- GSE433785 and GSE42906), ECTODERM (Datasets- GSE339037 and GSE1442418),
ENDODERM (Datasets- GSE1080479, GSE5528310, and GSE2413511), MESODERM (Datasets- GSE18216112 and GSE11477613). Excel software was
used to plot the heatmap. The selected data is converted into the heat map using conditional formatting (color scales). (B) A combination of various
oncogenic events triggers transition of pluripotent stem cells and differentiated cells to cancer stem cells. Differential methylation at the CpG islands
triggers oncogenes and transcription factors leading to emergence of tumor heterogeneity and CSCs. Alterations in global epitranscriptomic profile
also regulate the reprogramming or dedifferentiation events. Cytokine and Interleukins acts in paracrine manner leading to cancer inflammation and
crafts a niche for emergence of stem like cells by activating downstream signalling pathways. Telomere associated quiescence supports the stem like
cellsin the tumor micro environment elevating their self-renewal capacity.
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especially in the mesodermal lineage. The cells or tissues showing

the elevated expression of the Eomes, Hif1a, Gata6, Gata4, Sox17,

Otx2, etc., can be identified as an endodermal lineage. In addition

to this, there is an expression of pluripotency factors such as

Oct3/4 and Nanog. In ectodermal cells, we see the upregulated

expression of Hif1a, Twist1, Sox2. Interestingly, the expression

profile of ectodermal cells is somewhat similar to the CSCs.

The epigenome modifiers such as Histone

methyltransferases/demethylases, DNMTs/demethylases, RNA

methyltransferases/demethylases also have dynamic

expressions in the different cell types (Rwigemera et al., 2021).

In ESCs, most of the transcription factors have moderate

expression. SET has a higher expression level as opposed to

the KDM1A, TET3, and FTO (Chung and Sidhu, 2008). NSCs

also follow the same trends as ESCs (Figure 2A, Panel II).

Ectodermal cells have higher expression levels of epigenome

modifiers. Most epigenome modifiers have lower expression in

the mesodermal cells except SET, KDM1A, DNMT3b, and

HAT1. In CSCs, all the modifiers express moderately, except

SET, FTO, and HP1BP3. This suggests an intermediary state of

gene expression in the CSCs, where additional environmental

factors can then come into play and facilitate tumour

manifestation. It has been shown that Glioma stem cells

(GSC), once formed, are also regulated by various signalling

pathways, coordinated by epigenetic reprogramming. GSCs are

reported to overexpress histone demethylase KDM4C, which

removes H3K9me3 from Wnt target genes, promoting Wnt/

Signalling Pathway and thereby stem cell maintenance (Chen

et al., 2020; Kumar et al., 2022). Epigenetic regulators maintain

tumoral hierarchy through two mechanisms, either through

inhibition of self-renewal property of cancer cells thereby

maintaining heterogeneity, or by facilitating CSCs in evading

differentiation and maintenance of stem cell phenotype

(Wainwright and Scaffidi, 2017; Valor Luis and Hervás-

Corpión, 2020; Tao et al., 2022). RNA Methyltransferase,

METTL3-mediated RNA stabilization positively regulates

major signalling pathways such as Notch, NFκB, Wnt, c-Myc,

TGFβ, involved in cancer stem cell maintenance and

proliferation in several cancers including Glioma and

Leukemia maintenance and tumorigenesis implying its

oncogenic role (Visvanathan et al., 2018).

In this context, the inflammatory pathway has been shown to

be recognized as a major component of tumorigenesis in various

cancers. Solid tumors are also associated with Tumor Associated

Macrophages (TAM) which constitute various immune

infiltrating cells. These TAMs and stromal cells secrete

cytokines such as Interleukin 1(IL1), IL6 and TNFα acts in

paracrine fashion for sustenance and reprogramming of CSCs,

by altering epigenetic mechanisms and thereby regulating

transduction pathways such as NFκB, STAT3 and SMADs.

(Biswas et al., 2013). These inflammatory pathways

interconnect to form molecular regulatory circuits in resetting

the networks for maintaining CSCs (Liu et al., 2021). Chronic

inflammation can initiate DNA damage response in

preneoplastic lesions, leading to telomere loss (Shay and

Wright 2010). This triggers segregational defects, activation of

telomerase and setting in of genomic instability, one of the major

hallmarks of cancer. Patient derived CSCs in glioma have

demonstrated shortened telomeres along with telomerase

expression indicating the fact that GSCs are not quiescent and

have the capacity for aberrant self-renewal properties

(Koeneman et al., 1998). A summary of the alterations in

reprogramming/transformation and de-differentiation is

represented in Figure 2B. Inflammation regulates the

acquisition and maintenance of the cancer stem cell

phenotype by stimulating epithelial mesenchymal transitions.

Many inflammatory factors like IL-1β, TGF-β, IL-6 can regulate

the DNA methylation patterns that induce cancer initiation and

progression in cancers such as gastric cancer, ovarian cancer, and

liver cancer (Liu et al., 2021). The exact mechanisms of how the

epigenome dynamics facilitates this process warrants further

investigation which will provide useful therapeutic

intervention prospects.
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