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Treacle/TCOF1 is an adaptor protein specifically associated with nucleolar chromatin. In
the nucleolus it stimulates ribosome biogenesis, thereby promoting growth and
proliferation. A second role of Treacle has emerged as a coordinator of the nucleolar
responses to DNA damage, where it facilitates nucleolar DNA repair and cellular survival
after genotoxic insults. The involvement of Treacle in multiple fundamental processes such
as growth, proliferation, and genome stability, which are tightly linked to cancer, raises the
question of Treacle’s role in the development of this disease. On one hand, overexpression
of Treacle could stimulate nucleolar transcription and ribosome biogenesis providing a
growth advantage in cancer cells. On the other hand, the function of Treacle as a
gatekeeper in response to nucleolar DNA damage could favor mutations that would
impair its function. In this perspective, we analyze paired Treacle expression data from the
Cancer Genome Atlas (TCGA) and correlate expression with patient survival in different
cancer types. We also discuss other recently published observations of relevance to the
role of Treacle in cancer. In light of these new observations, we propose possible roles of
Treacle in carcinogenesis and discuss its potential as a therapeutic target.
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1 INTRODUCTION

Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths every
year (Sung et al., 2021). The current situation calls for better prevention and new treatment options.
In the last decade, tailored treatments for patients have developed rapidly with biomarkers being an
important tool to determine tumor characteristics, and enable optimal matching of patient and
treatment. In this perspective, we perform expression and survival analysis of the nucleolar protein
Treacle to assess its potential as a biomarker in cancer.

The nucleolus is a membrane-less nuclear compartment responsible for the production of ribosomes
and therefore indirectly regulating protein translation, growth, and proliferation (Derenzini et al., 2017). It
is formed around a genomic region composed of hundreds of identical ribosomal RNA genes (rDNA),
enabling the nucleolus tomeet the cellular demand for proteins (McStay andGrummt, 2008; Drygin et al.,
2010). The rDNA is transcribed in the nucleolus by RNA polymerase I (Pol I) and a large number of co-
factors, producing rRNA that associates with ribosomal proteins to generate 1–2 million ribosomes per
cell generation (Drygin et al., 2010; Correll et al., 2019). rDNA is the most transcribed region in the
genome and can account for more than half of the active transcription in proliferating cells (Zylber and
Penman, 1971; Warner, 1999). Growth stimulating pathways such as mTOR, PI3K/AKT, and MAPK/
ERK also stimulate ribosome biogenesis (Stefanovsky et al., 2006; Gentilella et al., 2015; Derenzini et al.,
2017) to enable cell growth.

Abrogation of nucleolar activity, however, can induce cell cycle arrest and cell death. Upon
perturbation of ribosome biogenesis, the nucleolus releases ribosomal and tumor suppressor proteins
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to activate checkpoints (Grummt, 2013). The most studied
example is the release of the ribosomal proteins RPL5/uL18
and RPL11/uL5 that form a complex with the 5S rRNA and
sequester the ubiquitin ligase MDM2, resulting in stabilization of
the tumor suppressor p53 (Bursać et al., 2012; Fumagalli et al.,
2012; Sloan et al., 2013). The activation of p53 can lead to either
cell cycle arrest or induction of cell death, making the nucleolus a
key regulator of cell growth and proliferation.

Treacle, encoded by the TCOF1 gene, is a nucleolar
chromatin-associated protein that promotes rDNA
transcription and processing of rRNA (Valdez et al., 2004).
First identified as a ribosome biogenesis factor, Treacle binds
Upstream Binding Factor (UBF) and Pol I to initiate rDNA
transcription. Treacle down-regulation impairs localization of
UBF and Pol I to nucleolar chromatin, resulting in decreased
rRNA transcription (Lin and Yeh, 2009). In addition, Treacle
regulates rRNA processing by promoting 2′-O-methylation of
rRNA (Gonzales et al., 2005).

rDNA is the most frequently rearranged genomic region
and represents several challenges in relation to DNA repair
(Stults et al., 2008). Its repetitive nature with identical genes
placed on the five acrocentric chromosomes (13, 14, 15, 21 and
22) makes it vulnerable to faulty DNA repair (Potapova et al.,
2019). Furthermore, the high level of transcription can
potentially interfere with replication and is therefore a
potent source of DNA damage (García-Muse and Aguilera,
2016). These features highlight the need for continuous
maintenance of rDNA.

Recent studies have revealed that Treacle is also a central
coordinator of the nucleolar response to multiple types of DNA
damage and is important to uphold the integrity of rDNA.
Double-strand breaks (DSBs) are a particularly harmful type
of lesion as they can lead to mutations or deletions. Upon
DSBs in the rDNA, Treacle is phosphorylated in an ATM-
dependent manner and subsequently serves as a recruitment
mediator for the MRE11-RAD50-NBS1 (MRN) complex
(Korsholm et al., 2019) and TOPBP1 to DSB-associated
chromatin regions in rDNA (Mooser et al., 2020). ATM-
Treacle-MRN and TOPBP1 accumulation leads to ATR
activation and a strong inhibition of rDNA transcription.
Sustained DSB-signaling in rDNA leads to nucleolar
reorganization and translocation of the damaged rDNA to
nucleolar caps (Harding et al., 2015; van Sluis and McStay,
2015; Warmerdam et al., 2016; Korsholm et al., 2019; Marnef
et al., 2019; Mooser et al., 2020). In nucleolar caps, homology-
dependent rDNA repair takes place after separation of individual
chromosomes into distinct caps (van Sluis and McStay, 2015;
Korsholm et al., 2020). Treacle is characterized as a low-
complexity protein, however details of the known structural-
functional relationship was recently reviewed by Gál et al., 2022.

From the two well-characterized roles of Treacle it is clear that
dysregulation of Treacle could play a role in cancer. Enlarged
nucleoli and aberrant nucleolar morphology were linked to
cancer over a century ago (Pianese, 1896; Derenzini et al.,
1998). More recently, an upregulation of nucleolar activity has
been found in almost all cancer types and addiction of cancer cells
to ribosome biogenesis has been documented (Derenzini et al.,

1998, 2000; Bywater et al., 2012; Carotenuto et al., 2019). Cancer
cells need increased nucleolar activity to sustain rapid
proliferation, suppress stress signaling and checkpoint
activation, and to evade cell death (Bywater et al., 2012). It
would therefore be reasonable to assume that upregulation of
Treacle can promote cancer. However, it is also a central
coordinator of the nucleolar responses to DNA damage
(Korsholm et al., 2019, 2020; Mooser et al., 2020), and
mutations in DSB-repair proteins are frequent in cancer
(Aparicio et al., 2014). Such mutations are needed for cancer
cells to escape checkpoint control and to acquire genomic
instability, thereby fueling tumor development. Altogether, this
poses the question, if and how Treacle supports cancer cells, and
how an altered status of Treacle in cancer correlates with cancer
prognosis and survival.

2 Treacle is Overexpressed in Multiple
Cancer Types
To understand if Treacle expression is altered across different
cancers, we analyzed RNA-Seq data from TCGA using the TNM
plot software (Bartha and Győrffy, 2021). We used Treacle
expression data from paired normal and adjacent tumor
samples from 470 patients. For our analysis, we included
cancer types with available data from a minimum of five
patients. Interestingly, we found significantly higher Treacle
expression levels in 11 out of 14 cancers (p < 0.05 following
False Discovery Rate (FDR) adjustment by Bonferroni correction
(Benjamini and Hochberg, 1995) of the obtained p-values from
TNM plot) (Figure 1A). Rectum adenocarcinoma tumor samples
also have higher expression levels compared to normal, however,
the difference was not significant. In prostate adenocarcinoma
and uterine corpus endometrial carcinoma expression levels were
comparable in paired normal and tumor samples. In summary,
these results suggest that Treacle expression becomes upregulated
in most cancers.

From the prevalent upregulation of Treacle across several
cancer types, we wanted to analyze whether there is a correlation
between high Treacle expression levels and patient survival. We
analyzed pan-cancer RNA-Seq data by use of a Kaplan-Meier
Plotter analyzing clinically available data from 7489 patients
with 18 different tumor types obtained from TCGA (Nagy et al.,
2021). The patients were separated into low and high Treacle
expression cohorts with a cut-off defined by the median. The
extracted p-values from the Kaplan-Meier plotter were further
FDR adjusted by Bonferroni correction (Benjamini and
Hochberg, 1995). We found a significant correlation (p <
0.05) between increased Treacle expression levels and poor
survival in liver and renal cancer (Figures 1B–D). Amongst
the cancer types where the correlation was not statistically
significant both elevated and reduced hazard ratios were
found (data not shown).

The correlation between high Treacle expression levels and
poor survival in liver and renal cancer was also found in the
Human Protein Atlas online resource (Uhlén et al., 2015). Their
analysis was also based on RNA-Seq data of Treacle expression
from the TCGA database (Uhlén et al., 2015).

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9185442

Oxe and Larsen Treacle in Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 1 | Increased Treacle expression in cancer correlates with poor survival. (A) TNM plot: differential gene expression analysis of Treacle RNA-Seq data in
paired normal and tumor tissue across anatomical sites (https://tnmplot.com/analysis/) (Bartha and Győrffy, 2021). Significance of the difference in Treacle expression
levels between paired normal and tumor tissue was estimated by TNM plot using a Mann-Whitney U test and the resulting p-values were FDR-adjusted prior to
assessment of significant correlations [p < 0.05 (* > 0.05, ** > 0.01, *** > 0.001)]. (B, C) Kaplan-Meier survival analysis with stratification according to expression
levels of Treacle based on the median cut-off between the lower and upper quartile (https://kmplot.com/analysis/index.php?p=service&cancer=pancancer_rnaseq)

(Continued )
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Several recent studies focusing on the prognostic and potential
therapeutic value of Treacle in cancer reach conclusions in
agreement with our data. Wu et al. proposed a role for
Treacle in oncogenic activation and promotion of
tumorigenesis in human hepatocellular carcinoma (HCC) (Wu
et al., 2021). They found a positive correlation between Treacle
expression levels and advanced pathological stages and
histological grade in HCC, suggesting a role for Treacle in
cancer progression. In addition, they found that high Treacle
expression resulted in a significant decrease in overall survival
probability in HCC patients (Wu et al., 2021). This data is in
agreement with the RNA-seq data analyzed here, showing a
significant upregulation of Treacle expression in liver cancer as
well as a significant correlation between high Treacle expression
and poor survival (Wu et al., 2021).

Another recent study by Hu et al. showed that Treacle mRNA
is upregulated in 32% of triple negative breast cancers (TNBC)
(Hu et al., 2022). The upregulation of Treacle was validated at the
protein level in breast cancer cell lines and by
immunohistochemistry in a cohort of breast cancer patients
(Hu et al., 2022). Furthermore, the authors investigated the
association between Treacle status and patient outcome and
demonstrated that high levels of Treacle expression correlated
with poor survival both in TNBC and across all breast cancers. In
the case of TNBC patients, correlation between Treacle
expression, tumor grade, and TNM stage was observed,
pointing to a role of Treacle in advanced stages of cancer in
TNBC patients (Hu et al., 2022).

An additional pan-cancer study by Gu et al. analyzed
expression levels from un-paired normal and tumor samples
and prognostic value of Treacle. In this study, the authors
found Treacle expression levels to be significantly upregulated
in a broad range of cancers (Gu et al., 2022). This study also
correlated Treacle expression levels with patient outcome and
found an overall correlation between high Treacle expression
levels and poor survival in five cancer types. However, variation in
the results were observed depending on whether the authors used
the GEO or TCGA dataset, making it difficult to interpret the
results.

In summary, our results and the conclusions from recent
studies show an upregulation of Treacle in cancer and indicate
that it has potential as a prognostic marker in a subset of cancers.

3 Treacle can Promote Tumor Initiation
Conditions where Treacle expression is compromised may
provide valuable clues to understand its importance in cancer.
A complete loss of Treacle does not seem to be compatible with
life, but haploinsufficiency occurs upon mutations in Treacle and
gives rise to Treacher Collins Syndrome (TCS) (Dixon et al., 2006;
Lin and Yeh, 2009). TCS is a rare autosomal dominant
craniofacial disorder (Fazen et al., 1967) strongly linked with

p53-dependent cell-cycle arrest and apoptosis (Jones et al., 2008).
The disease manifests in reduced proliferation and impaired
migration of neural crest cells during development leading to
malformations in the craniofacial structures (Dixon et al., 2006;
Jones et al., 2008). Experiments in Xenopus embryos
demonstrated that general growth defects occur upon stronger
inhibition of Treacle (Calo et al., 2018). Future investigations of
p53 status in tumors with high expression of Treacle should be
conducted to identify if the p53 pathway is altered as a result of
Treacle expression. Such investigations may provide further
insight into how Treacle promotes tumorigenesis.

The importance of growth and proliferation in relation to
cancer development was also assessed by Hu et al., 2022, studying
tumor incidence upon injection of spheroids with or without
Treacle knockout in the mammary fat pad of female nude mice.
Mice injected with Treacle knockout cells showed significantly
less tumor incidence, as well as lower frequency of tumor-
initiating cells in comparison to the controls (Hu et al., 2022).
Altogether, this could suggest a critical role of Treacle in
regulation of cell proliferation, functioning as a pro-survival
protein in tumorigenesis (Valdez et al., 2004; Dixon et al.,
2006; Dai et al., 2016).

4 The Potential of Treacle as a Therapeutic
Target
Accumulating evidence of Treacle overexpression in cancer raises
the prospect of targeting Treacle as a novel anti-cancer strategy.
The cellular response to Treacle silencing supports this approach
(Wu et al., 2021), as does its role in both ribosome biogenesis and
DNA repair.

Inhibiting ribosome biogenesis through Pol I targeting drugs
has already been demonstrated to specifically kill cancer cells
(Drygin et al., 2011; Bywater et al., 2012; Devlin et al., 2016).
Clinical trials are being conducted and possibilities for
combination treatment are also emerging (recently reviewed in
Ferreira et al., 2020), underlining that ribosome biogenesis is a
targetable pathway in anti-cancer treatment. For Treacle, the data
available is very limited but a recent study showed that depletion
of Treacle or treatment with chemotherapeutic agents in mice
alone resulted in around 50% and 40% spheroid growth
inhibition, respectively (Hu et al., 2022). Combination of
Treacle knockout and treatment with chemotherapeutic agents
resulted in approximately 75% inhibition of spheroid growth,
demonstrating a promising synergistic effect of combination
treatment (Hu et al., 2022).

DNA repair mechanisms have also become a widely used
target in cancer treatment in recent years, with PARP inhibitors
being a leading example (Rose et al., 2020). Drugs targeting DNA-
repair pathways are often applied in combination with DNA-
damaging agents or in certain genetic backgrounds leading to

FIGURE 1 | (Nagy et al., 2021). Cox proportional hazards ratio (HR) analysis was utilized to assess the correlation between Treacle gene expression and overall survival.
Two cancer types with significant correlation (FDR-adjusted p-values; p < 0.05) between high Treacle expression levels and reduced overall survival were found: (B) liver
hepatocellular carcinoma (HR = 1.94, p = 0.0036) and (C) kidney renal clear cell carcinoma (HR = 1.63, p = 0.0144). (D) Overview of low and high cohort sample sizes,
median survival, HR, and FDR-adjusted significance (p < 0.05) for liver hepatocellular carcinoma and kidney renal clear cell carcinoma.
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synthetic lethality (Topatana et al., 2020). Treacle’s function in
rDNA repair and in vitro studies suggests that Treacle depletion/
inhibition may also be advantageous under such conditions.
Treacle was shown to lead to increased sensitivity to both IR,
cisplatin, (Ciccia et al., 2014), and rDNA DSBs (Korsholm et al.,
2019; Mooser et al., 2020). Another study investigated the
recovery of normal salivary glands after radiation therapy, as
damage to the salivary gland and consequent dysfunction is a
common side-effect of radiation treatment in patients with head
and neck cancer (Dirix et al., 2006; Weber et al., 2019). The
authors found that Treacle protein level and phosphorylation of
serine-792 were significantly increased in salivary gland
progenitor cells isolated from radio-resistant rats after
irradiation compared to radio-sensitive counterparts (Weber
et al., 2019). These data support a potential Treacle-mediated
radio-resistance mechanism and Treacle inhibition may therefore
also have therapeutic advantages.

5 DISCUSSION

There has been an increasing interest in the role of Treacle in
cancer and its potential as a prognostic marker, as signified by the

results presented in this perspective and recent studies examining
the role of Treacle in cancer. In summary, they suggest that
upregulation of Treacle expression promotes carcinogenesis,
stimulates proliferation, survival, and possibly contributes to
radio-resistance, albeit with variation across different cancer
types (Figure 2). We observe significant upregulation of
Treacle expression in 11 out of 14 different cancer types by
analysis of paired normal and tumor data in agreement with other
recently published studies (Wu et al., 2021; Gu et al., 2022; Hu
et al., 2022). Interestingly, in uterine corpus endometrial
carcinoma, where Treacle expression was not increased, the
highest frequency of TCOF1 mutations were identified by Gu
et al., 2022, possibly altering the properties of the expressed
protein. Follow-up studies are needed to clarify if expression
data accurately reflects protein levels and if Treacle is subjected to
posttranslational modifications in cancer.

Our correlation analysis between Treacle expression and
patient survival found significant correlation between high
Treacle expression levels and poor survival in two (liver and
renal) out of 18 cancer types. The correlation was also reported by
Wu and others in a study specifically investigating human
hepatocellular carcinoma, and in the pan-cancer analysis
conducted by Gu et al. The number and types of cancers

FIGURE 2 | Up or downregulation of Treacle expression levels contribute to cancer initiation and progression through promotion of various cancer hallmarks.
Cancer cells can benefit from Treacle downregulation, through loss of the nucleolar DNA-damage response, promoting genome instability, and evasion of DNA-damage
signaling. Treacle upregulation may benefit cancer cells through sustained proliferative signaling, evasion of p53 checkpoint activation, avoidance of anti-cancer immune
infiltration, and through increasing radio-resistance. Cancer hallmarks promoted by Treacle upregulation are marked in grey and hallmarks promoted by Treacle
downregulation are marked in red. Figure created with BioRender.com.
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where Treacle expression correlates with patient outcome vary
between studies, possibly due to the underlying data and the
analysis method. In our analysis we separated patient groups
using the median value, whereas Wu et al. and Hu et al. apply an
“optimal cut-off” value. This approach takes the final endpoint
into account and performs a retrospective separation of two
patient groups. This approach generally finds more cancer
types with statistically significant correlations between
expression and patient outcome but is less suitable for
stratification of patients. We therefore chose the median cut-
off for analysis of Treacle as a potential prognostic biomarker.

Our analysis provides insights into how cancer cells balance
the different functions of Treacle and suggests that elevated
expression is favored in carcinogenesis (Figure 2). This is in
agreement with nucleolar activity being broadly upregulated in
cancers (Montanaro et al., 2008). Furthermore, other ribosome
biogenesis factors, such as the Pol I transcription machinery and
nucleophosmin, are also upregulated in cancer (Bywater et al.,
2013; Chen et al., 2018). We found concomitant upregulation of
Treacle and UBF, nucleolin, and Pol I in lung and stomach cancer
whereas a variable degree of overlap was observed in other cancer
types. Further investigations of co-regulation of ribosome
biogenesis factors are needed to determine how increased
expression is linked to ribosome biogenesis.

Wu et al. demonstrated a promoting function of Treacle in
cancer initiation and progression through mechanisms related to
proliferation, apoptosis, cell migration, transcription, and anti-
cancer immune invasion in human hepatocellular carcinoma
(Wu et al., 2021). Wu et al. demonstrated an inverse
correlation between Treacle expression and CD8+ T cells, NK
cells, and dendritic cells in HCC. A similar correlation between
Treacle and immune infiltration by CD8+ T cells, CD4+ T cells,
B cells, neutrophils, macrophages, and dendritic cells was also
reported (Gu et al., 2022). Both studies point to a possible cancer-
promoting role of Treacle through inhibition of immune
infiltration, supporting a broader role of Treacle in cancer
progression than previously anticipated (Figure 2).

The cellular addiction to ribosome biogenesis in cancer and
the significant upregulation of Treacle across multiple types of
cancer emphasize the importance of future research in cancer
treatment approaches targeting Treacle. A major challenge lies in
the development of an inhibitor targeting a protein where limited
knowledge relating structure to function is available. Specific
residues, however, have been identified facilitating protein-
interactions, and peptides could potentially be developed that
block the interaction between Treacle and its interaction partners.
Whether this will provide sufficient inhibition of Treacle to kill
cancer cells, however, remains uncertain.

The role of Treacle in DNA repair and the increased
accumulation of DNA lesions observed after exposure to

genotoxic stress, could present a therapeutic advantage. If a
successful inhibitor could be developed, it holds the
promise of inducing growth arrest and cell death, by
abrogation of ribosome biogenesis, and at the same time
prevent repair of lesions in rDNA. In combination with
DNA-damaging agents, this potentially represents a
powerful tool for cancer treatment.
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