
Tumor-Stroma Interaction in PDAC as
a New Approach for Liquid Biopsy and
its Potential Clinical Implications
Julian Götze1,2, Christine Nitschke3, Faik G. Uzunoglu3, Klaus Pantel 2, Marianne Sinn1 and
Harriet Wikman2*

1Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center
Hamburg, Hamburg, Germany, 2Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
3Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

The extremely poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC)
has remained unchanged for decades. As a hallmark of PDAC histology, the distinct
desmoplastic response in the tumor microenvironment is considered a key factor exerting
pro- and antitumor effects. Increasing emphasis has been placed on cancer-associated
fibroblasts (CAFs), whose heterogeneity and functional diversity is reflected in the
numerous subtypes. The myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs)
and antigen presenting CAFs (apCAFs) are functionally divergent CAF subtypes with tumor
promoting as well as repressing effects. Precise knowledge of the underlying interactions is
the basis for a variety of treatment approaches, which are subsumed under the term
antistromal therapy. Clinical implementation is still pending due to the lack of benefit—as
well as paradoxical preclinical findings. While the prominent significance of CAFs in the
immediate environment of the tumor is becoming clear, less is known about the circulating
(c)CAFs. cCAFs are of particular interest as they seem not only to be potential new liquid
biopsy biomarkers but also to support the survival of circulating tumor cells (CTC) in the
bloodstream. In PDAC, CTCs correlate with an unfavorable outcome and can also be
employed tomonitor treatment response, but the current clinical relevance is limited. In this
review, we discuss CTCs, cCAFs, secretomes that include EVs or fragments of collagen
turnover as liquid biopsy biomarkers, and clinical approaches to target tumor stroma
in PDAC.

Keywords: pancreatic cancer, liquid biopsy, cancer-associated fibroblasts (CAFs), tumor microenvironment,
circulating tumor cells (CTCs)

1 INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival
rate of <9% over all stages and remains a major challenge for current cancer therapy (Rawla et al.,
2019). In the Western world PDAC is predicted to become the second leading cause of cancer-
associated death (Malvezzi et al., 2019; Sung et al., 2021). More than 80% of cases are diagnosed at an
advanced or metastatic stage, hence most treatment combination regimen rely on chemotherapy
(Kuehn, 2020; Wang et al., 2021). A dense fibroblastic stroma is a hallmark of the PDAC
microenvironment, which can constitutes up to 90% of the tumor mass (Ansari et al., 2017).
The PDAC associated stroma mainly consists of extracellular matrix (ECM) proteins and cancer-
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associated fibroblasts (CAFs) and functions as a barrier of
effective drug penetration (Jacobetz et al., 2013). Furthermore,
immune cells, e.g., myeloid cells and lymphocytes, and to a lower
extent angiogenic vascular cells are present (Hanahan and
Coussens, 2012; Chen and Mellman, 2017; Ren et al., 2018).
Considered as critical players in PDAC carcinogenesis CAFs are
engaged in a dynamic exchange with cancer cells based on a
variety of mechanisms ranging from paracrine secretion to
extracellular vesicle (EV) trafficking (von Ahrens et al., 2017;
Leca et al., 2016). Given that not only tumor promoting but also
tumor repressive effects are mitigated by the tumor-stromal
crosstalk, the CAFs in the center are of paramount interest
with respect to novel therapeutic approaches (Wang et al., 2021).

The current unmet need for clinically relevant prognostic and
predictive biomarkers is considered another reason for the
persistently poor prognosis of PDAC patients (Wang et al.,
2021). Liquid biopsy has become a powerful non-invasive tool
to obtain important tumor related information from body fluids.
The number of CTCs correlate with a poor prognosis and can also
be used to monitor therapy response (Alix-Panabières and Pantel,
2021). However, the clinical impact of CTC enumeration
regarding survival is limited (Ferreira et al., 2016). Meanwhile,
the detection of circulating (c)CAFs, as surrogates of the tumor-
associated stroma, is a merging novel field in liquid biopsies
(Ortiz-Otero et al., 2020a).

In view of their potential use as future liquid biopsy markers
and as clinical approaches for tumor stroma targeting, this review
summarizes the current knowledge about CTCs, cCAFs and their
stroma-derived proteomic signature.

2 CAFS AS THE PREDOMINANTCELL TYPE
OF THE TUMOR MICROENVIRONMENT

2.1 Characteristics of CAFs
Today, it is well accepted, that CAFs are composed of a large
number of cells from different origins—leading to great
heterogeneity in terms of phenotype and function, which
hinders a consistent classification. Therefore, the key features
were summarized in a consensus statement: elongated cells that
are negative for lineage-specific epithelial, endothelial, and
leukocyte markers and do not harbor mutations of their
associated tumor are referred to as CAFs (Sahai et al., 2020).
However, the lack of a specific marker compromises accurate
tracing of their cellular origin (Nurmik et al., 2020).

2.2 Origin of CAFs as a Source of
Heterogeneity and Subpopulations
Originally, CAFs in PDAC were considered to be derived from
tissue-derived fibroblasts and in a majority from pancreatic
stellate cells (PSCs) (Erkan et al., 2012; Arina et al., 2016).
This paradigm has been challenged by recent findings on the
lineage of CAFs. After targeted ablation of PSCs in a PDAC
mouse model, it was observed that only a minority of PSCs
contribute to the population of total CAFs (Helms et al., 2022).
PSCs are mesenchymal tissue-resident cells characterized by

vitamin A-containing lipid droplet storage function and
expression of fibroblast activation protein α (FAPα) (Erkan
et al., 2012; Moir et al., 2015). FAPα exerts proteolytic activity
and is linked to ECM degradation and remodeling (Knopf et al.,
2015). Upon paracrine stimulation from adjacent tumor cells,
quiescent PSCs become activated, then termed CAFs, and
increase the production of ECM proteins (Bachem et al., 2005).

However, as part of a versatile multicellular origin,
transdifferentiation of epithelial and endothelial cells (Iwano
et al., 2002; Zeisberg et al., 2007), as well as adipocytes,
pericytes and smooth muscle cells can give rise to CAFs
(Dulauroy et al., 2012; Bochet et al., 2013). Moreover, a
transgenic mouse model indicated that a relevant subset of
CAFs appears to be additionally recruited from bone marrow
niche cells and in fact arise from mesenchymal stem cells (MSCs)
(Quante et al., 2011) (Figure 1).

The different subtypes appear to have partially contrasting
effects on tumor biology, so accurate knowledge of these
subpopulations is crucial for understanding and developing
therapeutic approaches.

2.3 CAF Subtypes
This section highlights shortly the most important CAF subtypes
currently described. However, numerous other CAF subtypes
have been identified in recent years. Summarizing them all is
beyond the scope of this overview—yet they have recently been
described and reviewed (Awaji and Singh, 2019; Neuzillet et al.,
2019; Pereira et al., 2019; Garcia et al., 2020; Helms et al., 2020;
Huang and Brekken, 2020).

Single cell resolution studies, including single-cell RNA
sequencing, have provided valuable insights into the
composition and properties of stromal cells (Öhlund et al.,
2017; Elyada et al., 2019; Biffi et al., 2019). In a 3D-coculture
system of PSCs and PDAC cells Öhlund et al. described two
distinct subtypes, myofibroblastic CAFs (myCAFs) and
inflammatory CAFs (iCAFs), thereby confirming their
functional heterogeneity (Öhlund et al., 2017) (Figure 1). In
addition, these subtypes seem to differ in their spatial
distribution. MyCAFs are FAPα-positive cells with high
expression of α-smooth muscle actin (αSMA) and are in direct
contact with cancer cells (Öhlund et al., 2017). Activated by the
proximity to cancer cells, myCAFs increase their collagen I
synthesis (Öhlund et al., 2017). However, counterintuitively,
depletion of αSMA-positive CAFs impaired survival in mice
despite reduction in total collagen content (Özdemir et al.,
2014). Thus, these results imply a possible antitumor activity
of myCAFs (Özdemir et al., 2014).

The iCAF subtype is located more distant from tumor cells
and showed an upregulation of leukemia inhibitory factor (LIF),
C-X-C Motif Chemokine Ligand 1 (CXCL1), and Interleukin 6
(IL-6) and IL-11 (Öhlund et al., 2017). In a PDAC mouse model,
inhibition of LIF and genetic depletion of its receptor resulted in
increased sensitivity to gemcitabine treatment and impaired
tumor growth (Shi et al., 2019). Further studies have identified
additional markers for iCAFs including CXCL12, IL6, and IL8 as
wells as TNFα and NF-κB (Elyada et al., 2019). By secreting pro-
inflammatory cytokines and mediating immune evasion, iCAFs
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are widely regarded as promoters of tumor growth in PDAC (Biffi
et al., 2019).

Previous work has illustrated that myCAFs and iCAFs can
switch subtypes, thereby indicating a high level of plasticity.
These subpopulations are therefore conceptualized as
functional states on a continuum rather than endpoints of
differentiation. Through JAK/STAT activation, IL-1 promotes
the development of inflammatory CAFs. Whereas TGFβ
counteracts the JAK/STAT signaling cascade by suppressing
expression of Il1r1, thereby mediating a transition to the
myCAF type (Biffi et al., 2019). Moreover, inhibition of the
TGFβ pathway resulted in elevated expression of iCAF marker
genes (Biffi et al., 2019).

Recently scRNA-seq of tumors in a PDAC mouse model
revealed a novel CAF subtype that expresses MHC class II
family genes (Elyada et al., 2019). The upregulated signaling
pathways and genes, e.g., histocompatibility 2, class II antigen A
(H2-Aa) and H2-Ab1, are typically associated with antigen-
presenting cells (APCs), hence this subtype was referred to as
antigen-presenting CAFs (apCAFs) (Elyada et al., 2019).

Conceptually, another classification proposal for this complex,
growing landscape of different CAF subtypes is to divide CAFs
into cancer-promoting CAFs (pCAFs) and cancer-restraining
CAFs (rCAFs) (Kalluri, 2016; Kobayashi et al., 2019; Mizutani
et al., 2019). However, the definition of pCAFs and rCAFs still
needs to be clarified (Kalluri, 2016). Inclusion of the subgroups
described above, such as iCAFs, apCAFs, and myCAFs, in this
classification is also challenging. This is partly due to the multiple
functions of their markers, exemplified by the controversial role

of alpha-SMA in the progression of PDAC (Özdemir et al., 2014).
Mizutani et al. discovered a potential marker for rCAFs, namely
meflin, a glycosylphosphatidyl inositol (GPI)-anchored protein
specifically expressed in MSCs (Mizutani et al., 2019). The
Meflin-positive CAF subtype is defined by its positivity for
Meflin, Platelet-derived growth factor receptor-α (PDGFRα),
Glioma-associated oncogene homologue 1 (Gli1) with low
expression of αSMA (Mizutani et al., 2019). The infiltration of
Meflin-positive CAFs in human PDAC tissue samples appears to
have prognostic value as it was correlated with beneficial outcome
(Mizutani et al., 2019). This observation was also supported in a
meflin-deficient PDAC mouse model. Thus, ablation of meflin
promoted tumor growth along with a poorly differentiated
histology (Mizutani et al., 2019).

Knowledge of CAF subtypes in PDAC is clearly increasing, but
their precise implications for treatment response and overall
survival (OS) has yet to be determined.

3 DETECTION OF CTCS AND CAFS IN
LIQUID BIOPSY

Liquid biopsy has become a powerful non-invasive tool to
obtain important tumor related information from body fluids.
Most clinically relevant data has been collected from the
analyses of circulating tumor DNA (ctDNA) and circulating
tumor cells (CTCs). The presence of CTCs in the bloodstream
of cancer patients not only correlate with a poor prognosis but
can also be used to monitor the therapy response and collect

FIGURE 1 | Cancer-associated fibroblasts (CAFs) have multiple origins and arise from pancreatic stellate cells (PSCs), mesenchymal stem cells (MSCs),
adipocytes, pericytes, and smooth muscle cells. Myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), antigen-presenting CAFs (apCAFs) and Meflin-positive
CAFs are the major CAF subtypes and reflect functional diversity. As potential biomarkers, circulating tumor cells (CTCs), circulating (c)CAFs, stromal fragments, and
extracellular vesicles (EVs) are an emerging area of research in liquid biopsy and offer future clinical implications.
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tumor material for molecular analyses (Alix-Panabières and
Pantel, 2021). Whereas numerous studies on the biological and
clinical role of CTC in PDAC exist today, the detection of
cCAFs is a merging novel field (Ao et al., 2015; Ortiz-Otero
et al., 2020a).

3.1 Current Value of the CTCs in PDAC
CTCs in the blood of cancer patients are a rare subset of the most
malignant tumor cells, representing the whole tumor burden (Yeo
et al., 2022). In non-resectable PDAC patients, the gain of tumor
tissue is often difficult. CTCs might therefore become an
important alternative tool due to its potential utility as
diagnostic, prognostic, and predictive biomarker (Pantel and
Alix-Panabières, 2019; Yeo et al., 2022). Circulating epithelial
cells have been found in pancreatic precancerous lesions such as
intraductal papillary mucinous neoplasm (IPMN) indicative of
highly migratory capabilities of pancreatic cells even in early
tumor setting (Franses et al., 2018).

There is no gold-standard CTC detection enrichmentmethod yet
for PDAC, and low detection rates, small cohorts and a focus on
locally advanced and metastatic stages hinder valuable comparisons
between the existing studies that have assessed CTC detection in
peripheral blood of PDAC patients (Gall et al., 2019; Lee et al., 2019;
Yeo et al., 2022). Previous studies have included between 14 and 172
PDAC patients each, with reported CTC rates between 7 and 42%
for operable patients and 19 and 48% for metastatic patients
(Ferreira et al., 2016; Effenberger et al., 2018; Martini et al., 2019;
Yeo et al., 2022). Many of these studies have proven that CTCs are
independent predictors of bad prognosis and could facilitate a better
stratification of patients than classical parameters (TNM
classification, imaging methods, CA-19-9 levels) (Ferreira et al.,
2016; Effenberger et al., 2018; Martini et al., 2019). Two meta
analyses, comprising more than 600 patients each, have proved
the association of CTC positivity and worse survival (Han et al.,
2014; Ma et al., 2014).

Due to the large heterogeneity seen in PDAC CTCs, physical
enrichment techniques combined with optimized CTC detection
seem promising (Kalluri and Neilson, 2003; Kalluri and
Weinberg, 2009; Martini et al., 2019). Another promising
approach for increasing CTC detection rates is to analyze the
tumor-draining blood—as CTCs are released directly into the
tumor-draining portal vein before entering the liver as a first
capillary bed (Arnoletti et al., 2017; Song et al., 2020; White et al.,
2021; Arnoletti et al., 2022).

CTCs can be found as single cells or cell clusters
(multicellular CTC aggregates called CTC clusters). The CTC
cluster can be composed of only CTCs (homotypic clusters) or
admixed of CTCs and immune or stromal cells (heterotypic
clusters) (Aceto, 2020; Wrenn et al., 2021). Although CTC
clusters are much more rarely seen than single CTCs, their
presence has been associated with higher metastatic potential in
animal models (Cheung et al., 2016; Liu et al., 2019; Taftaf et al.,
2021) and indicated worse prognosis than single CTCs (Hou
et al., 2012; Aceto et al., 2014). Also, among PDAC patients,
clusters have been identified (Wu et al., 2018). The heterotypic
clusters can be composed of fibroblasts, endothelial cells, white
blood cells, or platelets (Aceto et al., 2014). In a lung cancer

mouse model, the viability of CTC was higher if they formed
heterotypic clusters with fibroblasts (Duda et al., 2010).
Importantly, depletion of CAFs resulted in reduced
metastasis, implying their essential role in CTC survival and
metastatic capacity (Duda et al., 2010).

In future personalized-medicine approaches, characterization
and functional testing of CTCs and clusters might lead to benefits
for patient management and uncover new therapies by
identifying the specific CTC subpopulations for metastatic
progression (Yeo et al., 2022).

3.2 State of Knowledge on Detection of
cCAFs Using Liquid Biopsy Approaches in
Cancer and Potential Application in PDAC
In various tumor entities including PDAC, cCAFs have been
detected (Ortiz-Otero et al., 2020a). These rare cells can be
found in a heterotypic cluster with CTCs or alone (Ao et al.,
2015; Sharma et al., 2021). In general, patients at a metastatic
stage showed a significantly higher amount of cCAFs in the
blood compared to patients with localized tumors (Ao et al.,
2015). In a cohort of 34 patients with metastatic breast cancer,
cCAFs were found in 88.2%, with numbers varying notably,
ranging from 0 to 117 per 7.5 ml of EDTA blood. In contrast,
cCAFs were present in only 23.1% of the 13 patients with
localized cancer, and the maximum count per 7.5 ml of blood
did not exceed 2 (Ao et al., 2015). The potential use of cCAFs
as a predictive biomarker is also supported by the observation
that cCAFs were not present in healthy donors and an
increased cCAF count correlated with poor prognosis (Ao
et al., 2015; Ortiz-Otero et al., 2020a).

Previous studies have employed different enrichment
methods and surface markers to detect cCAFs, thereby
limiting their comparability and predictions on the
occurrence of cCAFs in different tumor types (Ao et al.,
2015; Ortiz-Otero et al., 2020a). Ao et al. first exploited the
physical properties of cCAFs by applying a size-based
microfilter to enrich cCAFs from peripheral blood samples
of patients with breast cancer (Ao et al., 2015). Subsequently,
the classification of cCAFs was conducted by the combined
detection of FAPα and αSMA. As an additional morphological
condition, the spindle-shaped form of the captured cells, a
feature typical of CAFs, was verified (Ao et al., 2015). Another
study analyzed the blood of patients with prostate cancer
using the CellSearchTM system. Fibroblast-like cells, defined
as CK- and CD45-negative and vimentin-positive
populations, were observed in patients with metastatic but
not localized disease stage in this study (Jones et al., 2013).
High expression of vimentin is indeed found on fibroblasts.
Nevertheless it should be taken into account that other cells of
mesenchymal origin and tumor cells undergoing EMT also
express vimentin (Kalluri and Weinberg, 2009).

The studies by Ortiz-Ortero et al. covered the most extensive
variety of different tumor types, including six patients with
metastatic PDAC (Ortiz-Otero et al., 2020a). In their
approach, mononuclear cells were isolated using Ficoll density
centrifugation, followed by positive enrichment based on anti-
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fibroblast magnetic beads and identification by αSMA staining
(Ortiz-Otero et al., 2020a).

As local CAFs are of paramount importance in the tumor
microenvironment (Sahai et al., 2020), it is reasonable to
speculate that cCAFs alone or in a heterotypic cluster with
CTCs might also have analogous biological significance, e.g.,
facilitating metastasis (Ortiz-Otero et al., 2020b). This
remains a hypothesis, as there is much less known about
cCAFs than CTCs, although initial data are promising.

3.3 Stroma-Derived Proteomic Signature
Measured in the Bloodstream as a
Biomarker in PDAC
Since cCAF are rare and a heterogeneous population of cells, a
combined detection approach including CTCs might be
beneficial to increase sensitivity. Furthermore, it is
conceivable to exploit other PDAC specific stromal
characteristics: ECM proteins as hyaluronan (HA) along with
collagen types I, III, and IV, are surrogates for desmoplasmic
expanse in PDAC (Whatcott et al., 2015). This abundant
accumulation of ECM caused by the increased activity of
CAFs is also subject to enzyme-mediated turnover, e.g., by
matrix metalloproteinases, the fragments of which may, in
turn, be released into the bloodstream. Several studies have
explored the value of these blood-detectable stromal fragments
as potential biomarkers in PDAC (Willumsen et al., 2013;
Willumsen et al., 2019; Chen et al., 2020; Nissen et al., 2021).
In a cohort of 972 participants, including 809 patients with
PDAC, serum levels of HA and the N-terminal propeptide of
type III collagen (PRO-C3) were measured and compared with
healthy subjects. Levels of HA and PRO-C3 were significantly
elevated in patients with PDAC compared to healthy subjects or
patients with benign diseases, including IPMN (Chen et al.,
2020). Another study demonstrated the association between a
higher PRO-C3 value and worse OS. Moreover, the higher ratio
of fragment C3M, the MMP-mediated degradation product of
type III collagen, to PRO-C3 was associated with longer OS and
can be interpreted as a sign of a decreased fibrotic activity
(Willumsen et al., 2019).

However, the crosstalk of CAFs and PDAC cancer cells occurs
not only by paracrine mechanisms but also through EV
trafficking. When CAFs are exposed to unfavorable
pathophysiological conditions, such as lipid deficiency,
macrophage co-cultivation and hypoxia, they secrete EVs
bearing the complex annexin A6/LDL receptor-related protein
1/thrombospondin 1 (ANXA6/LRP1/TSP1) (Leca et al., 2016).
Uptake of this complex by cancer cells resulted in increased
tumor aggressiveness. Interestingly, Leca et al. detected CAF-
derived ANXA6-positive EVs exclusively in the serum of PDAC
patients compared with healthy subjects and subsequently
showed that their occurrence was linked to shorter OS (Leca
et al., 2016).

In the future, information on the fibrotic activity or
aggressiveness of PDAC obtained by liquid biopsy could be an
effective tool for PDAC subclassification and treatment
stratification. Blood-based measurements of stromal fragments

or CAF-derived EVs could be a valuable contribution to this
purpose.

4 ADDRESSING DESMOPLASIA—A NEW
APPROACH FOR THERAPEUTIC OPTIONS

Stromal and CAF depletion as a therapeutic concept in PDAC is
an intense area of research with numerous ongoing preclinical
and translational studies (Jiang et al., 2020; Geng et al., 2021).
From the plethora of potentially actionable pathways and targets,
a few have been highlighted below for their potential clinical
implications in the near future.

4.1 Targeting the Stroma
Nab-paclitaxel was the first drug with antistromal activity to show
benefit in clinically relevant studies (Von Hoff et al., 2011; Von
Hoff et al., 2013). Furthermore, the HA expression is considered a
negative prognostic marker in PDAC and is therefore an
attractive target for drug intervention (Whatcott et al., 2015).
The benefit of HA degradation by pegvorhyaluronidase-alfa has
been evaluated in multiple clinical trials (Hingorani et al., 2016;
Infante et al., 2018). After initially promising results, it failed to
improve survival in a large phase III trial (Van Cutsem et al.,
2020). Several other anti-fibrotic agents such as halofuginone
have demonstrated in preclinical studies that modulation of the
TME toward a lower stromal content enhances the effect of
antineoplastic agents (Elahi-Gedwillo et al., 2019). However,
clinical benefit has yet to be proven.

PDAC peritumoral stromal response is significantly regulated
by the Sonic Hedgehog (Shh) pathway, yet Shh inhibitors have
failed in clinical trials (De Jesus-Acosta et al., 2020). Inhibition of
Shh led to a reduction in αSMA-positive CAFs, but paradoxically
to more aggressive tumors, underscoring the distinct and partially
protective functions of the recently identified CAF subtypes in
PDAC (Rhim et al., 2014).

4.2 CAFs as Therapeutic Targets
Given that CAFs in part fuel tumor growth and form physical
barriers impeding effective drug delivery, these cells appeared to
be promising targets for therapeutic approaches (Jacobetz et al.,
1136; Vonlaufen et al., 2008). An interesting target is the marker
FAPα, which has been identified as a promoter of tumor growth,
as its genetic deletion resulted in delayed tumor development and
attenuation of metastasis (Lo et al., 2017). Nevertheless,
inhibition of FAPα-positive CAFs by bispecific antibodies or
chimeric antigen receptor T-cells, however, has shown no
clinical value so far (Hingorani et al., 2016).

Evasion of cancer immunity and therapy resistance involves
intimately also the interaction of CAFs with immune and tumor
cells, which can be partially reversed by augmenting T-cell
responses (Feig et al., 2013). The inhibition of CXCL12
secreted by FAPα-positive CAFs via CXCR4 antagonists
increased cytotoxic T-cell infiltration and promoted an anti-α-
PD-L1-mediated immune response in PDACmousemodels (Feig
et al., 2013). In a phase II trial (NCT02826486), a CXCR-4
inhibitor in combination with PD-1-inhibition and
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chemotherapy led to an increase in survival in metatastic PDAC
patients (Bockorny et al., 2020). Furthermore, via secretion of
pro-inflammatory cytokines, including Il-6, iCAFs are considered
a driving oncogenic force in PDAC (Geng et al., 2021). High IL-6
levels in the serum of PDAC patients are associated with cachexia
and a worse prognosis (Okada et al., 1998; Rupert et al., 2021).
Dual blockade of IL-6 and the immune checkpoint PD-1 acts
synergistically and is hypothesized to overcome thereby immune
resistance (Mace et al., 2018). The clinical utility of an IL-6
inhibitor is currently being evaluated in a combination therapy
in advanced PDAC (NCT02767557).

Tumor promoting crosstalk between PDAC cancer cells and
CAFs is mediated by a ligand for HER3 and HER4 receptors,
neuroregulin-1, which is secreted by both cell types (Ogier et al.,
2018). Its inhibition showed reduced migration and tumor
growth in PDAC mouse models (Ogier et al., 2018). In an
ongoing phase I/II, an anti-HER2xHER3 bispecific antibody
has shown promising efficacy in neuroregulin-1 fusion-positive
PDAC patients (NCT02912949).

The fact that the antifibrotic mechanisms of action and CAF
heterogeneity is still rather poorly understood, exemplifies the
ongoing cumbersome search for the ideal targeted therapy
in PDAC.

5 OUTLOOK AND POSSIBLE CLINICAL
IMPLEMENTATION

Within the PDAC microenvironment, CAFs predominantly
imprint intrastromal cellular crosstalk and exert both tumor-

promoting and tumor-suppressive effects (Wang et al., 2021).
Moreover, their biological functions are as diverse as their
heterogeneous origins. The more we know about this
biological complexity, the more we can use partial aspects,
such as blood circulation of CAFs and release of stromal
fragments, for liquid biopsy approaches to establish predictive
markers in PDAC (Willumsen et al., 2019; Ortiz-Otero et al.,
2020a). The most promising approach for liquid biopsies in
PDAC might indeed be a combined approach of CTC, cCAF
and other stromal fragment detection to increase sensitivity and
maximize the chance of translation liquid biopsy techniques in
clinical routine with therapeutic relevance (Willumsen et al.,
2019; Ortiz-Otero et al., 2020a; Yeo et al., 2022). The steps
toward clinical application of antistromal therapies, in addition
to nab-paclitaxel, have been marked by many setbacks (Van
Cutsem et al., 2020; Geng et al., 2021). However, the
numerous preclinical and ongoing clinical trials are
encouraging (Geng et al., 2021).
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