
Structural Organization and Function
of the Golgi Ribbon During Cell
Division
Inmaculada Ayala and Antonino Colanzi *

Institute of Experimental Endocrinology and Oncology “G Salvatore” (IEOS), National Research Council (CNR), Napoli, Italy

The Golgi complex has a central role in the secretory traffic. In vertebrate cells it is generally
organized in polarized stacks of cisternae that are laterally connected by membranous
tubules, forming a structure known as Golgi ribbon. The steady state ribbon arrangement
results from a dynamic equilibrium between formation and cleavage of the membrane
tubules connecting the stacks. This balance is of great physiological relevance as the
unlinking of the ribbon during G2 is required for mitotic entry. A block of this process
induces a potent G2 arrest of the cell cycle, indicating that a mitotic “Golgi checkpoint”
controls the correct pre-mitotic segregation of the Golgi ribbon. Then, after mitosis onset,
the Golgi stacks undergo an extensive disassembly, which is necessary for proper spindle
formation. Notably, several Golgi-associated proteins acquire new roles in spindle
formation and mitotic progression during mitosis. Here we summarize the current
knowledge about the basic principle of the Golgi architecture and its functional
relationship with cell division to highlight crucial aspects that need to be addressed to
help us understand the physiological significance of the ribbon and the pathological
implications of alterations of this organization.
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INTRODUCTION

The Golgi complex (GC) is a central organelle of the secretory pathway (Glick and Nakano, 2009) and is
also an important intracellular signaling platform (Luini and Parashuraman, 2016). In the majority of
eukaryotes, the GC is organized in the form of stacks of cisternae that are functionally polarized, each
containing a distinct set of cargo-processing enzymes (Wei and Seemann, 2010). The proteins and lipids
synthesized in the endoplasmic reticulum (ER) are transported to the cis-Golgi through an intermediate
compartment (IC) that is considered a stable sorting station between the ER and the GC (Appenzeller-
Herzog and Hauri, 2006). The cargoes are then processed to be finally sorted at the trans-Golgi network
(TGN) for the transport to specific plasma membrane location or other organelles (Glick and Nakano,
2009). Recent evidence suggests that the TGN is an organelle independent of the GC (Nakano, 2022) and
that it operates in close functional and spatial connection with the recycling endosomes (RE), where
endocytosed materials travel before recycling to the plasma membrane (Fujii et al., 2020).

In addition, in most vertebrate cells, adjacent stacks are connected by complex tubular-
saccular membranous structures, the “non-compact zones” (Rambourg and Clermont, 1990), to
form a continuous system (Cole et al., 1996) called Golgi ribbon, generally located near the
centrosome (CE) (Wei and Seemann, 2010). If biological evolution has favored this organization,
it should have an advantage for the cells. Yet, the functional role of the ribbon is still not
completely understood, as the isolated stacks are fully capable of performing basic tasks of
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transport and cargo modifications (Wei and Seemann, 2010).
The current evidence suggests that the ribbon organization
could increase the efficiency of the processing, transport and
polarized delivery of selected cargo, and regulate signaling
events (Makhoul et al., 2018; Li et al., 2019a; Kulkarni-Gosavi
et al., 2019; Ravichandran et al., 2020).

Several reports have shown that during G2 the Golgi ribbon must
be unlinked into the constituent stacks to allow entry into mitosis
(Figure 1) (Colanzi et al., 2007; Feinstein and Linstedt, 2007).
Accordingly, blocking the unlinking step results in a potent G2-
block of the cell cycle, pointing out that a “Golgi checkpoint” oversees
the correct pre-mitotic cleavage of the GC (Sutterlin et al., 2002;
Hidalgo Carcedo et al., 2004), and revealing that the cell cycle
progression depends not only on the checkpoints that supervise
DNA replication and spindle formation, but also the segregation of
the GC. Similarly, a role for other organelles in regulating mitosis-
specific events is also emerging (Mascanzoni et al., 2019).

Although the crucial role of the GC in driving cell division is well
established, there are many details about the mechanisms and
regulation of ribbon formation and the control of mitotic events
that are only partially understood. In addition, there are general
questions that need to be addressed. For example, why is ribbon
cleavage required for entry into mitosis? How accurate must the
partitioning of Golgi proteins be? In this article we summarize the
major features of the mechanism of GC maintenance, referring to
other reviews for more details, and present our view about why the
answers to these questions could help us to understand the
physiological significance of the ribbon structure and the
pathological implications of alterations of this organization.

Structural Organization of the Golgi
Complex
The isolation of a “Golgi matrix”more than 25 years ago allowed
the identification of a set of proteins with fundamental roles in

Golgi structure, transport and function (Slusarewicz et al., 1994).
The golgins are major components of this matrix, comprising at
least 11 members that are associated with the Golgi membrane
through a variety of mechanisms (Gillingham and Munro, 2016).
The golgins are characterized by an elongated structure
composed of coiled-coil domains that can be extended into
the cytoplasm for up to 200 nm. They are involved in vesicle
tethering, interaction with the cytoskeleton, Golgi enzyme
retention and scaffolding for signaling complexes (Lowe,
2019). The various golgins are localized to distinct domains of
the GC, in agreement with their functional specialization
(Gillingham and Munro, 2016; Wong et al., 2017).

Additional components of the matrix are the Golgi
Reassembly and Stacking Proteins (GRASPs; GRASP65 (Barr
et al., 1997) and GRASP55 (Shorter et al., 1999)). They are
peripheral proteins associated with the Golgi membrane via an
N-terminal myristoylation. GRASP65 forms a complex with the
golgin GM130 at the cis-Golgi (Barr et al., 1998; Hu et al., 2015),
whereas GRASP55 binds Golgin 45 (Short et al., 2001; Zhao et al.,
2017). Although GRASP55 is commonly considered a medial-
localized protein, a recent super-resolution imaging approach led
to the conclusion that both GRASPs reside at the cis-Golgi (Tie
et al., 2018). GRASP65 and GRASP55 have a conserved
N-terminal “GRASP domain” composed of two PDZ domains
(Vinke et al., 2011; Li et al., 2019a) that can homodimerize in
trans. Several biochemical and structural data suggest that the
GRASP homodimers tether adjacent membranes, thus guiding
the juxtaposition of cisternae to form the stacks or the fusion of
homologous cisternae of adjacent stacks to form the ribbon
(Zhang and Wang, 2015; Rabouille and Linstedt, 2016). The
homodimerization is inhibited by phosphorylation of residues
present in the C-terminal regulatory regions, offering a
mechanism for the regulation of the structure of the GC
(Ayala et al., 2020). GRASP65 and GRASP55 are also involved
in a variety of non-structural functions, as they interact with a set

FIGURE 1 | Schematic description of GC disassembly during G2 and functional connections with mitosis. During G2, the GC is unlinked into stacks, leading to the
activation of a Src/Aurora-A signaling axis that drives centrosomematuration and entry intomitosis. After mitosis onset, the Golgi stacks are disassembled into dispersed
vesicles and clusters. Golgi-associated proteins, including GM130 and p115, are repurposed to form a bipolar, symmetric and correctly oriented spindle that mediates
the inheritance of proteins necessary for GC ribbon reformation at mitotic exit.
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of cargo, cargo adaptors and glycosylation enzymes, thereby
regulating the intra-Golgi traffic of proteins and
glycosphingolipid biosynthesis (Rabouille and Linstedt, 2016).
They are also differentially involved in signaling as GRASP65
plays a crucial role in apoptosis, while GRASP55 is involved in
Golgi stress response, unconventional protein secretion and
autophagy (Zhang and Wang, 2020).

The structure and function of the GC are under the control of
GTPases and several signaling pathways, including those
involved in phosphoinositide metabolism and mitogen-
activated protein kinase signaling (Kulkarni-Gosavi et al.,
2019). Moreover, clustering and position of the stacks depend
on the concerted actions of CE- and Golgi-nucleated
microtubules (MTs) and actin cytoskeleton (Ravichandran
et al., 2020; Mascanzoni et al., 2022). Despite this complexity,
the GC can rapidly modify structure and localization in response
to specific physiological conditions (Nakamura et al., 2012;
Gosavi and Gleeson, 2017; Saraste and Prydz, 2019;
Ravichandran et al., 2020).

The Ribbon is Actively Separated Into
Stacks During G2
At steady state, the GC structure results from the dynamic
equilibrium between the formation and cleavage of the
membranes connecting the stacks (Colanzi et al., 2007). Live
imaging showed that ribbon formation is mediated by the
elongation of GRASP-coated membranous tubules from the
cisternae of “donor” stacks (Feinstein and Linstedt, 2008;
Cervigni et al., 2015). The elongation of these tubules requires
phospholipases and is driven by dynein and MTs (Bechler et al.,
2012). Eventually, the tubules dock and fuse with homologous
cisternae of “acceptor” stacks (Feinstein and Linstedt, 2008). The
essential role of GRASPs in ribbon formation is supported by several
loss-of-function experiments based on siRNA-mediated depletion,
functional inactivation through kinase inhibitors, andmicroinjection
of blocking antibodies or recombinant proteins (Valente and
Colanzi, 2015; Rabouille and Linstedt, 2016; Zhang and Wang,
2020). Moreover, experimental approaches designed to induce
rapid degradation of both GRASPs showed that acute depletion
of either GRASP unlinks the Golgi ribbon (Burd, 2021). Specifically,
GRASP65 degradation shows a prevalent loss of continuity at the cis-
side, whereas downregulation of GRASP55 generally affects the
continuity at the medial/trans level (Jarvela and Linstedt, 2014).
Of note, rapid degradation of both GRASPs does not induce evident
unstacking (Grond et al., 2020; Zhang and Seemann, 2021), thus
questioning the role of GRASPs in stacking. A possible explanation is
that stacking is provided by redundant mechanisms that could
temporarily compensate for the loss of GRASPs.

Among the proteins involved in ribbon formation, a key
role has emerged for the GM130/GRASP65 complex. Indeed,
GM130 recruits the scaffold AKAP450, which drives the
nucleation of GC-originated MTs that are crucial for the
clustering of the stacks (Rivero et al., 2009; Sanders and
Kaverina, 2015; Ravichandran et al., 2020). In addition,
GRASP65 stabilizes Golgi-associated MTs, favoring ribbon
formation (Ayala et al., 2019), in agreement with

tomography data showing that MTs are preferentially
associated with the cis-side of the GC (Marsh et al., 2001).
The C-terminal domain of GRASP65 binds the DnaJ homolog
subfamily A member 1 (DJA1), which promotes GRASP65
oligomerization (Li et al., 2019b) and the actin regulator Mena,
which drives the formation of short actin fibers (Tang et al.,
2016), probably involved in stabilizing the inter-stack
connections. Thus, the GM130/GRASP65 complex
coordinates several membrane-based events and the
cytoskeleton to allow the formation of the lateral bridges
connecting the stacks. Whether similar mechanisms also
involve GRASP55 is not known. The inverse process of
cleavage of the connections is driven by the fission-inducing
protein BARS, but the mechanism and regulation are not
known (Figure 1) (Hidalgo Carcedo et al., 2004; Colanzi
et al., 2007). The only regulatory mechanism known to date
is the inhibition of the tethering step. Specifically, during G2
the kinase PKD activates the RAF1/MEK1/ERK1 signaling
cascade that phosphorylates GRASP55 (Acharya et al., 1998;
Colanzi et al., 2003; Feinstein and Linstedt, 2008; Kienzle et al.,
2013), while JNK2 and PLK1 phosphorylate GRASP65
(Sengupta and Linstedt, 2010; Cervigni et al., 2015)
(Figure 1). These phosphorylations concur to block
tethering events, resulting in Golgi unlinking (Rabouille and
Linstedt, 2016; Wei and Seemann, 2017).

Hence, the current evidence indicates that the GRASPs are
major effectors of signaling pathways regulating the ribbon
organization. Nevertheless, critical aspects of ribbon
formation/disassembly are unclear, including the “trigger” of
the signaling acting on the GRASPs, the potential role of
additional regulatory pathways, the role and regulation of the
golgins, and the mechanism and regulation of BARS, the
cytoskeleton and membrane fusion-based processes. The
investigation of these aspects is of paramount importance for
a global understanding of the regulation and maintenance of the
Golgi ribbon and for developing approaches for its modulation.

An additional area that is poorly understood is related to the
precise structure of the inter-stack connections. Indeed, even if
the ribbon organization appears to be mediated by the formation
and fusion of tubules connecting the stacks (Feinstein and
Linstedt, 2008), the few ultrastructural studies conducted so
far indicate that the non-compact zones have the form of
tubular-saccular membranes, suggesting that these membranes
have a structure more complex than that of simple tubules
(Saraste and Prydz, 2019). Therefore, we hope for a revived
interest in this topic thanks to the development of electron
microcopy (EM) approaches characterized by improved
resolution and automatization (FIB-SEM, STEM, Array
Tomography) (Ferguson et al., 2017; Koga et al., 2017; Ohta
et al., 2021) that now also allow a faster examination of the
detailed ultrastructure of larger and deeper Golgi areas.

Why is Golgi Unlinking Required for Entry
Into Mitosis?
The identification of the “Golgi mitotic checkpoint” opened the
question of how the segregation of this organelle controls entry
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into mitosis. Related to this issue, we have shown that the
unlinking activates a specific Golgi-associated pool of Src,
which then interacts with the mitotic kinase Aurora-A. The
consequent Src-mediated phosphorylation of Y148 of Aurora-
A results in increased activity and centrosome-recruitment of
Aurora-A, which then triggers entry into mitosis and CE
maturation (Figure 1) (Barretta et al., 2016), a prerequisite for
spindle formation (Marumoto et al., 2002; Hoar et al., 2007;
Malumbres and Perez de Castro, 2014). Whether Golgi unlinking
controls entry into mitosis only through the Src-Aurora-A
signaling axis is unclear.

Thus, the pre-mitotic segregation of the ribbon into stacks
generates a signaling that is directly connected with those
controlling cell duplication. Yet, a still open question is why
Golgi unlinking is necessary for entry into mitosis. As the GC is
closely associated with the CEs, a possibility is that Golgi
unlinking could be necessary to remove a steric hindrance that
could hamper CE separation in G2. However, this is unlikely
since the GC is dissociated from the CE during this phase (Frye
et al., 2020). Moreover, inhibition of Golgi unlinking does not
alter CEs separation (Persico et al., 2010).

A hint could derive from the mitotic fate of Golgi membranes.
After mitosis onset, CDK1 phosphorylates various golgins,
GRASPs and adaptor proteins involved in mediating
membrane fusion (Wang and Seemann, 2011). Consequently,
based on in vitro reconstitution of Golgi fragmentation, it has
been concluded that the stacks are disassembled through an
extensive vesiculation process (Uchiyama et al., 2003; Kaneko
et al., 2010; Tang andWang, 2013; Totsukawa et al., 2013). CDK1
also induces the disassembly of ER exit sites, inducing a block of
secretion. Correlated to this block, it has been shown that GFP-
tagged Golgi enzymes cycling between the ER and the GC remain
trapped in the ER during mitosis (Zaal et al., 1999). However, two
different studies based on drug-induced ER fragmentation or
retention of Golgi enzymes in the ER, reached the opposite
conclusion that the Golgi proteins diffuse independently of the
ER (Axelsson and Warren, 2004; Pecot and Malhotra, 2006). Yet,
all these studies were based on the investigation of GFP-tagged
Golgi markers. Thus, we think that it would be important to
dedicate more efforts in investigating by immuno-EM the
subcellular localization of several endogenous Golgi markers to
have a broader and quantitative view of the process.

Independently on the mechanism, extensive disassembly is a
peculiarity of the GC (Mascanzoni et al., 2019) and is crucial for
mitotic progression, as blocking stacks disassembly induces the
formation of monopolar spindles, resulting in the spindle
checkpoint activation and arrest in metaphase (Guizzunti and
Seemann, 2016).

The disassembly process is also associated with the change of
localization of a set of Golgi-associated proteins that acquire new
mitosis-specific functions. A significant example is offered by
GM130, which possesses a nuclear localization signal that during
interphase is masked by the interaction with the matrix protein
p115 (Wei et al., 2015). CDK1-mediated phosphorylation of
GM130 dissociates p115, allowing the nuclear localization
signal to activate a signaling axis composed of the spindle
assembly factor TPX2, which binds to and activates Aurora-A

to control the formation of “astral”MTs, which are necessary for
correct spindle orientation (Figure 1) (Wei et al., 2015; Guo et al.,
2021). Moreover, GM130 can also stabilize the spindle fibers by
direct binding to MTs, thus linking Golgi membranes to the
spindle (Wei et al., 2015; Wei and Seemann, 2017). In agreement
with this role, GM130 depletion causes the formation of
multipolar mitotic spindles (Kodani and Sutterlin, 2008). The
golgin p115 has an armadillo-like fold that mediates the
interaction with γ-tubulin and localization at the CEs
(Radulescu et al., 2011). Strikingly, depletion of either p115 or
GRASP65 causes spindle abnormalities and defects in
chromosome segregation (Figure 1) (Sutterlin et al., 2005;
Radulescu et al., 2011). The mitotic spindle has also an active
role in the mitotic inheritance of Golgi structural proteins as it
mediates the partition of “ribbon factors” necessary for post-
mitotic reassembly of Golgi ribbons (Figure 1) (Seemann et al.,
2002; Wei and Seemann, 2009). Proteomic and fractionation
experiments suggest that these “ribbon factors” include at least
GM130, p115 and Golgin 160 (Sauer et al., 2005; Radulescu et al.,
2011).

Therefore, we hypothesize that the Golgi checkpoint monitors
ribbon separation in G2 because the unlinking process could be
necessary to form two equivalent Golgi membrane pools as a
prerequisite for the balanced redistribution at the spindle fibers of
a set of GC-associated proteins. Their correct distribution could
have two purposes: The first is to concur to form a symmetric
bipolar spindle. The second is to allow the spindle-mediated
partition of a minimal set of GC-associated scaffolds acting as
templates for the reformation of two equivalent Golgi ribbons at
mitotic exit (Figure 1) (Wei and Seemann, 2009; Ravichandran
et al., 2019).

Is the Equal Distribution of Golgi
Membranes Important for Cell Duplication?
As the GC is a single copy organelle, it is evident that a certain
degree of disassembly is necessary to produce two pools of
membranes distributed in the daughter cells, thus allowing
rapid GC reformation at the mitotic exit, as its de novo
reformation would require several hours (Tangemo et al.,
2011).

A related important question is how accurate the
partitioning of Golgi enzymes and matrix proteins must be.
At metaphase, before GC reassembly and reformation into the
two daughter cells, the mitotic Golgi membranes are
distributed into two different pools. One is enriched in
Golgi enzymes characterized by rapid and MT-dependent
diffusion and redistribution between individual vesicles or
clusters dispersed throughout the cytoplasm (Axelsson and
Warren, 2004). The second is enriched in clusters containing
matrix proteins, mainly distributed around the spindle poles
(Seemann et al., 2002).

The accuracy of the distribution of dispersed GC
membranes has been examined in a limited number of
studies based on confocal imaging, which led to the
conclusion that the GC is partitioned through a mechanism
more precise than a stochastic division (Shima et al., 1998).
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However, the fraction of Golgi membranes present in
detectable clusters is a minor fraction of the total (Puri
et al., 2004), suggesting that the majority of Golgi enzymes
is contained in structures whose dimension is below the
resolution limits of fluorescence microscopy, undermining
the accuracy of the quantitative assessment of their
distribution.

Additional aspects that merit further investigation are the
dynamic of Golgi proteins and the composition of the Golgi
clusters. Indeed, live imaging studies showed that the IC is not
disassembled during mitosis, forming two pools of membranes
associated with the CEs and spindles (Marie et al., 2012). These
studies also led to the conclusion that the mitotic IC clusters
are intermediate stations of vesicle-mediated ribbon and stacks
disassembly and are in a bidirectional exchange of material
with the Golgi “haze,” suggesting that the IC could represent a
template of GC reformation at the mitotic exit (Marie et al.,
2012). Moreover, very little is known about the inheritance of
the TGN.

Thus, until now, despite the several immunofluorescence (IF)
and EM studies conducted in the 80s and 90s (Wang and
Seemann, 2011), we still have an incomplete picture of the
structure, distribution and dynamics of Golgi membranes
during mitosis. Hence, this is an additional area of uncertainty
that we think requires further investigation and that could benefit
from the technological advances in the field of high-resolution
imaging approaches (e.g., STED, SIM, STORM) (Feng et al.,
2018). These approaches, coupled to the use of fluorescently
labeled nanobodies or Fab fragments (Yang et al., 2022), could
now allow a more quantitative detection of the location of Golgi
proteins during mitosis. As an example, the development of
dedicated computational analysis of images acquired through
Airyscan and 3D-structured illumination microscopy, and the
4Pi single-molecule switching super-resolution microscopy,
enabled the imaging of a large number of Golgi markers with
a resolution of 5–10 nm (Zhang et al., 2020; Tie et al., 2022). Also,
these techniques could be associated to correlative light and EM
(CLEM) procedures, which are used to align fluorescent signals
with EM imaging (Rizzo et al., 2014), to allow the high-resolution
study of areas of interest selected by conventional fluorescence
microscopy thus, to reveal the precise ultrastructure and
distribution of Golgi proteins.

DISCUSSION

Despite the many open questions regarding the mechanism
and regulation of Golgi structure and its mitotic inheritance, it
is well established that mitotic Golgi disassembly has an active
role in cell cycle progression. Two mechanisms converging on
the mitotic kinase Aurora-A have been identified. One senses
unlinking and activates Src at the GC, resulting in Aurora-A
activation to drive entry into mitosis and CE maturation
(Barretta et al., 2016). The other is mediated by a GM130-
based pathway leading to the activation of TPX2, an allosteric
activator of Aurora-A, to control the formation of the spindle
astral fibers (Wei et al., 2015; Guo et al., 2021). Furthermore,

Golgi-associated structural proteins are repurposed during
mitosis to concur to the proper spindle formation
(Mascanzoni et al., 2019). Whether additional mechanisms
cooperate with the control of entry into mitosis and spindle
formation remain to be determined.

Besides, the long-term functional implications of
alterations of the mitotic inheritance of the GC are largely
unexplored. This is a critical issue as the relocalization of a set
of Golgi proteins is necessary for spindle formation (Altan-
Bonnet et al., 2003; Mascanzoni et al., 2022). Therefore, errors
of GC segregation could result in aberrant spindle formation,
which can potentially alter the orientation of cell division, with
deleterious consequences on tissue homeostasis, or cause
errors of chromosome segregation, favoring cell
transformation and tumorigenesis (Matthews et al., 2022).
On the other side, premature GC unlinking induces early
activation of Aurora-A (Barretta et al., 2016), which can
also have important physiological consequences, as untimely
Aurora-A activation can reduce the accuracy of the DNA-
damage checkpoint, supporting tumorigenesis (Ma and Poon,
2020). Hence, we could speculate that constitutive Golgi
unlinking could be a favorable condition for tumorigenesis.
Of note, there are reports suggesting that the GC is unlinked in
certain cancer cells (Bui et al., 2021) and that GC
fragmentation may sustain cell survival and resistance to
DNA-damaging agents, limiting the efficacy of
chemotherapy (Farber-Katz et al., 2014). Nevertheless,
despite the important potential pathological implications of
the functional connection between Golgi inheritance and cell
division, this topic has been showing a steady decline in
interest over the last 15 years, as evidenced by the PubMed
search for the words “Golgi” and “mitosis”.

Therefore, we hope for a renewed interest of the scientific
community in the investigation of the basic mechanisms and
regulation of mitotic Golgi disassembly, its connections with the
control of mitotic processes and the effects of alterations of Golgi
inheritance on genomic stability. In addition, more systematic
studies of the structure and function of the GC in patient tissues
and patient-derived cells are much needed for a better
understanding of the link between GC and cancer (Bui et al.,
2021).

A major challenge is that the Golgi structural proteins are
involved in multiple functions, which are probably based on
transient and low-affinity associations with the relevant
binding partners. Thus, it becomes complicated to identify
the direct functional consequences of a specific experimental
“perturbation” (e.g., siRNA of a golgin). Finally, we also hope
for a raising interest in applying the new available technologies
to map transient protein-protein interactions (e.g., BioID,
APEX) (Lam et al., 2015) and to selectively perturb in an
acute manner selected protein-protein interactions (e.g.,
inducible expression of point or deletion mutants or rapid,
controlled degradation of a single protein) to shed light on the
precise structural role of the Golgi matrix proteins and of their
interaction with the cytoskeleton, aiming to a broader
understating of their regulation by dedicated phospho-
proteomic studies.
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In our opinion, answering the several open questions discussed in
this article could not only address the basic issues of why the GC is in
the form of a ribbon and its mitotic partitioning is monitored by a
control mechanism, but also lead to the development of new
therapeutical applications. As an example, drug-based inhibition
of Golgi unlinking could be combined with spindle poisons to
selectively induce mitotic catastrophe and death of cancer cells
(Serrano-Del Valle et al., 2021). Conversely, cancer cells with a
constitutively unliked GC could have an overactivated Aurora-A,
thus being more sensitive to DNA damaging agents (Ma and Poon,
2020). These are unexplored possibilities that we think could lead to
the development of novel strategies for cancer treatment.
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