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Progress in detection and treatment have drastically improved survival for early breast cancer
patients. However, distant recurrence causes high mortality and is typically considered
incurable. Cancer dissemination occurs via circulating tumor cells (CTCs) and up to 75% of
breast cancer patients could harbor micrometastatses at time of diagnosis, while metastatic
recurrence often occurs years to decades after treatment. During clinical latency, disseminated
tumor cells (DTCs) can enter a state of cell cycle arrest or dormancy at distant sites, and are likely
shielded from immune detection and treatment. While this is a challenge, it can also be seen as
an outstanding opportunity to target dormant DTCs on time, before their transformation into
lethal macrometastatic lesions. Here, we review and discuss progress made in our
understanding of DTC and dormancy biology in breast cancer. Strides in our mechanistic
insights of these features has led to the identification of possible targeting strategies, yet, their
integration into clinical trial design is still uncertain. Incorporatingminimally invasive liquid biopsies
and rationally designed adjuvant therapies, targeting both proliferating and dormant tumor cells,
may help to address current challenges and improve precision cancer care.
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1 CLINICAL BACKGROUND

1.1 Breast Cancer Recurrence and Limitations of Adjuvant Systemic
Therapy
Breast cancer is the most common non-cutaneous cancer in women worldwide (Ferlay et al., 2021). As a
major achievement of surveillance efforts, most breast cancer cases (up to 93%) are initially diagnosed as
localized or regionally advanced, potentially curable disease [Union for International Cancer Control
(UICC) stage 1–3] (Noone et al., 2017). Surgery of the primary tumor (whenever possible) is themainstay
in therapy, frequently combined with neoadjuvant systemic therapy (i.e., before surgery) to reduce tumor
burden, increase chances for complete resection and ideally achieve a complete eradication or pathologic
complete response (pCR) (i.e., no detectable tumor at the time of surgery). The concept of pCR was
endorsed by clinicians and major medical regulatory bodies as a surrogate for long term outcome of
patients. However, a recent major meta-analysis including over 50 trials found no correlation between
pCR and long-term outcome in breast cancer patients (Conforti et al., 2021).

The dearth of local response to predict outcome may be attributed to findings in preclinical
models and patients that distant metastasis could occur in the early stages (Hüsemann et al., 2008a;
Hosseini et al., 2016), with up to 75% of breast cancer patients harboring micrometastases at the time
of diagnosis (Friberg and Nyström, 2015; Hu et al., 2019). Consequently, systemic adjuvant therapy
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(i.e., post-surgery) is aimed at eliminating residual or
disseminated tumor cells (DTCs). Despite a reduction in
mortality with the advent of adjuvant therapy, up to 41% of
patients present with distant recurrence (i.e., metastatic breast
cancer) up to 32 years after initial diagnosis and standard of care
treatments (Tevaarwerk et al., 2013; Pedersen et al., 2022). While
hormone receptor (HR)-positive disease can recur after decades,
triple negative breast cancer (TNBC) patients surviving 5–8 years
after surgery rarely relapse (Kennecke et al., 2010; Jatoi et al.,
2011; Early Breast Cancer Trialists’ Collaborative Group, 2005)
for reasons that are poorly understood.

Metastatic breast cancer remains largely incurable (Caswell-
Jin et al., 2018), with strikingly lower 5-year survival in metastatic
compared to non-metastatic patients (28% vs. 99%, respectively)
(Noone et al., 2017), rendering metastasis the leading cause of
breast cancer-related deaths in women (Gupta and Massagué,
2006). Shortcomings to achieve curative results may be attributed
to several limitations of current clinical management strategies: 1)
clonal composition and biology of disseminated cells and
micrometastatic disease differs from larger tumor lesions. 2)
DTCs enter a (initially indolent) state of dormancy that
protects them from detection and eradication (Phan and
Croucher, 2020), but eventually fuel distant relapse. 3) Current
diagnostic tools (e.g., imaging, tumor biopsies) and systemic
therapies are not designed to detect and target dormant disease.

In this review, we will discuss standard of care adjuvant
treatment strategies and the use of biomarkers for more
accurate patient stratification, including their limitations. The
(re-) emerging concept and biology of cancer dormancy as a
major impediment for long-lasting or definitive cure will be
reviewed, with special emphasis on the role of circulating
tumor cells (CTCs) in spreading dormant, yet lethal cancer.
We will discuss novel approaches for the diagnosis and
targeting of dormant cancer based on state-of-the-art
knowledge and highlight future challenges and priorities.

1.2 Adjuvant Chemotherapy in Breast
Cancer
Following a diagnosis of early stage breast cancer, the most
immediate challenge is defining prognosis and an appropriate
adjuvant systemic therapy regimen targeted at DTCs to achieve
lasting cure. The beginnings of systemic chemotherapy and the
idea of curing cancer can be traced back to the field of haemato-
oncology and the revolutionary concept of combining several
drugs in the form of polychemotherapy (Greenspan et al., 1963;
DeVita and Chu, 2008). Adoption of Skippers ‘‘Cell Kill’’
hypothesis, which postulates that a given dose of drug kills a
constant fraction of tumor cells rather than a constant number
(Skipper et al., 1964), led to more aggressive use of chemotherapy
and suggested that drugs effective against advanced (high-
burden) disease might work equally or better in the adjuvant
situation to eradicate micrometastases (Schabel, 1975). Adjuvant
chemotherapy has evolved through various “generations” to
achieve ever higher efficacy (Goldvaser et al., 2018). First
generation regimens included treatment with CMF
(cyclophosphamide, methotrexate and 5-fluorouracil), or

anthracycline-based chemotherapy. The second generation
introduced a higher number of cycles, higher doses of
anthracyclines, the addition of paclitaxel to anthracyclines, and
dose-dense regimens (Citron et al., 2003). Third generation
treatments further escalated anthracycline and taxane-
treatments, either concurrently or in sequence (Goldvaser
et al., 2018). In early HR-negative cancer, cumulative
improvement in 5-year disease-free survival (DFS) and overall
survival (OS) ranged from 2.5% to 7.4% across different
generations, while patients at high risk for relapse (tumors
>2 cm, nodal involvement) and patients with HR-positive
disease derived no (or smaller magnitude) in benefit
(Goldvaser et al., 2018).

Provocatively stated, success of adjuvant chemotherapy over
roughly 40 years came primarily through a strategy of treatment
escalations. While successful in extending survival, this strategy
potentially hampered further investigation of the underlying
biology of micrometastatic disease, and a definitive cure for
breast cancer patients requiring chemotherapy remains elusive.

The euphoria about the success of chemotherapy arguably also
led to overtreatment of women either not in need of or not
deriving benefit from adjuvant chemotherapy (Pak and Morrow,
2022; Ragusi et al., 2022). This is regrettable since toxicity is a
major concern of past and current adjuvant strategies. Short-term
toxicities (e.g., anemia, nausea, cytopenia and hepatotoxicity) can
be threatening and therapy-limiting but are usually temporary
and manageable. Long-term toxicities, including secondary
cancers, heart failure, neurotoxicity, cognitive impairment and
infertility, on the other hand, often last far beyond the treatment
period with substantial impact on the quality of life of patients
treated with curative intent (Burstein, 2020).

Consequently, the necessity of aggressive adjuvant therapy has
been challenged (Kushner, 1984), due to increasingly only
marginal benefit that requires treatment of large numbers of
patients to derive relatively small improvements in outcome and
limited to subgroups of patients (Goldvaser et al., 2018; Early
Breast Cancer Trialists’ Collaborative, 1988), while causing
considerable toxicity and financial burden (Burstein, 2020).

1.3 Adjuvant Drug Design—A Flawed
Paradigm
Most standard of care and novel targeted cancer therapies,
including immunotherapy, were developed based on
preclinical studies measuring primary tumor shrinkage as the
main indicator of efficacy (Anderson et al., 2019). Subsequent
clinical studies in the palliative setting predominantly use
RECIST (Response Evaluation Criteria In Solid Tumors)
criteria, representing a set of published rules for tumor
response that intentionally do not take into account clinical
improvement or long-term outcome and relapse (Eisenhauer
et al., 2009). Drugs for adjuvant treatment are usually
“reutilized” after successful results in metastatic disease (often
based on surrogate markers instead of overall survival, see below).
In routine clinical practice and outside of clinical trials, these
drugs are administered largely based on primary tumor biopsies
in non-metastatic breast cancer. The limited success of this
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predominant treatment paradigm in the adjuvant-curative setting
is well known and has recently been illuminated in a study by
Parsons et al. (2020), which found that of 14 drugs recommended
and used in the metastatic setting, only one (gefitinib in non-
small cell lung cancer) was found to yield survival benefit for
early-stage cancers.

The remarkable success of cyclin dependent kinase 4 and 6
inhibitors (CDK4/6i) in metastatic breast cancer (Goetz et al.,
2017; Sledge et al., 2017) was put to the test in large prospective
phase 3 trials in the adjuvant setting in early high-risk ER-
positive/human epidermal growth factor receptor 2 (ERBB2/
HER2)-negative disease, yielding contradictory results: while
the monarchE trial reported a significant improvement of
invasive disease free survival (IDFS) (Johnston et al., 2020),
both the PALLAS and PENELOPE-B trial did not confirm
these findings, showing no benefit (Loibl et al., 2021; Gnant
et al., 2022). The tyrosine-kinase inhibitor lapatinib, which
resulted in superior outcomes when added to cytotoxic
chemotherapy in HER2-positive metastatic breast cancer
(Geyer et al., 2006), did not improve outcomes when added to
cytotoxic chemotherapy in the adjuvant setting (Piccart-Gebhart
et al., 2016).

Further examples abound beyond breast cancer. In colorectal
cancer, both irinotecan (a topoisomerase inhibitor) and
bevacizumab (an anti-VEGF-A-antibody) have been
successfully applied in the metastatic setting yet failed to show
any significant benefits in the adjuvant setting in controlled
randomized trials (Papadimitriou et al., 2011; Kerr et al.,
2016). The anti-epidermal growth factor receptor (EGFR)
monoclonal antibody cetuximab showed no benefit over
placebo in the adjuvant setting (Alberts et al., 2012). In non-
small cell lung cancer, targeted therapies with erlotinib and
bevacizumab showed no efficacy in the treatment of early-
stage disease (Kelly et al., 2015; Wakelee et al., 2017).

Currently, only 34.8% of drugs used in the metastatic setting
are endorsed for adjuvant treatment for breast cancer, colorectal
cancer or non-small cell lung cancer (Parsons et al., 2020).
Partially explained by more rigorous criteria for drug approval
and registration in early-stage disease, the observed lack in
efficacy argues against a simple correlation and indicates
fundamental difference in the biology of micrometastatic vs.
macrometastatic disease, with the former not adequately
targeted by reutilized drug application.

1.4 Unfavorable Effects of Anticancer
Therapy
Beyond lack of efficacy, patient data and experimental models
revealed that cytotoxic chemotherapy also has paradoxical effects
on tumor relapse, promoting metastasis by enhancing vascular
permeability and activation of inflammatory pathways,
facilitating intra- and extravasation of cancer cells and
promoting tumor dormancy (D’Alterio et al., 2020; Shiozawa
et al., 2011; Brugger et al., 1994; Kurppa et al., 2020). A series of
preclinical studies indicated that antiangiogenic therapies (e.g.,
targeting VEGFR) can enhance metastasis, potentially by the
induction of hypoxic conditions (Ebos et al., 2009; Pàez-Ribes

et al., 2009). Targeted therapies such as the BRAF inhibitor
vemurafenib promote metastasis via AKT signaling (Obenauf
et al., 2015). Low-dose cyclophosphamide has been shown to
increase metastasis in lung adenocarcinoma or fibrosarcoma
models (Man et al., 2008; Yamauchi et al., 2008). The same
drug contributes to microenvironmental changes conducive to
tumor cell survival, for example, by promoting the influx of pro-
tumorigenic endothelial and monocyte progenitor cells (Hughes
et al., 2015). Paclitaxel structurally resembles a pattern recognized
by toll-like receptor-4 (TLR4) and can activate proinflammatory
pathways (e.g., via macrophage activation) (Byrd-Leifer et al.,
2001; Volk-Draper et al., 2014). Both cyclophosphamide and
paclitaxel induce cancer cell dissemination via stress-response
and Activating Transcription Factor 3 (ATF3) signaling (Chang
et al., 2017). Chemotherapy can evict physiological cells from
their niches and promotes tumor microenvironment (TME)-
mediated cytokine release to recruit mesenchymal stem cells
and establish a pre-metastatic niche as a sanctuary for DTCs
(D’Alterio et al., 2020; Balkwill, 2004; Kaplan et al., 2006).
Enhanced epithelial-mesenchymal plasticity via the microRNA
(miR-21)/CDK5 axis and invadopodia formation in cancer cells
triggered by chemotherapeutic drugs has been demonstrated in
mouse models of breast cancer (Quintavalle et al., 2011; Ren et al.,
2015). Direct evidence for pro-metastatic effects in humans and
clinical scenarios is scarce and challenging to demonstrate
conclusively. Nevertheless, indirect yet provocative data exists
suggesting, for example, that patients receiving
cyclophosphamide, taxanes, epirubicine, 5-fluoroacil exhibit
suppressed expression levels of miR-488, an inhibitor of
epithelial to mesenchymal transition (EMT) (Li et al., 2011)
and that CTC numbers as a surrogate for metastatic spread
increase post chemotherapy (Brugger et al., 1994). Together,
these results highlight the need for a careful examination of
risks versus benefits for standard cancer treatments as well as
the need to identify the suitable response biomarkers.

1.5 Predictive Biomarker and Target
Strategies in Breast Cancer
Significant efforts have been made to design rational systemic
therapies to maximize efficacy and minimize side effects. The
standardized assessment of estrogen receptor (ER)- (75% of
breast cancer patients) and HER2-expression (25% of breast
cancer patients) as predictive biomarkers enabled targeted
therapy tailored to molecular breast cancer subtypes (Allison
et al., 2020). Adjuvant antihormonal therapy in ER-positive
breast cancer up to 10 years yielded profound survival benefits
(Davies et al., 2013), but relapse, including beyond 10 years, still
occurs in up to 17% of patients (Pedersen et al., 2022).
Multiparametric gene expression profiles [e.g., MammaPrint,
Oncotype DX, Endopredict, and Prosigna (PAM50)] have
been designed with considerable success to further stratify
early-stage HR-positive patients (i.e., ER-positive or
progesterone receptor/PR) according to relapse risk (Kwa
et al., 2017). Both Oncotype DX (Sparano et al., 2018;
Kalinsky et al., 2021) and MammaPrint (Piccart et al., 2021)
have been validated in prospective trials, confirming their
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predictive power for a subset of (high risk) breast cancer patients
regarding duration of adjuvant anti-hormonal therapy or benefit
of additional chemotherapy. On the downside, Oncotype DX was
not predictive of benefit from chemotherapy escalation in HR-
positive high-risk patients (Mamounas et al., 2018). The
OPTIMA trial will prospectively further validate gene-
expression-directed chemotherapy decision in high-risk
patients (ISRCTN42400492). Two noteworthy biomarkers are
uPA (urokinase-type plasminogen activator) and PAI-1
(plasminogen activator inhibitor-1), which showed promising
results regarding prognostic and predictive validity for adjuvant
chemotherapy in lymph node-negative HR-positive early breast
cancer but are not widely used in the clinic (Harbeck et al., 2013).

Anti-HER2 targeted antibodies (e.g., trastuzumab,
pertuzumab), concurrently or sequentially added to
chemotherapy, substantially decreased recurrence in early-stage
HER2-positive patients (Romond et al., 2005; Joensuu et al.,
2006). This success led to further trials with the addition of
kinase inhibitors but yielded disappointing results (Piccart-
Gebhart et al., 2016; von Minckwitz et al., 2017; Chan et al.,
2016). Remarkably, one such kinase inhibitor (neratinib) received
Food and Drug Administration (FDA) approval despite its
underwhelming efficacy, but also raised questions about the
need for further, more accurate patient stratification
(Lambertini et al., 2017; Miller, 2017), for example, using
activating HER2-mutations in patients with normal or slightly
elevated expression levels (Yi et al., 2020).

In the setting of immunotherapy programmed cell death protein
1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1), tumor
mutational burden (TMB) and tumor-infiltrating lymphocytes
(TILs) are dependable (though not ideal) biomarkers in various
tumor entities to predict the success of immune checkpoint
inhibition, but potential value in breast cancer is so far limited to
early TNBC and data are still regarded as immature (Teng et al.,
2015; Goodman et al., 2017).

Very recently, germline mutational status of the DNA-repair
genes breast cancer 1 and 2 (gBRCA1/2) has been shown to be
predictive of response to the poly(ADP-ribose)-polymerase 1
(PARP1)-inhibitor olaparib in early-stage HER2-negative breast
cancer patients (Tutt et al., 2021). Several additional predictive
biomarkers have been clinically validated in the metastatic setting,
such as estrogen receptor 1 (ESR1) mutational status predicting
endocrine resistance (Turner et al., 2020a), phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (André
et al., 2019) or neurotrophic receptor tyrosine kinase (NTRK)
fusions (Hong et al., 2020), but have (so far) no application in
the adjuvant setting.

Stratifying patients to predict efficacy of non-targeted
chemotherapy proved even more difficult. Mathematical
modeling (Norton-Simmons hypothesis) has been applied to
identify more effective and less toxic treatment regimens
(Simon and Norton, 2006). The CREATE-X trial
demonstrated that breast cancer-subtype (TNBC) can predict
benefit from escalated adjuvant chemotherapy (Masuda et al.,
2017).

Besides the need for adequate mechanistical and clinical
studies for predictive biomarker development and application,

their use in clinical practice can be limited due to discrepancies
between medical associations [e.g., European Society for Medical
Oncology (ESMO) and National Comprehensive Cancer
Network (NCCN)] (Zagouri et al., 2015), resulting in
differences regarding approval by regulatory bodies [i.e., FDA
and European Medicines Agency (EMA)].

2 MICROMETASTATIC DISEASE AND
DORMANCY IN BREAST CANCER

The discrepancy in efficacy comparing the success of current
systemic therapies in reducing overt tumor burden on one hand
and preventing relapse on the other maybe akin to a numbers
game. Primary tumors and macrometastatic lesions consist of
billions of polyclonal, often highly proliferative cells, dramatically
increasing the likelihood of drugs to “find” fractions of sensitive
cells. Eventually though, resistant clones will be selected, limiting
efficacy (Aceto et al., 2014). Micrometastasis, on the other hand,
represents rare DTCs in the form of single cells or oligoclonal cell
clusters that survive dissemination and homing and likely possess
protective biological properties, including the capacity to enter
dormancy. Hence, consideration of the molecular characteristics
of dormant DTCs represents an outstanding opportunity to
improve the clinical management of early breast cancer (Braun
et al., 2000).

2.1 Of Circulating and Disseminated Tumor
Cells
Breast cancer cells that leave the primary tumor via the proximal
circulation are tumor-derived pioneers of the metastatic process
(Figure 1). Shedding of these circulating tumor cells (CTCs)
occurs as single cells or homotypic and heterotypic CTC clusters
(Aceto et al., 2014; Szczerba et al., 2019). Heterotypic CTC
clusters are formed with several cell types, including white
blood cell. Utilizing patient samples and models, it has been
shown that clusters of CTCs occur in early and late stages of
breast cancer, which possess superior capabilities to survive in
circulation and in seeding metastatic lesions (Aceto et al., 2014;
Gkountela et al., 2019; Donato et al., 2020; Krol et al., 2021). The
successful propagation of CTCs involves multiple cell-intrinsic
qualities and extrinsic cues from the tumor microenvironment
(TME) and the immune system (Sznurkowska and Aceto, 2021).
Eventually, CTCs and their clusters extravasate from circulation
and spread to organs such as the bone marrow (BM), where they
are referred to as DTCs. Intriguingly, not only CTCs but also
DTCs may occur as clusters in breast cancer patients (Woelfle
et al., 2005).

CTCs and DTCs share similarities in phenotypic plasticity and
adaptability, which appear to be a hallmark of metastasis-
competent cells (Yuan et al., 2019). Using mouse models and
breast cancer patients, it has been shown that hypoxic CTC
clusters have higher metastatic potential, while other
preclinical studies showed that hypoxia can induce a dormant
state in cancer (Fluegen et al., 2017; Donato et al., 2020), and that
those hypoxic cells drive recurrence (Harada et al., 2012). It is
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FIGURE 1 | Dissemination of CTCs and tumor dormancy. Breast cancer cells are shed in the proximal circulation where they are referred to as CTCs. Single CTCs
or clusters of CTCs can disseminate and home to distant organs sites, where they are referred to as DTCs. DTCs are found predominantly in the bone marrow, but also
lung, liver and the brain. While cellular dormancy typically refers to single DTCs or clusters of DTCs, dormancy of micrometastases also occurs, and these are
characterized by a transient cell cycle arrest or an equilibrium of proliferation/apoptosis, respectively. DTCs can reawaken, eventually giving rise to macrometastatic
lesions. CTCs, circulating tumor cells; DTCs, disseminated tumor cells. Adapted from “Overview of Metastatic Cascade,” by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.

FIGURE 2 | CTCs vs. DTCs. CTCs and DTCs are characterized by both unique and shared characteristics. Aspects that are unknown at this point are marked by
“?” T1/2 = half-life. BM, bone marrow; CTCs, circulating tumor cells; DTCs, disseminated tumor cells. Created with https://biorender.com.
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intriguing to speculate that the propensity for dormancy is
present as a cancer cell-intrinsic property and propagated via
CTCs to distant sites. Supporting this notion are findings of
dormant CTCs in the circulation of breast cancer patients
(Spiliotaki et al., 2014; Vishnoi et al., 2015). Further
similarities between CTCs and DTCs point towards an
intricate connection of both cell types as part of the
continuum of cancer metastasis: 1) both are rare cell
populations and 2) their detection in blood or BM,
respectively, is associated with an unfavorable prognosis. 3)
not all CTCs or DTCs form metastasis but 4) have been
associated with drug resistance (Figure 2). CTCs and DTCs
are exceedingly rare in the blood stream [one CTC per
milliliter blood (Paterlini-Brechot and Benali, 2007; Alix-
Panabières and Pantel, 2014)] or BM (solitary DTCs or DTC
clusters composed of 10–20 individual DTCs) of patients
(Riethdorf and Pantel, 2008; Risson et al., 2020). The detection
of these rare cell populations among oodles of other cells
resembles the proverbial search for the needle in the hay
(Riethdorf and Pantel, 2008; Risson et al., 2020), rendering
methods to detect and isolate CTCs (Ramos-Medina et al.,
2021) and DTCs challenging, yet highly sought after
(Effenberger et al., 2011; Park, 2011).

Both CTCs and DTCs can be detected in a fraction of breast
cancer patients when considering limiting sampling
opportunities (e.g., few milliliters of peripheral blood),
highlighting their importance in the metastatic process.
Despite their relatively small numbers, CTCs and DTCs are
prognostic for progression free survival and overall survival in
breast cancer, largely independent of other factors as well as one
another (Cristofanilli et al., 2004; Braun et al., 2005). The
prognostic impact likely relates to their capability to mediate
metastasis, although not all patients positive for CTCs and/or
DTCs eventually present with overt metastasis (Wiedswang et al.,
2006; Klein, 2009; Baccelli et al., 2013). CTCs and DTCs may also
participate in primary tumor relapse and tumor self-seeding has
been described (Kim et al., 2009). The identity of metastasis-
competent subpopulations is not fully resolved and subject of
intense research effort. While adjuvant therapy in principle is
intended to eradicate CTCs and DTCs, metastatic relapse is
common and hence, targeting strategies are so far
incompletely realized (Naumov et al., 2003; Pavese and
Bergan, 2014). While approaches to target DTCs will be
examined in more detail below, a comprehensive evaluation of
CTC targeting strategies is beyond the focus of this review.
Worthwhile mentioning here is the exciting finding that
pharmacological dissociation of CTC clusters can mitigate
metastasis in mouse models (Gkountela et al., 2019), which is
currently being validated in an early phase 1 clinical trial
(NCT03928210).

It is important to mention that CTCs and DTCs are also
characterized by relevant differences, including 1) localization
and accessibility, 2) half-life, 3) frequency of detection and 4)
cellular composition (Figure 2). CTCs are found in the blood
stream, while DTCs lodge in various organs beyond BM (e.g.,
lymph nodes, lung, liver or brain) as demonstrated in preclinical
(models) (Pantel and Brakenhoff, 2004; Sosa et al., 2011; Correia

et al., 2021; Riggio et al., 2021; Tallón de Lara et al., 2021; Dai
et al., 2022) and patients, including biopsy samples and autopsy
studies (Noltenius and Noltenius, 1985; Kubuschok et al., 1999;
Schimanski et al., 2003; Conzelmann et al., 2005; Sproll et al.,
2017). The unfavorable conditions in circulation (e.g., shear
stress-mediated effects, anoikis or immune cell aggression)
greatly limit CTCs survival and circulation time (Aceto et al.,
2014; Micalizzi et al., 2017). While DTCs may persist for decades
(Holmgren et al., 1995), little is known about their clearance rate
and their actual half-life, which would provide important insights
into timing of metastatic progression. Differences in localization
and half-life also affect ease or rate of detection. One prospective
trial in breast cancer patients suggested that CTCs were less
frequently detected than DTCs, however, whether this difference
is due to the sensitivity of the detection methods or based on
biological conditions remains unknown (Wiedswang et al., 2006).
CTCs are detected from a liquid biopsy, which can be performed
in aminimally invasive fashion, while DTCs have to be isolated by
invasive means, usually via a BM aspirate (Wiedswang et al.,
2006). Finally, while cell-cell-junctions in CTCs can lead to the
formation of highly metastatic homotypic and heterotypic
clusters observed in patients and in vivo models (Aceto et al.,
2014; Liu et al., 2019; Szczerba et al., 2019; Donato et al., 2020;
Taftaf et al., 2021) little is known about the role of multicellular
aggregates in the DTCs context. Elucidating the composition and
biological features of DTC clusters would likely further our
understanding of breast cancer dormancy, including the
discovery of novel biomarkers and innovative therapeutic
approaches.

2.2 The Fate of Circulating Tumor Cells/
Disseminated Tumor Cells and Clinical
Evidence for Dormancy
Two mechanistic models of cancer cell dissemination have been
proposed, namely the linear (also referred to as late
dissemination) and the parallel progression model (also
referred to as early dissemination) (Klein, 2009). The linear
model relies on the principle of a tumor cell’s capability to
undergo natural selection within the primary tumor,
eventually leading to dissemination of the fittest (dominant)
polyclonal tumor cells that will give rise to metastasis in
distant organs (Kerbel et al., 1990; Klein, 2009). However,
comparative analysis revealed in some cases genetic
discrepancies between DTCs and primary tumors (Schmidt-
Kittler et al., 2003; Aguirre-Ghiso, 2007). The parallel
progression model postulates that dissemination of tumor cells
occurs at early stages, and occasionally, even before the primary
tumor becomes clinically manifested (Klein, 2009; Hu et al.,
2020). This has been accepted among a portion of the
research community, however, the linear progression model is
not to be excluded. It is conceivable to assume that timing of
dissemination is contingent upon a variety of factors, and that a
spectrum of various situations ranging from early to late exists
when considering large groups of patients. Since the timing of
tumor cell dissemination and features that lead to the outgrowth
of disseminated cells are still not fully elucidated (Hüsemann
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et al., 2008b), the field of dormancy would greatly benefit from
accurate cancer models and additional clinical data.

Following extravasation from the blood stream, CTCs are
incisively subjected to distinctive environments, resulting in
divergent fates with fundamental impact on patient outcomes.
The likely predominant outcome is the killing of large numbers of
tumor cells because of unfavorable conditions (e.g., immune
surveillance), therefore posing limited risk for the patient. On
the opposite end of this spectrum of possible outcomes,
disseminated cells might undergo rapid cell divisions resulting
in life threatening metastatic lesions. As a third possibility, DTCs
might survive their initial transit but subsequently enter a
nonproliferative state termed dormancy, which is the basis of
clinical latency and eventual overt metastatic relapse (Aguirre-
Ghiso, 2007). Dormancy can occur at the cell intrinsic level
(i.e., cellular dormancy) or at the level of micrometastases
(i.e., tumor mass dormancy) (Aguirre-Ghiso, 2007). Cellular
dormancy is characterized by single, non-proliferating tumor
cells entering temporary and reversible cell cycle arrest, also
known as quiescence (Aguirre-Ghiso, 2007; Riethdorf and
Pantel, 2008; Phan and Croucher, 2020). Key features of
cellular dormancy are resistance against antiproliferative drugs,
escape from immune system-mediated clearance and dynamic
entry and exit from the quiescent state (Phan and Croucher,
2020). In contrast, tumor mass dormancy occurs when cell
proliferation and cell death are kept in balance, usually via
apoptosis, preventing tumor mass expansion (Phan and
Croucher, 2020). This steady-state condition can be driven by
various factors, including a lack of angiogenesis or by immune
system-mediated factors (Aguirre-Ghiso, 2007). Microscopic
tumor cell clusters that are devoid of vasculatures can persist
imperceptibly for month or even years in a clinically disease-free
patient and only give rise to metastasis upon acquiring angiogenic
characteristic promoting neovascularization (Naumov et al., 2006).
Both cellular and tumor mass dormancy can coexist before the
detection of overt (metastasis) (Phan and Croucher, 2020).

Although the concept of dormancy has been called into
question (Uhr and Pantel, 2011), both clinical evidence as well
as experimental and mathematical models support findings that
clinical latency is not simple the result of slowly proliferating
tumor cell. Patients presenting with BM resident DTC
populations that exhibit decreased expression of proliferation
markers [e.g., marker of proliferation Ki-67, proliferating cell
nuclear antigen (PCNA)], as well as the presence of CTCs up to
20+ years after initial treatment without overt tumor lesions
argues for a reservoir of dormant cancer cells that can shed
into circulation (Sauer et al., 2021). Metastatic cancers of unknow
primary and cancer after organ transplant from seemingly
cancer-free donors further argue for the existence of dormant
DTCs (Sauer et al., 2021). The commonly used Gompertzian
function to predict tumor size and growth based on clinical data
analysis presumes an initial exponential growth phase followed
by a decrease in proliferation, without accounting for dormancy,
resulting in discrepancies in expected and actual tumor size
(Page, 2009). Several mathematical concepts have been applied
to further our understanding of driving processes in tumor
dormancy [reviewed in (Page, 2009)].

The exploration of features that cause tumor dormancy have
spawned and dominated an entire research field over the past
years, resulting in a plethora of cues which altogether can be
categorized in cell intrinsic or extrinsic factors that promote
dormancy and allow escape from physiological and therapeutic
elimination strategies of DTCs.

2.3 Dormancy Factors
2.3.1 Cell-Intrinsic Factors
A major driver of dormancy is the balance of mitogen-activated
protein kinase (MAPK) p38 and extracellular signal-regulated
kinase (ERK1/2) activity. While p38 activation results in the
inhibition of cyclin D1 transcription and cell cycle arrest, ERK
activation exerts the opposite effect via the stimulation of cyclin
D1 transcription and cell cycle progression (Lavoie et al., 1996).
Hence, cellular dormancy is typically associated with low levels of
ERK and high levels p38. The G0-G1 cell cycle arrest caused by
the ERKlow/p38high can also be regulated through cyclin D1-
independent mechanisms such as activation of p53, upregulation
of nuclear receptor subfamily two group F member 1 (NR2F1)
and basic helix-loop-helix domain containing, class B3
(BHLHB3) or downregulation of forkhead box M1 (FOXM1)
and jun proto-oncogene (c-Jun) (Adam et al., 2009; Sosa et al.,
2011; Sosa et al., 2015). The Dual Specificity Tyrosine
Phosphorylation Regulated Kinase 1A (DYRK1A) causes
prolongation of the G1 cell cycle phase and cell cycle arrest
in vitro, which also occurs in a cyclin D1-dependent manner
(Chen et al., 2013). Johnson et al. (2016) demonstrated in vivo and
in silico the contribution of leukemic inhibit factor receptor
(LIFR) and signal transducer activator 3 (STAT3) to stimulate
breast cancer dormancy. Loss of LIFR and STAT3/Suppressor Of
Cytokine Signaling 3 (SOCS3) resulted in reactivation of dormant
tumor cells and bone colonization. These findings were
corroborated by an analysis of the The Cancer Genome Atlas
(TCGA), showing that breast cancer patients who had developed
bone metastasis, compared to those not affected by dissemination
to the bone, had significantly reduced gene expression of LIFR
and STAT3 (Johnson et al., 2016). Another retrospective analysis
of breast cancer patient genomic data suggested that other
genomic alterations (e.g., CNAs) are correlated with late
relapse (Rueda et al., 2019). Expression of stem cell-related
transcription factors, including SOX2 and SOX9, enforce
dormancy in breast cancer DTCs in pre-clinical models
(Malladi et al., 2016) and patient-derived xenograft (PDX)
models indicated that stem cell-like characteristics and
epithelial-mesenchymal plasticity contribute to a dormant
phenotype in metastatic tumor cells (Lawson et al., 2015a).
Single-cell RNA sequencing data from pre-clinical models
implicated metabolic-hemostatic changes (i.e., increased
mitochondrial respiration) in successful metastatic seeding
(Davis et al., 2020).

Ultimately, dormancy often results from “funneling”
heterogenous molecular circuits towards the induction of cell
cycle inhibitors, in particular cyclin dependent kinase inhibitors
(CDKN) 1A, CDKN1B or CDKN2A as shown in preclinical
models (Adam et al., 2009; Demaria et al., 2017; Fukushima
et al., 2019).
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2.3.2 Angiogenic Factors, Tumor Microenvironment
and Niches
In multiple organs (e.g., lung, bone, brain or liver) DTCs reside in
the perivascular niche and angiogenic factors have been propelled
to the forefront of investigations into tumor dormancy (Ghajar
et al., 2013; Correia et al., 2021). A methodical investigation of the
BM vasculature in mice by Carlson et al. (2019) using the 4T07
syngeneic TNBC model showed that DTCs located in the
perivascular niche were protected against antiproliferative drug
effects via the dormancy promoting influence of the vascular
endothelium. Additional experiments revealed the role of integrin
isoforms B1 and/or avb3 in inducing a dormant phenotype, and
anti-integrin targeted therapy caused a switch to a chemo-
sensitive phenotype and killing of DTCs (Carlson et al., 2019).
Several other antiangiogenic proteins have been demonstrated to
promote dormancy in preclinical models, for instance
thrombospondin-1 (Ghajar et al., 2013), angiostatin (O’Reilly
et al., 1996), transforming growth factor β (TGF-β) (Ghajar et al.,
2013) and phosphoinositide 3-kinase (PI3K) (Shor et al., 2022).
Hypoxia has been shown to be a potent inducer of tumor
dormancy, for example, via the upregulation of the
transcription factor NR2F1 and of the dormancy genes
CDKN1B and DEC2 (also known as basic helix-loop-helix
family member E41) in patient-derived and transgenic mouse
models (Fluegen et al., 2017). These findings
notwithstanding, a recent study (in xenograft models and
patients) proffered hypoxic CTC cluster to be characterized
by higher metastatic potential compared to normoxic clusters
(Donato et al., 2020), demonstrating the need for a more
granular understanding of the role of hypoxia in dormancy
and metastasis.

The TME has been shown to be crucial for tumor dormancy
initiation and maintenance in breast cancer cells (Bakhshandeh
et al., 2022) via paracrine/niche-related signaling [e.g., bone
morphogenetic protein (BMP) 4 and 7 (Kobayashi et al., 2011;
Gao et al., 2012), TGF-β2 (Bragado et al., 2013) and type 3
collagen (Di Martino et al., 2022)] that can maintain cancer cell
dormancy in experimental models. In the BM as the most studied
sanctuary for DTCs, three supporting niches have been described.
Beside the above-described perivascular niche, attention has
recently been brought to the endosteal niche (also referred to
as osteoblastic niche) (Lawson et al., 2015b; Croucher et al., 2016).
On the endosteal surface, disseminated breast cancer are
protected from the effects of antiproliferative drugs via
dormancy induction by bone-forming cells, or osteoblasts.
Conversely, a remodeling of the osteogenic niche by bone-
degrading cells, or osteoclasts, causes cell cycle reentry of
DTCs and the formation of macrometastases in mice via
osteoclast-mediated transfer of calcium from bone to DTCs
and activation of calcium-associated signaling (Lawson et al.,
2015b;Wang et al., 2018). Survival of DTCs lodged in the BM also
seems dependent on counteracting tumor Necrosis Factor
Related Apoptosis Inducing Ligand (TRAIL)-mediated
clearance via SCR signaling and C-X-C Motif Chemokine
Receptor 4 (CXCR4)—C-X-C Motif Chemokine Ligand 12
(CXCL12) signaling by co-opting the hematopoietic stem cell
niche (Zhang et al., 2009).

Other organs can harbor dormant breast cancer DTCs but
have been less well characterized. Notable exceptions are
recent findings that hepatic stellate cells can counter
natural killer cell (NK) cell-mediated cancer dormancy in
syngeneic breast cancer mouse models (Correia et al., 2021)
and that astrocyte-deposited laminin-211 drives quiescence
of DTCs homing to the brain of TNBC mouse models (Dai
et al., 2022).

2.3.3 Immune System-Mediated Dormancy
Immune system-mediated therapy resistance of tumor cells is
of paramount importance in the cancer dormancy field (Teng
et al., 2008). An elegant explanation for immune evasion of
micrometastatic tumors was offered by the “3 Es” of the so-
called immunoediting concept described by Dunn et al.
(2002) (Teng et al., 2008). Failure of the immune system
to kill aberrant cells (during the Elimination phase) results in
an Equilibrium state, or dormant state, during which
proliferation and tumor-suppressive immune response are
in a steady-state condition (Vesely et al., 2011). During this
phase, cancer cells acquire mutations that lead to a
competitive advantage. Escape, which ultimately leads to
an increased proliferation and unchecked tumor growth,
leads to the formation of macrometastases (Vesely et al.,
2011). Whether and how this concept relates to quiescent
cancer cells remains to be explored. DTCs and
micrometastases downregulate or entirely lose major
histocompatibility complex I (MHC I) expression, thereby
evading clearance by the adaptive [i.e., cluster of
differentiation (CD) 4+ and CD8+ positive T cells] and
innate (e.g., NK cells) immune system. This was explored
in a clinical trial collecting BM aspirates from breast cancer
and other cancer entities, demonstrating the most
pronounced reduction of MHC I expression in breast
cancer (Pantel et al., 1991). Accordingly, loss of MHC I
correlates with worse prognosis in TNBC as shown by
proteomic profiling of the human disease in primary
tumors (Pedersen et al., 2017). CD4+ and CD8+ further
control dormant tumor cells through secretion of
interferon γ as demonstrated in mouse models (Koebel
et al., 2007). DTCs can escape NK cell-mediated
elimination through the expression of the wingless-related
integration site (WNT) antagonist dickkopf WNT signaling
pathway inhibitor 1 (DKK1), as demonstrated in lung
adenocarcinoma and HER2-positive breast cancer mouse
models (Malladi et al., 2016). Cytoskeletal changes, such as
the accumulation of filamentous actin (F-actin) at immune
synapses between tumor and immune cells, and autophagy of
granzyme B have been linked to increased resistance to NK
cell lysis as indicated in in vitro and in vivo experiments
(Baginska et al., 2013; Al Absi et al., 2018).

Although significant strides have been made towards the
identification of key players in dormancy, this knowledge has
yet to be translated into improved clinical management and
outcomes in cancer patients. Currently, no reliable diagnostic
or targeted therapeutic tools exist to selectively tackle cancer
dormancy and its lethal outgrowths.
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3 OPPORTUNITIES AHEAD

3.1 Limitations of Current Medical Imaging
and Biopsy Approaches
Imaging is a mainstay in breast cancer surveillance and diagnosis
and mammography is the most widely used imaging modality for
initial diagnosis.While considered highly accurate with high positive
(89%) and negative predictive values (91%), mammograms have
been regarded extremely controversially due to high risk of false
positive results and overdiagnosis, with estimates ranging from 1 in 3
(Bleyer and Welch, 2012) to more recently 1 in 7 overdiagnosis
(Ryser et al., 2022), leading to overtreatment and potential harm that
outweighs benefit (Pak andMorrow, 2022; Ragusi et al., 2022). These
results notwithstanding, a recent study estimated that detecting 50%
of distantly spread breast cancer (i.e., late-stage) cases in a local or
regional (i.e., early) stage would lead to a reduction in cancer-specific
mortality of 21% over a 10-year period (Yu et al., 2022). Hence, early
detection, including dormantmacrometastatic disease, is paramount
to improve outcomes. Micrometastasis or single DTCs are far too
small for the detection limit of current imaging modalities.
Furthermore, medical imaging does not have the capability to
determine molecular or predictive features. Novel developments
(e.g., radiomics applying data-characterization algorithms tomedical
imaging data, or photoacoustic imaging) (Fotopoulou et al., 2021;
Lin and Wang, 2022) are being investigated, but these technologies
likely will not be evenly distributed and implemented or validated for
widespread use in clinical trial designs anytime soon (Weissleder
et al., 2016).

Tissue samples are the gold standard for deriving predictive
information but have several limitations: 1) sampling bias due to
intra- and intertumoral heterogeneity, 2) inaccessibility, including
multiple metastatic sites in difficult-to-access anatomical locations,
3) impracticality, including medical contraindications and patients’
hesitation to undergo biopsy due to their invasive, painful and at
times risky character. Consequently, one third of patients with
metastatic cancer in prospective clinical trials do not have biopsy
results available (André et al., 2014).

3.2 Improving Diagnosis: The
Clinical-Translational Potential of Liquid
Biopsies
Liquid biopsies are usually performed on blood via peripheral
venipuncture but can be performed on all body fluids. Compared
to tissue biopsies they are minimally invasive, can be collected
frequently and repeatedly, usually have faster turnaround times,
dramatically improve early detection of minimal residual disease
(MRD) or molecular relapse (MR) and potentially represent
cancer heterogeneity more faithfully [comprehensively
reviewed by Ignatiadis et al. (2021)].

In extension, “liquids” may be used for early detecting and
targeting of dormant residual or micrometastatic disease in
patients at high risk of relapse (Barrière et al., 2012; Shaw
et al., 2012; Bettegowda et al., 2014; McDonald et al., 2019;
Thery et al., 2019; Krol et al., 2021), which may prevent early
cancers to evolve into difficult-to-treat macrometastatic tumor

lesions. Though these technologies still need to be benchmarked
against current diagnostics tools to establish their role in clinical
practice (i.e., superiority or complementarity) using adequate
clinical trial design, many promising developments are currently
under way.

3.2.1 Circulating Tumor Cells as Biomarkers in
Disseminated Cancers
CTCs are pioneers of the metastatic process and present in all
stages of breast cancer (Cristofanilli et al., 2004; Xenidis et al.,
2009; Bidard et al., 2010), sometimes many years after removal of
the primary tumor or without overt disease (Meng et al., 2004)
and even at the stage of “pre-malignant” lesions such as DCIS,
where 50% fatalities occur via metastasis (after surgery, without
local recurrence) (Banys et al., 2012; Narod et al., 2015). In breast
cancer patients, the presence of CTCs correlates with the presence
of DTCs (Fehm et al., 2009). It has been shown that the risk of late
recurrence is the same for small and large breast primary tumors
and DTC counts do not correlate with tumor size (Demicheli
et al., 1996; Braun et al., 2005). Taken together, the findings
indicate that cancer cell dissemination via CTCs might occur at
any timepoint (Schmidt-Kittler et al., 2003; Schardt et al., 2005),
and implicates the seeding of dormant micrometastatic lesions.

Cell surface marker or epitope-dependent and -independent
technologies are available for CTC isolation (Descamps et al.,
2022). While the first FDA approved device (CellSearch) is
epitope-dependent (i.e., epithelial cell adhesion molecule
(EpCAM) and cytokeratin expression on CTCs), marker-
independent isolation and enrichment devices have been
recently gaining popularity and acquired CE Mark regulatory
approval for the clinical market in Europe as well as FDA
approval in metastatic breast cancer (i.e., Angle Parsortix)
(Miller et al., 2018). Though not currently implemented in
clinical practice, CTCs are part of the UICC classification of
malignant tumors (TMN) and have demonstrated prognostic
potential in numerous trials (Schochter et al., 2019). Less is
known about the validity of CTCs as predictive biomarkers,
although their potential utility for therapeutic decision making
has been demonstrated, for example, in the PROPHECY trial
using the presence of androgen receptor (AR)-splice variant 7
(V7) in CTCs (mRNA or protein) as an independent predictor of
unfavorable progression-free survival and overall survival with
anti-androgen therapy (Armstrong et al., 2019).

CTCs have an important advantage over other liquid biopsy
analytes because they may represent surviving clones capable to
escape and spread, hence can be considered most relevant to
cancer progression. As intact cells, CTCs contain all components
for multi-omics analyses and are amenable to functional studies
(e.g., culturing, xenograft and avatar models, drug phenotyping).
It was recently demonstrated that simultaneous assessment via
whole exome sequencing (WES) and matched single-cell
transcriptomics as well as drug phenotyping can be achieved
from individually purified breast cancer CTCs from patients and
xenograft models (Szczerba et al., 2019). Capturing tumor
(temporal and spatial) heterogeneity by single cell CTC
profiling (Keller and Pantel, 2019) is feasible and may enable
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the detection of dormancy precursors as well as predictive
biomarker for targeting dormant disease. Early diagnosis of
cancer via CTCs is a matter of debate and under active
investigation with promising results in early-stage breast
cancer, hinting at the possibility to detect small lesions,
potentially including micrometastases and MRD (Barrière
et al., 2012; Thery et al., 2019; Krol et al., 2021).

3.2.2 The Role of Circulating Tumor DNA
Circulating tumor DNA (ctDNA) represents a fraction of the
pool of circulating cell-free DNA and relies on the detection of
tumor-specific genomic or epigenetic aberration compared to the
germline background. When collected appropriately ctDNA
samples are stable, facilitating centralized testing for
multicenter trials and routine clinical use (Hrebien et al., 2016;
Kang et al., 2016).

Several mutation-based detection assays have been
developed and FDA approved (e.g., PI3K in breast cancer,
EGFR in non-small cell lung cancer) that exhibit excellent
specificity (mean 96%) and good sensitivity (up to 80%)
(Sundaresan et al., 2016; André et al., 2019). In fact, EGFR
testing was the first FDA-approved non-invasive blood-based
assay and outperformed tissue biopsies in sensitivity (80% vs.
75%, respectively). Multi-gene panels (i.e., targeted sequencing)
and unbiased approaches (e.g., next generation sequencing-
based approaches such as WES) enable broader detection or
de novo discovery of actionable mutations, single-nucleotide
variants (SNVs), copy number alterations (CNAs), fusions,
insertion or deletions (indels), and tumor mutational burden/
microsatellite instability (TMB/MSI), but usually have lower
sensitivity (Adalsteinsson et al., 2017; Zviran et al., 2020). Two
gene-panels (Guardant360 and F1 Liquid CDx) have been
prospectively validated and received FDA approval as
companion diagnostics in various solid tumors. Non-
mutation-based methods include fragmentomics and
methylation patterns that exploit differences in fragment size,
chromatin structure, epigenetic marks, histone binding and
transcription factor occupancy between healthy tissue and
tumor-derived DNA (Shen et al., 2018; Cristiano et al., 2019).

In breast cancer patients, ctDNA levels can predict for pCR
(Rothé et al., 2019), relapse (>6 months before clinical
detection) (Garcia-Murillas et al., 2015) and MRD
(McDonald et al., 2019) and have been investigated as a
predictive biomarker to guide targeted therapies (Turner
et al., 2020b), immunotherapies and monitoring resistance,
e.g., to known mechanisms such as ESR1 mutations (Schiavon
et al., 2015). Unbiased technologies such as WES do not
require a priori knowledge of genomic alterations and can
uncover novel resistance mechanisms (Murtaza et al., 2013).
Interestingly, genomic analysis of ctDNA can infer
micrometastases signals and cancer dormancy in breast
cancer patients (Shaw et al., 2012; Bettegowda et al., 2014),
potentially guiding therapy to minimize both over- and under-
treatment in early-stage cancers (Olsson et al., 2015). The
possibility to screen for cancer in healthy persons has been
explored but so far lacks clinical evidence (Merker et al., 2018).

3.3 Therapeutic Strategies Targeting
Dormant, Micrometastatic Disease
Dormant tumor cells might play a critical role in therapy failure
and have been described to be drug tolerant, i.e., phenotypically/
transiently able to withstand (adjuvant) systemic therapy rather
than being drug resistant, i.e., genotypically/permanently drug-
resistant as demonstrated in vitro and in vivo (Sharma et al., 2010;
Hangauer et al., 2017). Innovative clinical trials have been
designed exploring specific targeting strategies against DTCs in
breast cancer patients (NCT01545648, NCT03572387,
NCT00248703, NCT03400254, NCT03032406, NCT02478125,
and NCT04841148), yet no eradication strategy has been
implemented into routine clinical care to date.

Three principal strategies have been envisioned to target
residual dormant disease: 1) enforcing dormancy, 2) awaken
dormant cells and target them with antiproliferative strategies
or 3) eradicate dormant cells. A combination of all strategies
might be considered to avoid escape and relapse.

3.3.1 Enforcing Dormancy
The success of prolonged hormone deprivation in ER-positive
breast cancer patients can likely or at least partially be attributed
to preventing the outgrowth of dormant DTCs (Davies et al.,
2013). Similarly, CDK4/6i inhibit cell cycle progression and
induce cell cycle arrest as demonstrated in various clinical
trials (Johnston et al., 2020; Loibl et al., 2021; Gnant et al.,
2022). A pre-clinical study identified a small molecule agonist
(C26) of NR2F1, which induces a potentially selfsustained
dormancy program in cancer cell lines and in vivo models
(Khalil et al., 2022). Reactivation of other dormancy factors,
either autocrine [e.g., p38 MAPK (Aguirre-Ghiso et al., 2003),
DYRK1A (Chen et al., 2013)] or paracrine/niche-related [e.g.,
BMP4 and 7 (Kobayashi et al., 2011; Gao et al., 2012), TGF-β2
(Bragado et al., 2013), type 3 collagen (Di Martino et al., 2022)]
can maintain cancer cell dormancy in experimental models.
Inhibition of integrin signaling can maintain a dormant state
in vitro (Barkan et al., 2008) and several integrin-targeted
antibodies (i.e., intetumumab, abituzumab, and volociximab)
have been developed. Dormancy could further be promoted in
experimental breast cancer models via the inhibition of
lysophosphatidic acid receptor 1 (LPA1), which induces a
p38high/ERKlow state (Marshall et al., 2012). Targeting various
kinases, e.g., proto-oncogene tyrosine-protein kinase Src (Src)
and ERK in vitro (Barkan et al., 2010), or urokinase plasminogen
activator surface receptor (uPAR) in vivo (Aguirre Ghiso, 2002)
can also enforce dormancy.

Homeostasis and metabolism related vulnerabilities of
dormant DTCs offer additional opportunities to target these
sleeper cells. A recent study demonstrated that MitoQ, a
mitochondria-targeted ROS inactivator, can enforce cellular
dormancy and prevent metastatic relapse in mouse models of
breast cancer (Capeloa et al., 2022). This compound already
passed phase 1 studies with acceptable toxicity and is slated
for phase 2 trials. Based on clinical data the anti-diabetes drug
metformin has been shown to reduce Ki-67 expression in breast
cancer (DeCensi et al., 2014). A randomized trial (CCTG MA.32
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phase 3 trial) using adjuvant metformin failed to show overall
benefit regarding relapse and survival as reported at 2021 San
Antonio Breast Cancer Symposium, but a positive signal could be
detected for HER2-positive patients. Since the trial was not
adequately powered for this subgroup, analysis follow-up
investigations are required. As demonstrated in a mouse
model, stress hormones (e.g., cortisol, epinephrine,
norepinephrine, and serotonin) can awaken dormant tumor
cells via the production of the pro-inflammatory proteins
S100 calcium-binding protein A8 (S100A8) and S100A9 by
neutrophils (Perego et al., 2020). This effect could
experimentally be mitigated by beta-blocker treatment.
Inflammation as a trigger to reactivate dormant cancer cells
provided the rational for both the Aspirin after Breast Cancer
(ABC) (NCT02927249) and ADD-ASPIRIN trials
(NCT02804815). The former was recently reported at the
annual American Society for Clinical Oncology (ASCO)
meeting and showed no improvement in disease-free survival
or overall survival for high-risk, early-stage breast cancer with
5 years daily aspirin vs. placebo. Results for the latter are pending.

Disadvantages of the dormancy-maintenance strategy are the
requirement for potentially indefinite treatment (with associated
cost and toxicity), not addressing tumor mass dormancy and
remaining MRD with the risk of escape and relapse.

3.3.2 Awakening Dormant Cells
The rationale behind this strategy is to render non-proliferating
tumor cells susceptible to antiproliferative drugs including agents
already currently used in the adjuvant setting, for example, by
reverting drug-induced dormancy through drug holidays
(Recasens and Munoz, 2019). Drug-tolerant persister cells might
only acquire phenotypic (hence reversible) drug resistance, for
example, be entering a dormant state, instead of genotypic (or
irreversible) resistance, that can be overcome by removing the
selective pressure of drug exposure (Vallette et al., 2019; Mikubo
et al., 2021). Additional strategies include treatment with granulocyte
colony stimulating factor (G-CSF) (Saito et al., 2010) or a small
molecule checkpoint kinase 1 inhibitor GDC-0575 (Di Tullio et al.,
2017) which were successfully used in preclinical studies to drive
dormant cancer cells back into a cycling state. Inhibition of
osteopontin (OPN) in the metastatic niche via anti-OPN
antibodies promotes cell cycle transition and progression of
dormant cells in mice (Boyerinas et al., 2013).

Most of these studies have been performed in hematological
malignancies, based on similarities between hematopoietic
stem cells and dormant leukemic cells. In remains unclear
whether dormant breast cancer DTCs are susceptible to these
strategies and whether these treatments might exhaust the
healthy hematopoietic stem cell compartment. Finally, a major
disadvantage of this strategy could be the awakening of
aggressive or tolerant subclones that regrow metastatic
lesions even in the presence of antiproliferative drugs
(Sharma et al., 2010).

3.3.3 Eradicating Dormant Cells
Inhibition of AMP-activated protein kinase has been shown to
kill dormant breast cancer cells in ER-positive preclinical models

(Hampsch et al., 2020). Interestingly, while individual targeting of
Src or ERK maintains dormancy in vitro (Barkan et al., 2010), a
combinatorial approach using a Src (AZD0530) and the mitogen-
activated protein kinase1/2 (MEK1/2) targeting inhibitor
(AZD6244) eradicates dormant breast cancer cells both
in vitro and in vivo (El Touny et al., 2014). Epigenetic
targeting via inhibition of lysine (K)-specific demethylase 5 by
CPI-455 or targeting autophagy with inhibitors such as
hydroxychloroquine (HCQ), 3-methyladenine or bafilomycin
can kill dormant breast cancer cells in vitro and in vivo
(Vinogradova et al., 2016; Vera-Ramirez et al., 2018).
Zoledronic acid can prevent bone metastasis potentially via
the elimination of DTCs in breast cancer patients (Banys
et al., 2013).

Several preclinical studies and targeted approaches against
dormant DTC have been described in other cancer types such as
CNS tumors (medulloblastoma, glioblastoma), pancreatic ductal
adenocarcinoma, lung and ovarian cancer. Examples include
insulin-like growth factor (IGF) pathway inhibition (pancreas),
antibiotic treatment such as mithramycin and oligomycin
(pancreas and medulloblastoma), and immune targeting [e.g., PD-
L1 chimeric antigen receptor (CAR)-NK cells plus IL-15 superagonist
(N-803), reactivation of INF β] (Recasens and Munoz, 2019).
Although usually referring to a reversible phenotype, dormancy
potentially comprises a spectrum of growth arrest states, including
senescence.Hence, senolytic drug are an area of active investigation in
adjuvant cancer therapy (Carpenter et al., 2021).

While the killing of dormant DTCs could result in the
eradication of MRD, universal applicability or efficacy is not
guaranteed, creating the risk of transformation or persistence of
(potentially more aggressive) subclones.

4 CHALLENGES AND PRIORITIES

Several important questions remain: What is the role of DTC
clusters and what cell types do they associate with?Why do DTCs
home to specific target organs and what are the distributing
factors? What diagnostic tools and biomarkers are best suitable to
detect and target dormant cancer? Can we target dormant disease
in the clinic and detect or ensure successful cancer control? Can
we apply this strategy in the metastatic setting? How can this be
implemented in clinical trial design?

Based on the current literature review presented here, we
believe that to realize the goal of curative cancer care, both
further biological understanding of micrometastatic dormant
disease as well as clinical-translational efforts are needed. Once
macrometastatic disease arises, treatment is very challenging and
rarely curative. Understanding the nature of DTCs and DTC
clusters will likely have a similar fundamental impact as the
dissection of CTCs and CTC cluster biology. Hence, the field of
tumor and cancer cell dormancy would greatly benefit from
advanced models to reliably capture biology and
vulnerabilities. Such knowledge could lead to a paradigm shift
in adjuvant therapy, moving us closer to preventing lethal
metastatic relapse by targeting not only proliferating cells but
also dormant DTCs and micrometastasis.
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To design efficient therapies, adequate predictive biomarkers
are of paramount importance and novel diagnostic tools are
needed. Current personalized clinical decision-making in the
oncology field focuses on molecular profiling of macroscopic
tumors, either primary or metastatic, to identify actionable
targets. These approaches are problematic: firstly, a primary
tumor may be (genotypically and phenotypically) very
different from macrometastatic lesions (e.g., many ER-positive
switch to ER-negative breast cancer in the metastatic setting),
which might be different from DTCs and micrometastasis (e.g.,
proliferating vs. quiescent). Secondly, tissue biopsies can become
extremely challenging when not readily accessible. Thirdly,
sampling bias due to tumor plasticity and heterogeneity is
likely to occur.

We believe that liquid biopsies and in particular CTCs can be
leveraged to improve upon these shortcomings. Because every
organ has access to the circulation, CTCs and ctDNA analysis
may enable, from a theoretical standpoint, the full coverage of
(micro-) metastatic cancer heterogeneity. Major challenges
towards the clinical implementation of CTCs and ctDNA
include the physiological scarcity compared to other blood
components, resulting in ultra-low harvesting yields, short
half-life in circulation [minutes for CTCs (Aceto et al., 2014)
and <2 h for ctDNA (Yu et al., 2013)], occult anatomical tumor
sites, and lack of universal pre-, intra- and post-analytical
standards. Regardless of the CTC capture technology used,
biases are inevitable, such as selecting high-antigen expressing
cells when using a priorimarker profiles or selecting larger CTCs
in the case of size-basedmethods (Castro-Giner and Aceto, 2020).

ctDNA isolation is considered less technically challenging but
cannot offer the same range of biological readouts or functional
studies. Multiple protocols exist for ctDNA isolation that lack
broadly implemented standardization for clinical application and
reliable data on comparability (Leest et al., 2020). The scarcity of
CTCs and ctDNA can results in false negative testing even in
patients with advanced cancers due to low tumor burden,
anatomically occluded sites (e.g., CNS), low proliferation and
apoptosis, poor vascularization and limited detection of
potentially relevant subclones and subclonal mutations (Razavi
et al., 2019; Peneder et al., 2021). Because ctDNA predominantly
originates from dying cells (Diaz and Bardelli, 2014), and not all
mutations are expressed, information about minor resistant sub
clones that could ultimately drive disease progression can be
missed. Other confounding factors include new primary tumors,
clonal hematopoiesis of undetermined significance (CHIP) and
somatic mutation “field defects” that accumulate in healthy tissue
with age (Martincorena et al., 2018; Razavi et al., 2019). Finally,
no head-to-head assessment exists comparing ctDNA and CTCs
utility for detecting and monitoring MRD or dormant disease.

4.1 Clinical Trial Design
After the boon years, recent development shows disappointing
returns from late phase clinical trials using conservative designs:
smaller improvements in outcomes, increased toxicities, negative
findings and longer trial durations due to low event rates (Piccart-
Gebhart et al., 2016; von Minckwitz et al., 2017). In 2021, success
in improved treatment for oncological patients was mostly
represented by surrogate endpoints (DFS), progression-free

FIGURE 3 | Clinical trial design. The schematic proposes the randomization and comparison of standard of care (SOC) approaches (yellow) with liquid biopsies
generally (green) and approaches specifically addressing dormancy (blue). The red color indicates stages in clinical management that trigger further decision making.
MRD, minimal residual disease, including dormant disease; MR, molecular relapse; ctDNA, circulating tumor DNA; CTCs, circulating tumor cells; SOC includes
diagnostic modalities: tissue biopsies, imaging, conventional biomarker; and guideline-conform treatment.
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survival, and sometimes even pathologic complete response).
These measures do not always translate into OS or improved
quality of life and come at a high cost (Piccart, 2013).

We believe that innovative trial design is needed, aimed at
reducing toxicities and cost while improving long-term
survivorship with strong emphasis on predictive biomarker
discovery through translational research, incorporation of
liquid biopsies for non- or minimally invasive, continuous and
dynamic sampling (and potential initiation of “rescue” therapies)
and rational targeting of micrometastatic disease [e.g., c-TRAK-
TN trial for TNBC (NCT03145961)] (Figure 3). Dormancy
makers [e.g., NR2F1 (Borgen et al., 2018)] ought to be
included in trial design and sampling of different
compartment (e.g., BM) should be evaluated. The exploration
and validation of dormancy markers could be achieved in a
relatively short time by investigating patients currently under
standard of care treatment with CDK4/6i or anti-hormonal
therapy. A current trial (NCT02732171) is attempting to screen
breast cancer patients for the presence of BM DTCs and potential
inclusion of positive patients into other dormancy targeting trials
mentioned above. Another trial pursues a somewhat riskier
strategy by mobilizing DTCs from BM using a small molecule
inhibitor of E-selectin and CXCR4 (GMI/1359) in combination
with CTC enrichment (NCT04197999). Trials combining
antiproliferative and dormancy-targeted approaches are also
underway [e.g., combining mammalian target of rapamycin
(mTOR) inhibitors with HCQ] (NCT03032406). Since the
integration of intensive translational research and proper
evaluation of patient eligibility is associated with scientific and
logistical hazards, industry-academia partnerships should aim to
control cost and enable rigorous, translationally oriented analysis.

5 OUTLOOK

Early, minimally invasive detection and subsequent targeting of
DTCs via liquid biopsies can be considered an essential prerequisite
to improve outcomes in breast cancer patients. We and others have
already leveraged knowledge gained through mechanistic
investigations of CTCs and CTC clusters for the design of clinical
trials to specifically target metastasis. We anticipate that the
identification of clinically relevant and therapeutically actionable
biomarkers for dormant micrometastasis prone to relapse will
provide further, highly innovative solutions to an unmet need in

clinical practice, i.e., the identification of the best possible treatment
strategy for patients with dormant cancer cells before the emergence
of aggressive, macrometastatic cancers that are resistant to standard-
of-care treatment. We believe that a multiple-analyte approach
combining the virtues of different liquid biopsies can overcome
current limitations and will provide a powerful tool for future
prognostic and predictive biomarkers, enabling a more complete
representation and targeting of the heterogeneity of DTCs to unlock
the full potential of comprehensive adjuvant cancer care. Adjuvant
therapy not only targeting dividing cells but also dormant DTCs and
their capability to spawn relapse arguably represents our best
opportunity to prevent lethal macrometastasis and improve
outcomes.
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