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Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease

characterized by the gradual destruction of small intrahepatic bile ducts that

eventually leads to liver cirrhosis, failure, and even carcinoma. The treatment

options for PBC are limited, and the main treatment choices are the US Food

and Drug Administration–approved ursodeoxycholic acid and obeticholic acid.

However, many patients fail to respond adequately to these drugs and the

adverse effects frequently lead to low life quality. For patients with end-stage

PBC, liver transplantation remains the only effective treatment. Given their low

immunogenicity, prominent immunomodulation property, differentiation

potential, and tissue maintenance capacity, mesenchymal stem cells (MSCs)

are emerging as new options for treating liver diseases, including PBC.

Accumulating evidence from basic research to clinical studies supports the

positive effects of MSC-based therapy for treating PBC. In this review, we

characterized the underlying roles and mechanisms of MSCs for treating liver

diseases and highlight recent basic and clinical advances in MSC-based therapy

for treating PBC. Finally, the current challenges and perspectives forMSC-based

therapy in clinical application are discussed, which could help accelerate the

application of MSCs in clinical practice, especially for refractory diseases such

as PBC.
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Introduction

Primary biliary cholangitis (PBC), which was previously

termed as primary biliary cirrhosis, is a chronic cholestatic

autoimmune liver disease (Beuers et al., 2015a; Lleo et al.,

2020). The continuous autoimmune stimuli cause selective

destruction of the small and medium intrahepatic bile ducts,

leading to intrahepatic cholestasis that induces ductular

proliferation, which subsequently contributes to cholangiocyte

death, liver fibrosis, cirrhosis, liver failure, and even

hepatocellular carcinoma (Lindor et al., 2009; Carey et al.,

2015; Rodrigues et al., 2018; Lleo et al., 2020). PBC is a

familiar autoimmune-related liver disease with an overall

prevalence of 118.75 cases per million people in the Asia-

Pacific region (Zeng et al., 2019). Middle-aged women are

most affected by PBC, with a female: male ratio of 10:1.6

(Invernizzi et al., 2004; Lleo et al., 2016; Rodrigues et al.,

2018). The hallmarks of PBC diagnosis are the serum

autoimmune antibodies, including anti-mitochondrial

antibodies (AMAs, >95% positive in PBC patients) that target

the pyruvate dehydrogenase complex E2 subunit (PDC-E2), and

anti-nuclear antibodies (ANAs), the 210-kDa glycoprotein of the

nuclear pore complex (anti-gp210), and the nuclear antigen

Sp100 (anti-sp100) (Courvalin et al., 1990; Sternsdorf et al.,

1995; Hu et al., 2014; Rodrigues et al., 2018). Furthermore,

obscure chronic elevation of alkaline phosphatase (ALP)

combined with an AMA titer exceeding 1:40 can also be

diagnosed as PBC (European Association for the Study of the

Liver, 2017).

PBC is a multifactor polygenic disease. Genetic susceptibility

(Selmi et al., 2004), immune tolerance breakdown, epigenetic

modification (Rodrigues et al., 2018), and environmental triggers

(Selmi and Gershwin, 2009) collaborate to contribute to PBC

occurrence and progression (Gulamhusein and Hirschfield,

2020). The core feature of PBC is the systemic autoimmune

response, which causes progressive lymphocytic cholangitis

(Figure 1). The main AMA target PBC-E2 is expressed on the

inner mitochondrial membrane. Following exposure to

FIGURE 1
Systemic autoimmune response in PBC pathogenesis. The main AMA targeting PBC-E2 is expressed on the inner mitochondrial membrane.
When exposed to environmental PDC-E2mimic or modified PDC-E2, multilineage immune responses are triggered to attack the BECs. Plasma cells
then generate disease-specific AMAs to target immunodominant PDC-E2 epitopes on the BECs, causing BEC injury. AE2 is localized on the apical
domain of BECs. BECs with dysfunctional AE2 are susceptible to apoptosis, which further exposes PDC-E2 to circulating AMAs, resulting in
extensive cellular injury. Autoreactivity-suppressing CD4+CD25high Tregs and T follicular regulatory (TFR) cells are downregulated in PBC, accounting
for the disruption of immune tolerance. Proinflammatory effector CD4+ and CD8+ T cells and TFH cells infiltrate the portal tracts, while
Th17 infiltration is also observed in PBC targeting damaged cholangiocytes, which leads to the advanced fibrosis stage of PBC.
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environmental PDC-E2 mimics or modified PDC-E2,

multilineage immune responses are triggered to attack biliary

epithelial cells (BECs) (Yeaman et al., 1988; Gulamhusein and

Hirschfield, 2020). Plasma cells then generate disease-specific

AMAs to target immunodominant PDC-E2 epitopes on the

BECs, causing BEC injury. Localized on the apical domain of

BECs, anion exchanger 2 (AE2) is necessary for maintaining the

biliary HCO3− umbrella and protecting cholangiocytes from

apoptosis (Hohenester et al., 2012; Rodrigues et al., 2018).

BECs with dysfunctional AE2 are susceptible to apoptosis,

which further exposes PDC-E2 to circulating AMAs, resulting

in extensive cellular injury (Gulamhusein and Hirschfield, 2020).

The vital role of the adaptive immune system in PBC

pathogenesis is well recognized. CD4+ and CD8+ T cells and T

follicular helper (TFH) cells are proinflammatory effector T cells

that exhibit antigen-specific infiltration in the portal tracts (Kita

et al., 2002; Shimoda et al., 2008). CD4+CD25high regulatory

T cells (Tregs) and T follicular regulatory cells are

autoreactivity-suppressing cells that are downregulated in

PBC, accounting for the disruption of immune tolerance (Lan

et al., 2006; Zheng et al., 2017). T helper 17 (Th17) cell infiltration

is also observed in PBC, accompanied by increased interleukin

IL-6, IL-17, and transforming growth factor-β1 (TGF-β)
cytokines targeting damaged cholangiocytes, leading PBC to

an advanced fibrosis stage (Rong et al., 2009; Yang et al.,

2014; Gulamhusein and Hirschfield, 2020).

The traditional treatment is mainly based on bile acid drugs,

including ursodeoxycholic acid (UDCA), which alleviates

cholestasis, inflammation, and fibrogenesis (Beuers et al.,

2015b). Guidelines suggest UDCA as the first-line treatment

for patients diagnosed with PBC (Lindor et al., 2019). However,

UDCA is only effective in early-stage patients for delaying PBC

progression; approximately 25%–50% of PBC patients do not

respond to UDCA (Gong et al., 2007; Shah and Kowdley, 2020;

He et al., 2021). The addition of obeticholic acid (OCA) as a

second-line drug is suggested for such patients, but this treatment

is usually terminated due to adverse effects such as pruritus,

which occur in 10% of the patients (Beuers et al., 2015b; Nevens

et al., 2016). Moreover, liver transplantation is the only effective

cure for end-stage PBC, but is limited by the shortage of liver

donors, requirement for lifelong immunosuppression, and

financial considerations (Arsenijevic et al., 2017; Melchor-

Mendoza et al., 2017). Therefore, there is an urgent need to

explore new treatment options. Currently, mesenchymal stem

cell (MSC)–based therapy is emerging as a new alternative

treatment for PBC patients, as MSCs have low

immunogenicity and prominent immunomodulation property,

differentiation potential, and tissue maintenance capacity. In this

review, we characterized the underlying roles and mechanisms of

MSCs in treating liver diseases, and then highlight recent basic

and clinical advances in MSC-based therapy for treating PBC.

Finally, we discussed the current challenges and perspectives for

MSC-based therapy in clinical application, which could help

accelerate the clinical practice of MSC, especially for refractory

diseases such as PBC.

Underlying roles and mechanisms of
mesenchymal stem cells in treating
the liver disease

MSCs are multipotent mesoderm-derived adult stem cells

with a broad distribution of sources and low immunogenicity and

immunomodulatory function (Zhao, 2013; Wang et al., 2019).

They are attractive choices for cell therapy that has been used for

treating hematological diseases, autoimmune diseases, peripheral

nerve injuries, and COVID-19 (Chen et al., 2019b; Yousefi et al.,

2019; Leng et al., 2020; Zoehler et al., 2020; Zhu et al., 2021).

However, the detailed mechanism underlying MSC-based

therapy is not fully understood. Based on current studies,

MSCs contribute to clinical efficacy for the liver disease in the

following ways: hepatocyte differentiation potential and

immunomodulatory function (Figure 2).

In hepatic injury mouse models, MSCs can reconstitute liver

function in vivo by differentiating into hepatocytes (Banas et al.,

2007; Aurich et al., 2009; Xu et al., 2014; Fu et al., 2016).

Furthermore, MSC administration routes can influence their

homing and subsequent differentiation; compared with

intraperitoneal injection, intrahepatic MSC injection develops

more efficient hepatocytes (Chamberlain et al., 2007). However,

accumulating clinical applications indicate that only a small

fraction of MSCs undergo differentiation while still yielding

effective results (Ferrand et al., 2011; Lai et al., 2015; Vizoso

et al., 2019), indicating that MSC-mediated immunomodulation

through the secretion of bioactive factors and contact with

immune cells may confer MSC efficacy (Gao et al., 2016).

MSCs secrete multiple bioactive factors and extracellular

vesicles (EVs), which constitute the MSC secretome and

contribute to immunomodulation, tissue development, cell

differentiation, and hematopoietic support (Lai et al., 2015;

Konala et al., 2016; Yang et al., 2021). Accumulating evidence

indicates that MSCs exert their immunomodulatory function in

the liver through the secretome and direct cell–cell contact with

immune cells such as T cells, B cells, macrophages, natural killer

(NK) cells, dendritic cells (DCs), and Tregs.

Comprising the majority of liver immune cells, macrophages

can be classified as proinflammatory M1 and anti-inflammatory

M2 types (Italiani and Boraschi, 2014; Wen et al., 2021). MSCs

hold the potential for regulating macrophage polarization and

promoting M2 differentiation both in vivo and in vitro. In an

ischemia–reperfusion (IR)–induced liver sterile inflammatory

injury mouse model, MSC infusion reprogrammed

macrophage polarization from the M1 to M2 phenotype by

activating the macrophage Hippo–YAP–β-catenin–NLRP3
pathway, thereby reducing hepatocellular damage (Li et al.,

2019). Kim and Hematti (2009) indicated that macrophages
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can be educated to an anti-inflammatory state (MSC-educated

macrophages, MEM) expressing high IL-10 and IL-6 and low IL-

12 and TNF-α levels in vitro (Kim and Hematti, 2009). Their

group further demonstrated that MEMs express high IL-6 and

are protective in lethal graft-versus-host disease (GVHD) and

radiation injury models (Bouchlaka et al., 2017).

MSCs secrete anti-inflammatory factors to inhibit T-cell

proliferation, including IL-10, IL-6, TGF-β, nitric oxide,

prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO),

hepatocyte growth factor, programmed cell death 1 ligand 1 (PD-

L1), heme oxygenase-1 (HO-1), and galectins. Moreover, MSCs can

secrete MCP-1 to induce Fas-mediated T-cell apoptosis (Akiyama

et al., 2012). Furthermore, IL-10 produced by MSCs hinders naïve

CD4+ T-cell differentiation to proinflammatory Th1 and Th17 cells

by increasing the proportion of CD4+CD25+Foxp3+ Tregs (Luz-

Crawford et al., 2013). MSC-secreted TGF-β promotes Treg

differentiation by activating the Smad2 pathway (Tang et al.,

2015). MSCs can also inhibit B-cell proliferation and their

immunoglobulin (IgG1) and IgM production (Corcione et al.,

2006; Asari et al., 2009; Rosado et al., 2015). In addition, MSCs

can induce CD19+CD24highCD38high and CD23+CD43+ regulatory

B cells (Bregs) in inflammatory bowel disease, producing more IL-10

to promote B-cell immunosuppressive properties (Franquesa et al.,

2015; Chen et al., 2019a).

NK cells are crucial players in innate immunity. MSC-

secreted IDO and PGE2 can strongly inhibit NK cell

proliferation, cytotoxicity, and cytokine production (Spaggiari

et al., 2008; Hu et al., 2019). A study using a liver injury model

demonstrated that MSCs suppress liver NK cell recruitment and

activation (Qu et al., 2015). DCs are pivotal antigen-presenting

cells and MSCs can suppress their activation, maturation, and

migration (Gao et al., 2017). Notably, MSC administration in a

liver injury model promoted the differentiation of CD11c+B220−

DC precursors into regulatory DCs (Zhang et al., 2014).

FIGURE 2
Underlying roles of MSCs in treating liver diseases. MSCs can be isolated from a variety of tissues that constitute MSC systems. MSCs contribute
to clinical efficacy in liver diseases via hepatocyte differentiation potential and immunomodulation function. MSCs can reconstitute liver function in
vivo by differentiating into hepatocytes. Furthermore, MSCs modulate the immune response and attenuate liver disease by increasing autoreactivity,
suppressing Tregs/Bregs and anti-inflammatory M2macrophages, and suppressing CD8+ T, Th1/Th17, NK cell, andDC immune responses. MSC
exosomes also exhibit immunomodulation effects by affecting the immune cell response.
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In recent years, MSC exosomes have been increasingly

viewed as potential therapeutic approaches and exhibit

immunomodulation effects. For example, MSC exosomes

inhibited T- and B-cell proliferation and decreased B-cell IgM

production (Khare et al., 2018). TNF-α treatment stimulated

increased exosome secretion by gingival tissue–derived MSCs

and enhanced the exosomal CD73 expression, thereby

promoting anti-inflammatory M2 macrophage polarization

(Nakao et al., 2021). Moreover, MSCs released small EVs

(sEVs) in vivo that targeted M2 macrophages and increased

TGF-β levels, subsequently alleviating severe spinal cord

injury in a rodent model (Nakazaki et al., 2021).

MSCs exert multi-faceted immunomodulatory effects by

secreting biofactors and interacting with immune cells.

However, the effects may vary in specific diseases and depend

on their received types of inflammatory signals.

Therapeutic potential and
mechanism of mesenchymal stem
cells in treating primary biliary
cholangitis

Basic research onmesenchymal stem cells
for treating primary biliary cholangitis

In 2011, Wang et al. (2011) constructed a mouse model using

polyinosinic–polycytidylic acid sodium (polyI: C), mimicking the

PBC disease phenotype to explore the effect of allogeneic bone

marrow–derived MSCs (BMSCs) on the model (Wang et al.,

2011). The mice exposed to 16 consecutive weeks of polyI: C

administration showed increased serum ALP, AMA, and ANA

levels, mononuclear cell infiltration around the bile ducts, and

decreased CD4+Foxp3+ Tregs in the spleen andmesenteric lymph

nodes. After 6 weeks of BMSC transplantation, the BMSC-

transplanted mice demonstrated decreased serum ALP, AMA

titers, and the inflammatory cytokine IFN-γ and had ameliorated

monocyte infiltration around the bile ducts, which indicated that

BMSC transplantationmay attenuate liver injury mediated by the

Th1 immune response. In addition, the BMSCs increased the

frequency of peripheral and lymph node Tregs and serum TGF-

β1, which can promote Treg differentiation. Notably, MSCs can

also secrete TGF-β1 to exert their immunomodulatory effects by

promoting Treg generation (Patel et al., 2010); therefore, the

upregulation of Tregs in BMSC-transplanted mice may account

for MSC transplantation.

Fan et al. (2018) established an autoimmune cholangitis

mouse model using 2-octynoic acid coupled to bovine serum

albumin (2OA-BSA) to examine the curative effect and potential

mechanism of umbilical cord–derived MSCs (UC-MSCs) in

treating PBC (Fan et al., 2018). They found that UC-MSC

transplantation alleviated the inflammatory response and bile

duct injury caused by 2OA-BSA in the liver, with decreased ALT

(alanine aminotransferase), AST (aspartate aminotransferase),

ALP, GGT (γ-glutamyltransferase), and serum anti-PDC-

E2 autoantibodies. Moreover, no cross-species

immunoreaction was observed in C57BL/6 mice that received

human UC-MSCs. UC-MSC transplantation attenuated aberrant

Th1 and Th17 responses by downregulating IFN-γ+CD4+
Th1 and IL-17A+CD4+ Th17 cells in the liver, spleen, and

blood and downregulated liver IFN-γ, IL-12, IL-17A, and IL-

23 mRNA levels. Furthermore, high Gal-9 expression in MSCs is

dispensable for suppressing CD4+ T-cell proliferation and

regulating Th1 and Th17 cell differentiation, which may be

mediated by the STAT and JNK pathways.

The animal models yielded promising results for the

therapeutic advances in treating PBC with allogeneic MSCs

and can guide their clinical application. Nevertheless, there is

an urgent need for extensive studies to clarify the underlying

therapeutic mechanisms.

Cholangiocyte damage and senescence are crucial pathogenic

processes in PBC. Recently, Chen et al. (2021) established an

in vitro PBC model by generating organoids (cholangioids) from

mouse liver duct–derived cholangiocytes and induced

cholangioid senescence with persistent oxidative stress (H2O2).

They reported that exosomes derived from human placental

MSCs delayed the progression of senescence and exerted a

protective effect on the cholangioids by downregulating the

cell cycle arrest proteins p16INK4A and p21WAF1/Cip1 and

decreased senescence-associated secretory phenotype (SASP)

components and chemokines (Chen et al., 2021). They

presented a new in vitro cell model for the pathogenesis and

mechanism study of liver diseases, including PBC, which may

also be useful for developing novel drugs and therapy.

Clinical trials of mesenchymal stem cells
for treating primary biliary cholangitis

There are currently three clinical trials registered for MSC-

based therapy for PBC (ClinicalTrials.gov). Wang et al. (2013)

reported a pilot study for treating PBC patients who responded

incompletely to UDCA with UC-MSCs (ClinicalTrials.gov

Identifier: NCT01662973) (Wang et al., 2013). Seven patients

were enrolled and intravenously infused with 0.5 × 106 cells/kg

UC-MSCs once every 4 weeks on three occasions in combination

with traditional UDCA treatment. After 48 weeks of follow-up,

significant alleviation of common PBC symptoms such as fatigue

and pruritus, and decreased serum ALP and GGT levels were

observed, with no obvious adverse effects or long-term

complications. The study validated the idea that UC-MSCs are

safe and feasible for treating PBC and yielded promising results

for MSC therapy in other diseases.

Immediately following this study, our group conducted a

study that involved 10 UDCA-resistant PBC patients, treating

them with allogeneic BMSCs (ClinicalTrials.gov Identifier:
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NCT01440309) (Wang et al., 2014). The BM-MSCs were derived

from the patients’ healthy first-degree relatives and were

intravenously infused into the patients at 3–5 × 105 cells/kg.

No adverse events were observed after BMSC infusion and

during the follow-up period. The patients who received

BMSCs demonstrated improved life quality, including

pruritus, fatigue, and emotional function and decreased serum

ALT, AST, GGT, DBIL (direct bilirubin), and IgM levels. More

importantly, the immunomodulatory effect of BM-MSCs may

contribute to the treatment effectiveness of patients, including

increasing CD4+CD25+Foxp3+ T cells and IL-10 levels and

reducing CD8+ T cells. We also indicated that the effect of

MSC infusion may be maintained for 12 months and may be

optimal at 3–6 months.

In 2018, Han et al. initiated the third clinical trial for treating

PBC with MSCs (ClinicalTrials.gov Identifier: NCT03668145).

They aimed to enroll 140 participants to investigate the safety

and efficacy of MSCs in UDCA-resistant PBC patients. Patients

were randomly assigned to receive MSCs (0.1–1 × 106 cells/kg via

the peripheral vein, once in 4 weeks, three times) and UDCA, or

UDCA alone. The patients’ serum ALP levels were tested at entry

and 1, 3, 6, and 24 months after infusion to measure the primary

outcome. Improvement of symptoms in liver histology and other

liver function indices such as ALT, total bilirubin, AST, and GGT

were analyzed 6 months after infusion to measure the secondary

outcomes. This is an ongoing trial and its detailed data and

results may be published soon.

To date, only two studies have reported the safety and

efficacy of the clinical MSC application for treating PBC

patients (Wang et al., 2013; Wang et al., 2014). However, both

studies enrolled a small sample size, which is their main

limitation. Randomized larger-scale studies and intensive

mechanistic exploration of the therapeutic effect of MSCs in

PBC are necessary for future clinical trials.

Challenges and perspectives

MSCs hold great promise for treating immune

disorder–related diseases. However, global clinical trials for

MSC-based PBC treatment are relatively rare and progress

slowly. On the one hand, there are concerns about the clinical

application of MSCs. The first of these involves safety. A recent

retrospective meta-analysis of 62 randomized clinical trials in the

past 15 years indicated that autologous and allogeneic MSC

infusion is safe (Wang et al., 2021). Transient fever,

administration site adverse events, sleeplessness, and

constipation are the main adverse events; the study uncovered

no serious safety effects. Fever is the most evident adverse effect,

which may be caused by the immunomodulation function of

MSCs and should be disclosed to patients before infusions.

However, the long-term effects, such as tumorigenesis and

emboli formation, remain to be investigated. Second, there is

no standard guideline to ensure the quality of MSCs transplanted

into the patients. MSCs from different tissues, ages, genders, and

disease statuses may demonstrate varying characteristics and the

prolonged in vitro culture expansion may induce senescence that

impairs MSC differentiation and immunomodulatory functions.

Therefore, there is an urgent need to establish a uniform

standard. Another fundamental concern involves the obscurity

of the relationship between the infusion program and the in vivo

fate of MSCs. The top priority of most clinical trials is to evaluate

the efficiency of MSCs, rendering it difficult to assess the optimal

infusion dosage, frequency, and approach and the in vivo

tracking of MSCs. A study on mice with acute liver injury

optimized the MSC dosage and route (Li et al., 2015) and

indicated that the superior mesenteric vein (SMV) was the

optimal route for MSC infusion in liver disease, as MSCs were

distributed widely in the liver and remained for 7 days post-

transplantation, while MSCs were mostly trapped in the lungs

after administration via the inferior vena cava (IVC) and resided

in the injection region after intrahepatic (IH) injection. The

authors also reported that the optimal delivery dose through

the SMV was 2.5 × 105 MSCs while a high dose of 0.5–1.0 × 106

MSCs was followed by a high incidence of lethal portal vein

embolization. In clinical trials, a single intravenous injection of

MSCs is the most commonly applied program. In patients with

liver cirrhosis, the minimum effective dose was 1 × 107 MSCs,

which lasted for 6 months with no adverse effects (Amin et al.,

2013). Another study recorded no obvious difference between

two infusions 1 month apart, which may have been caused by the

short interval between the first and second injection (Suk et al.,

2016). Therefore, the optimal infusion program still warrants

future exploration to improve the therapeutic efficiency of MSCs.

Last, for chronic liver diseases such as PBC, the disease stage at

which MSCs should be applied remains to be investigated.

Although there is much work that needs to be performed in

this field, we found little improvement in the liver histology after

MSC transplantation, as small interlobular bile duct fibrosis and

cirrhosis are irreversible processes (Wang et al., 2014). Therefore,

we speculated that MSC intervention at an early stage may be

more effective.

On the other hand, no definitive perfect animal model can

recapitulate human PBC pathogenesis, which limits in-depth

mechanistic studies. The pathogenesis of PBC is complex and

involves multiple factors and processes; therefore, ideal animal

models would be valuable for clarifying PBC pathogenesis.

There are currently two types of PBC mouse models

(Katsumi et al., 2015): spontaneous models induced by

genetic modification (e.g., NOD. c3c4 mice and dominant-

negative TGF-β receptor II mice) and models induced by

chemical xenobiotics and microbial immunization (e.g.,

2OA-BSA-immunized mice and Escherichia coli–infected

mice). These animal models can simulate the serological,

immunological, and histopathological aspects of PBC.

However, PBC progression is greatly accelerated in these
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models than that in humans, as PBC is a middle-age-onset

disease, while animals demonstrate different responses to

chemicals or microbials and extrapolation is difficult.

Therefore, no single animal model can fully illustrate the

pathogenesis of human PBC and there is a pressing need to

explore new animal models that can mimic the slow PBC

occurrence in the future.

Increasing attempts have been made to improve MSC

treatment efficacy, which could facilitate future MSC

applications for treating PBC. Priming MSCs with

proinflammatory factors (e.g., IFN-γ, IL-1α, and IL-1β),
hypoxia, and 3D culture materials boost MSC survival,

function, and therapeutic effects (Zhou et al., 2021).

Genetically modified MSCs with specific gene expression such

as that for CCL2 have demonstrated improved therapeutic

potential in brain repair (Lee et al., 2020). Furthermore, MSC

EVs exhibit valuable clinical importance in patients with

autoimmune disease (Shen et al., 2021), refractory GVHD (Lai

et al., 2018), and Alzheimer’s disease (Guo et al., 2020), which

suggests promising means of treating PBC. Moreover, with the

advent of somatic reprogramming technology, induced

pluripotent stem cells can differentiate into MSCs (iMSCs)

and can serve as an infinite source of iMSCs. iMSCs have

been demonstrated to meet the qualities and function of

MSCs (Zhao and Ikeya, 2018) and exert regenerative,

reparative, and immunomodulatory effects in animal models

of periodontal defection (Hynes et al., 2013), myocardial

infarction (Liang et al., 2017), and inflammatory bowel disease

(Soontararak et al., 2018). The development of iMSCs and their

combination with new technologies such as gene editing and 3D

culture present new strategies for treating PBC.
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