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Coherent Raman imaging has been extensively applied to live-cell imaging in

the last 2 decades, allowing to probe the intracellular lipid, protein, nucleic acid,

and water content with a high-acquisition rate and sensitivity. In this context,

multiplex coherent anti-Stokes Raman scattering (MCARS) microspectroscopy

using sub-nanosecond laser pulses is now recognized as a mature and

straightforward technology for label-free bioimaging, offering the high

spectral resolution of conventional Raman spectroscopy with reduced

acquisition time. Here, we introduce the combination of the MCARS imaging

technique with unsupervised data analysis based on multivariate curve

resolution (MCR). The MCR process is implemented under the classical

signal non-negativity constraint and, even more originally, under a new

spatial constraint based on cell segmentation. We thus introduce a new

methodology for hyperspectral cell imaging and segmentation, based on a

simple, unsupervised workflow without any spectrum-to-spectrum phase

retrieval computation. We first assess the robustness of our approach by

considering cells of different types, namely, from the human HEK293 and

murine C2C12 lines. To evaluate its applicability over a broader range, we

then study HEK293 cells in different physiological states and experimental

situations. Specifically, we compare an interphasic cell with a mitotic

(prophase) one. We also present a comparison between a fixed cell and a

living cell, in order to visualize the potential changes induced by the fixation

protocol in cellular architecture. Next, with the aim of assessing more precisely

the sensitivity of our approach, we study HEK293 living cells overexpressing

tropomyosin-related kinase B (TrkB), a cancer-related membrane receptor,

depending on the presence of its ligand, brain-derived neurotrophic factor

(BDNF). Finally, the segmentation capability of the approach is evaluated in the

case of a single cell and also by considering cell clusters of various sizes.
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1 Introduction

In the context of label-free cell imaging, vibrational

spectroscopic approaches have proven their effectiveness to

visualize the cellular content and processes (Matthäus et al., 2008;

Klein et al., 2012; Palonpon et al., 2013; Smith et al., 2016). As

chemically selective techniques, they can provide both structural and

functional information from the sample. Among these techniques,

coherent anti-Stokes Raman scattering (CARS) and stimulated

Raman scattering (SRS) have been extensively applied to live-cell

imaging in the last 2 decades (Zumbusch et al., 1999; Freudiger et al.,

2008; Cheng and Xie, 2015). More specifically, both methods have

been successfully used to probe the intracellular lipid, protein,

nucleic acid, and water content with a high-acquisition rate and

sensitivity.

In this context, multiplex CARS (MCARS)

microspectroscopy (Kee and Cicerone, 2004; Kano and

Hamaguchi, 2005) is a powerful technology for extracting rich

vibrational information from biological samples. It is based on

the excitation of the sample by two laser beams, namely, the

monochromatic pump (ωp frequency) and the broadband Stokes

(ωS frequency) beam. When the difference ωp - ωS matches the

vibration frequency of a vibrational mode, a resonant CARS

signal is generated at the frequency 2ωp - ωS, that is, at a

wavelength lower than that of the pump laser, preventing any

fluorescence background in the measured MCARS spectrum.

This is a considerable advantage for this technique because

conventional Raman often presents a fluorescence that

completely masks the vibrational signal, especially in biology.

However, it is well-known that MCARS is affected by the

presence of a so-called non-resonant background (NRB),

which is inherent to its physical mechanism. In this regard,

phase retrieval approaches like the maximum entropy method

(MEM) and time-domain Kramers–Kronig (TDKK) are

generally used to extract the pure vibrational signal and to

recover conventional Raman-like spectra (Cicerone et al.,

2012). These spectra are then more easily interpretable and

allow generating high-contrast images from the identified

Raman bands. More recently, phase extraction from MCARS

spectra was investigated by using a deep learning approach, based

on the concept of supervised methods and using a long short-

term memory network (LSTM) architecture (Houhou et al.,

2020). Another study introduced a workflow for fast Raman

signal extraction, denoising, error correction, and the

applicability of this workflow to machine learning (Camp

et al., 2020).

On the other hand, chemometric methods as principal

component analysis (PCA) or multivariate curve resolution

(MCR) are widely used in spectroscopy-based data analysis

(Pisapia et al., 2018; Ghaffari et al., 2019; Amigo, 2020). They

consist of an unsupervised, statistical multivariate exploration of

the collected data, being considered as established approaches,

especially in the field of Raman microspectroscopy. PCA’s

purpose is to project data into a subspace, allowing to

decorrelate the measurements and to maximize the variance

of projections. Thus, PCA facilitates the observation of the

relevant information of the dataset. Following this concept of

projection of a multicomponent signal into subspaces, MCR is an

iterative matrix decomposition method. It decomposes the

considered dataset by means of its projection into a subspace

guided by different constraints (for instance, non-negativity

constraint). This is a definite advantage because this signal

unmixing approach allows us to find contributions in the

sample that are far more easily interpreted than those

obtained from PCA. Specifically, the MCR approach

decomposes the initial dataset into a matrix of “pure

concentration profiles” and a matrix of “pure spectral

profiles,” providing a concentration map (quantitative

information) and the associated spectrum (qualitative

information) of each contribution within the investigated

sample. For example, the algorithm allows, in a context of

chemical analysis, to extract the “pure” chemical species of the

sample (De Juan and Tauler, 2021).

To date, MCR has never been applied to the analysis of

MCARS hyperspectral datasets. The only work that could come

close to such an approach was published by Zhang et al., 2013,

with idea to extract images of major components in breast cancer

cells using SRS. In this case, the multivariate exploration involved

a spectral stack of only ~80 SRS images, and representative

spectra of lipid droplets, nuclei, and culture medium were

used at the initial estimation step (supervised method).

Regarding CARS data processing in the context of cell

imaging, few studies report on the use of chemometric

methods within the proposed workflow, including PCA

(Parekh et al., 2010; Pohling et al., 2011; Lee et al., 2014),

singular value decomposition (SVD) (Masia et al., 2013), or

hierarchical cluster analysis (HCA) (El Mashtoly et al., 2014).

These studies aim at performing an unsupervised quantitative

chemical analysis of an unknown biological sample and/or a

classification of cells or subcellular organelles. Overall, they rely

on relatively complex data analysis pipelines, including a heavy

spectrum-to-spectrum phase retrieval step, which limit their

dissemination into the biomedical field. A more recent work

focused on using PCA and k-means clustering to perform a

comparison between CARS and SRS in the context of tissue

imaging (Bocklitz et al., 2018). Based on all these works, it is
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evident that an MCR-based approach should be able to bring a

new look on MCARS data by generating less biased cell images

while facilitating the interpretation of the extracted chemical and

biological information. Moreover, such approach would be all the

more powerful as it could take both the spectral and spatial

dimensions of the dataset into account, and the sole spectra being

usually exploited in the field.

Today, MCARS microspectroscopy using a dual-output sub-

nanosecond laser source is recognized as a mature and

straightforward technology for bioimaging, offering the high

spectral resolution of conventional Raman spectroscopy with

reduced acquisition time (Kano et al., 2019; Kaneta et al., 2021).

We have recently demonstrated its efficiency for cell cycle studies

(Guerenne-Del Ben et al., 2019) or cancer cells characterization

(Guerenne-Del Ben et al., 2020). In the proposed study, we

naturally combine the potential of both this imaging

technique and the MCR source separation method under the

classical signal non-negativity constraint and, even more

originally, under a new spatial constraint based on cell

segmentation. We thus introduce a new approach of MCARS

hyperspectral cell imaging and segmentation, based on a simple

workflow, without any phase retrieval computation, for data

acquisition, chemical analysis, and visualization.

The imaging capability of this approach is first described

using a MCARS dataset obtained from a fixed human

embryonic kidney 293 (HEK293) cell in the interphase of

the cell cycle (G1/S). This cell is subsequently used as the

“reference” cell. Second, we compare the results obtained for

the reference HEK293 cell with those obtained for a

premyoblastic cell from the C2C12 murine line under

similar conditions (i.e., fixed during the interphase of the

cell cycle). This comparison allows us to assess the

robustness of our approach by considering two very different

cell types. To evaluate its applicability over a broader range, we

then study HEK293 cells in different physiological states and

experimental situations (Guerenne-Del Ben et al., 2019;

Guerenne-Del Ben et al., 2020). For this purpose, we

compare the results of the reference (interphasic) cell to

those obtained from another cell in mitosis (prophase),

during which important nuclear and cytoplasmic

rearrangements occur. We also present a comparison between

the reference (fixed) cell and a living cell, in order to visualize the

potential changes induced by the fixation protocol in cellular

architecture. Next, with the aim of assessing more specifically

the sensitivity of our approach, we study HEK293 living cells

overexpressing tropomyosin-related kinase B (TrkB), a cancer-

related membrane receptor, depending on the presence of its

ligand, brain-derived neurotrophic factor (BDNF). Finally, the

application of the segmentation constraint in the MCR

framework is introduced and discussed in the case of the single

reference cell. Then, the segmentation capability of the approach is

evaluated by considering cell clusters of various sizes.

2 Materials and methods

2.1 Cell samples preparation

The datasets of HEK293 cells used in this study were

obtained from cell samples prepared by T. Guerenne-Del Ben,

according to the protocols described in Guerenne-Del Ben et al.,

2019 and Guerenne-Del Ben et al., 2020. HEK293 cell line was

provided by Pr. F. Lalloue, CAPTuR, UMR INSERM 1308,

Faculty of Medicine, University of Limoges, France.

HEK293 cells were non-modified or overexpressing the TrkB

receptor.

Non-modified HEK293 cells were routinely cultured in a

complete medium consisting in high-glucose (4.5 g/L) DMEM

(Gibco), supplemented with 10% (v/v) fetal calf serum (Eurobio),

1 μg/ml amphotericin B (Gibco), 100 units/ml penicillin, and

100 μg/ml streptomycin (Gibco) in an incubator heated at 37°C

under 5% CO2 humidified atmosphere. HEK293 cells

overexpressing TrkB were cultured in a complete medium

supplemented with 750 μg/ml geneticin (G418, Roth).

C2C12 cell line (ATCC, Manassas, VA, United States) was

cultured in DMEM supplemented with L-glutamine, 10% (v/v)

fetal calf serum, 50 units/mL penicillin, and 50 μg/ml

streptomycin.

For MCARS analysis, the cells were seeded at a density of

8,750 cells/cm2 on 18-mm glass coverslips in 12-well plates

for 48 h.

For the synchronization of non-modified HEK293 cells

(study of the cell cycle), a first blocking with thymidine was

performed for 18 h. Then for obtaining G1/S or mitotic cells,

after a release phase in complete medium of, respectively,

9 and 4 h, the cells were exposed to either 2-mM thymidine

(double block procedure) for 17 h or 100 ng/ml nocodazole

(Sigma-Aldrich) during 12 h before being replaced in fresh

complete medium (for more details, refer to Guerenne-Del

Ben et al., 2019). When a fixation was performed, the cells

were washed three times in DPBS (Gibco), immersed in 4%

paraformaldehyde (PFA) for 10 min at room temperature,

and washed again three times in DPBS. A subset of living cells

was labeled with the nuclear dye Hoechst 33342

(ThermoFisher) at 10 μg/ml for 15 min and room

temperature before being rinsed in DPBS.In addition, a

subset of fixed cells was labeled with the nuclear dye

DAPI (4′,6-diamidino-2-phenylindole, Sigma-Aldrich) at

1 μg/ml for 5 min.

HEK293 cells overexpressing TrkB were cultured in the

presence of recombinant human BDNF (Peprotech) at a final

concentration of 75 ng/ml, or its solvent (DPBS), for 72 h. Cell

nuclei were then stained with Hoechst 33342 as described

earlier.

Glass coverslips with living or fixed cells were mounted on a

microscope slide in DPBS and sealed with nail polish.
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2.2 MCARS microspectroscopy and
fluorescence imaging

The MCARS microspectroscope and associated experimental

conditions are described in Guerenne-Del Ben et al., 2019. In brief,

the MCARS setup is based on a passively Q-switched microchip

laser (Horus Laser, 1,064 nm, 1 ns, 20 kHz), a photonic crystal fiber

for generating the broadband infrared Stokes wave, focusing

(Olympus, UPlanSApo 60x, N.A. = 1.2, water immersion) and

collecting (Nikon, S Plan Fluor ELWD 60x, N.A. = 0.7)

microscope objectives, and a spectrometer (Horiba, LabRam HR

Evolution). CARS spectra were acquired from 2,500 to

3,200 cm−1 with ~0.8 cm−1 spectral resolution, 50 ms pixel dwell

time, and 300 nm lateral step for cross-sectional mapping. The

lateral and axial resolutions were ~300 nm and ~2 μm, respectively.

The laser power of the pump and Stokes radiations at the sample

positionwas 55 and 9 mW, respectively, for which nomorphological

change of cells was observed during the experiments.

Fluorescence imaging was realized on the same system by

using a halogen light source, appropriate excitation and emission

filters, and a dedicated CCD camera (Thorlabs, 1500M-GE).

2.3 Maximum entropy method

As we have seen in the introduction, CARS spectra suffer

from the presence of NRB that greatly distorts the acquired

spectra and therefore the images that are extracted afterward. For

the purpose of spectroscopic validation of our approach, we used

the MEM algorithm from Vartiainen et al. (2006) as a reference

method to extract the imaginary part of the third order non-

linear susceptibility (Im{χ(3)}) and thus obtain conventional

Raman-like spectra. The implementation of MEM was

performed using MATLAB software (R2018b, MathWorks).

2.4 Multivariate curve resolution

MCARS datasets were analyzed using MCR (De Juan et al.,

2014). MCR is a signal unmixing method, which aims at finding

the K components of a multicomponent signal. The data matrix

D, which contains M measures for N Raman shifts, is

decomposed into two matrices, as depicted in Figure 1: the

concentration M × K-matrix C, including the K component

FIGURE 1
MC2 andMC2,S frameworks. MCARS data are linearized, and thenMCR or MCRS is applied to compute the concentrationM × K-matrixC and the
spectra K × N-matrix ST iteratively. Finally, an image (reconstructed from C; segmented in the case of MCRS) and a spectrum (stored in ST ) are
available for each of the K extracted components. CSV stands for the Chan–Sandberg–Vese method, which is used as a segmentation constraint in
MCRS.
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concentration maps along its columns (corresponding to the

projection of the initial data), and the spectra K × N-matrix ST,

including the K component spectra along its rows

(corresponding to the projection basis). More formally, the

model is defined as follows:

D � CST + E, (1)

where E being the error matrix, containing data not

represented by the basis and expected to be noise or irrelevant

information. In the case of chemical mixture analysis, ci,j is the

concentration of compound j for measuring (i.e. pixel) i and row j

of ST, which is the characteristic spectrum of this compound.

In order to evaluate the quality of the MCR decomposition

according to the value of K, the so-called lack-of-fit (LOF) was

used:

LOF � ∑i,j e
2
i,j

∑i,j d
2
i,j

, (2)

where ei,j and di,j being elements of row i and column j of

matrices E andD, respectively. The LOF corresponds to the ratio

between the data contained in E (i.e., not expressed by the model)

and those contained in the experimental dataset. Based on the

variation of the LOF as a function of K for the datasets used in

our study, the number of components was set to K � 5. This

choice will be investigated later in the Discussion.

Even if MCR allows us to explore complex signals, this

approach nevertheless presents what is called ambiguities,

meaning that different pairs of C and ST matrices can be

acceptable solutions. In this context, applying constraints to C

and ST during MCR calculation allows reducing these

ambiguities and the number of possible solutions, in order to

potentially converge toward a unique decomposition. Two of the

most common constraints are non-negativity and normalization.

The non-negativity constraint ensures to have only positive

values for all elements of C and/or ST matrices, while the

normalization constraint implies that the sum of all values of

each row or column of C and/or ST is equal to one. Obviously,

constraints have to be selected according to the acquisition

method, the study subject, and the intrinsic nature of the

data. In this study, we applied the non-negativity constraint to

the concentration matrix C and to the spectra matrix ST, while

the normalization constraint was only applied to each row

(i.e., measure) of the concentration matrix.

One way to solve the MCR problem is to use an alternating

regression algorithm to compute C and ST. Here, we used the

common “alternating least squares” (ALS) algorithm, the method

being then called MCR-ALS. Moreover, we applied the non-

negativity constraint within the decomposition process by using

non-negative least squares (NNLS) (Lawson and Hanson, 1974).

Practically, these results are a three-step process: first, the C

matrix is computed by NNLS, then it is normalized and, in turn,

the Smatrix is computed by NNLS. This process is then repeated

until convergence. Furthermore, we used the SIMPLISMA

algorithm (Windig and Guilment, 1991) for computing the

initial S matrix of the iterative process.

We implemented the whole MCR-ALS workflow in Python

language, based on the freely available “pyMCR” package (Camp,

2019). In the following sections, the combination of MCARS

acquisition and MCR data analysis (with the two classical

constraints) will be denoted as MC2 (Figure 1).

2.5 New cell segmentation constraint
(MCRS)

To extract cells from their environment and refine the

intracellular analysis, we have developed in this work a new

spatial constraint to be applied to the concentration matrix C,

additionally to the previous constraints in the MCR framework.

Specifically, we applied a segmentation constraint based on the

Chan–Sandberg–Vese (CSV) method (Chan et al., 2000), which

has already shown its ability to segment biological cells (Dufour

et al., 2005; Maška et al., 2013). With the use of this additional

spatial constraint, the framework will be denoted as MCRS and

the whole approach as MC2,S in this work (Figure 1).

The CSV method is an iterative segmentation method based

on active contours. It consists of splitting the given image into

two regions, using an energy-dependent model. The goal of the

algorithm is to minimize the fitting energy between the model

and the input image I:

arg min
c1 ,c2 ,C

F(c1, c2,C) (3)

with F(c1, c2,C) � μ · Length(C) + ] · Area(inside(C))+
λ1∫

x,yϵinside(C)
||I(x, y) − c1||2dxdy + λ2∫

x,yϵoutside(C)
||I(x, y) − c2||2dxdy,

where C is the border between the two regions, and c1 and c2
are the region averages. This equation is solved using a partial

differential equation. The method requires the following

parameters to be defined:

1) “Length penalty” µ (to be set between 0 and 1) regularizes the

length of C. It is the most important parameter to tune

(Getreuer, 2012). A small value leads to define the border

of the cells with potentially a high level of detail, while a large

one generates a smoother boundary. Here, we use µ = 0.35.

The rationale behind this choice is stated in Section 3 (more

specifically, in the sub-section entitled “Comparison between

MC2 and MC2,S methods applied to the reference cell”;

2) “Area penalty” ] tunes the penalty (] > 0) or reward (] < 0) to

be applied to the area insideC during minimization. As we do

not have any a priori on the size of cells in the acquisition

window, ] is set to zero;

3) “Fit weights” λ1 and λ2 allow to control deviation from the

original image in terms of pixel intensity for areas inside and
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outside C, respectively. We use λ1 = λ2 = 1 in order to not to

penalize one area against the other;

4) “Time step” Δt is the discretization step used to solve the

partial differential equation. A small value gives better results

with increased computation time, while a large value can lead

to convergence problems. We use the default value Δt= 0.5

(Getreuer, 2012).

The new algorithm corresponding to one iteration of MCRS

is the following:

1) compute C using NNLS;

2) refold C into K images of size X×Y (consistently with the

initial dataset);

3) apply the CSV method to these images in order to compute a

segmentation mask;

4) use the mask to set concentration values outside C to zero;

5) unfold segmented images in order to retrieve a (spatially)

constrained C matrix;

6) apply the normalization constraint to C;

7) compute S using NNLS.

The addition of the segmentation constraint to theMCR-ALS

framework was also implemented in Python.

2.6 Projection onto reference spectra

In the case of living HEK293 cells overexpressing TrkB

cancer-related protein, a particular approach was used to

compare cells that were incubated with or without BDNF.

First, the MC2 approach was applied to a cell that was

incubated without BDNF, considering the spectra of the

extracted components as reference spectra. Then, the MCARS

dataset of a second cell, incubated with BDNF, was projected

onto the basis of reference spectra by using the NNLS regression

algorithm. The resulting concentration matrix was then

normalized, as previously. With this approach, we could

visualize the spatial distribution of the same components in

both cells, comparatively.

2.7 Statistical analysis of cell segmentation

In order to generate the ground truth masks, bright-field

images of the cells were opened within NIH ImageJ software

(https://imagej.nih.gov/ij/) and manually segmented using the

“Polygons selection” tool. The comparison between ground truth

and MC2,S masks, and the calculation of Dice similarity

coefficients were realized by using “imshowpair” and “dice”

functions in MATLAB software (R2018b, MathWorks).

The statistical analysis of Dice coefficients was performed

using PAST software (O. Hammer, D.A.T. Harper, P.D. Ryan,

PAST: paleontological statistics software package for education

and data analysis, Palaeontol. Electron. 4 (2001) 1–9). After

having tested the normality of the values using a

Shapiro–Wilk test, a one-way analysis of variance (ANOVA)

was performed and followed by a Tukey’s multiple comparison

test. Differences were considered significant for p < 0.05.

3 Results

3.1 Spectroscopic validation of the
approach

We first applied the MC2 approach to the analysis of a fixed,

DAPI-stained, interphase HEK293 cell. Figure 2A displays the

bright-field and fluorescence images, as well as the five

concentration maps, while the corresponding component

spectra are plotted in Figure 2B. In order to validate the

spectroscopic features observed on these extracted spectra (as

expected for conventional raw MCARS spectra), they were

processed by the MEM algorithm so as to extract the

corresponding conventional Raman-like spectra (Figure 2C).

We have highlighted in Figure 2C the vibrational modes that

are most relevant for cell analysis in this spectral range, namely,

CH2 symmetric (2,845 cm−1) and = C-H (3,005 cm−1) stretching,

mainly associated to lipids (red vertical bars), CH3 symmetric

(2,930 cm−1) and C-H aromatic (3,056 cm−1) stretching, mainly

associated to proteins (green vertical bars), and O-H symmetric

stretching (3,200 cm−1) of water (blue vertical bar). It is reminded

that no vibrational signature of DAPI is expected in the high

wavenumber (C-H stretching) region (Krause et al., 2007).

It appears from Figure 2C that components #1 and #4 are

characterized by a high water content, concomitantly with the

presence of proteins (for component #1) and lipids (for

component #4). Components #2 and #5 are clearly dominated

by the protein content but differ from each other by the lipid

content (weak in component #2 and absent in component #5).

Last, component #3 stands out by a strong lipid content, together

with proteins. Therefore, from the spectroscopic viewpoint, the

chemical species behind these components exhibit five different

proportions of lipids, proteins, and water. This spectroscopic and

chemical information of a given spectral contribution can then be

related to the associated concentration map in order to observe

the spatial distributions and biochemically investigate the intra-

and extracellular contents.

In the following, we perform such biochemical study by

simply using the spectral contributions extracted by the MC2

approach, that is, without phase retrieval computation by the

MEM. To this aim, we have replicated and slightly shifted the

vertical bars of Figure 2C onto Figure 2B, taking into account the

spectral shift of peaks that occurs between raw CARS spectra and

MEM-processed ones (Freudiger et al., 2008; Capitaine et al.,

2018). In that respect and in a first approach, the spectroscopic
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analysis can be made from the MC2 spectra by appreciating the

presence of CARS peaks in the different spectral channels

indicated by the vertical bars. A more thorough interpretation

is to consider the significance (mathematically, the slope and the

amplitude) of the dispersive lines associated to these peaks. This

is particularly useful when the CARS peak is not apparent, due to

an insufficient ratio between vibrationally resonant and non-

resonant contributions, as in the case of CH3 symmetric

stretching for spectral contribution #3 (Figure 2B).

Finally, the fixed interphasic HEK293 cell observed in

Figure 2 will be considered as the reference cell throughout

the rest of this work. As a supplemental validation of our

approach, we also applied MCR to the reference cell dataset

after a prior step of MEM processing, taking into account the

impact of the NRB spectrum source (here, the raw MCARS

spectrum of the solvent) and of the baseline detrending

(corresponding to the dark noise/background related to

the spectrometer). Supplementary Figure S1 shows the

evolution of the final outputs, according to these different

processing steps. In this figure, the results obtained in the last

case (NRB normalization combined with background

subtraction) can thus be compared with MC2 results (first

row). From the spectral point of view, we stress the obvious

quality difference of Im{χ(3)} spectra plotted in Figure 2C

(MEM applied to the five spectra extracted by MCR) and

Supplementary Figure S1 (MCR applied to all spectra first

processed by MEM). Moreover, the Im{χ(3)} spectra of

Figure 2C demonstrate that MCR performs well with non-

linear CARS intensity, since both the spectral shape and the

exhibited vibrational information are consistent with

Raman-like spectra and with the images of Figure 2A,

respectively.

3.2 Comparative analysis of fixed cells in
interphase (G1/S)

In this part of the work, we assessed the robustness of the

MC2 method by comparatively analyzing the

HEK293 reference cell and a C2C12 interphasic unstained

cell. Figure 3 shows the extractions obtained on these 2 cells. It

should be noted that two separate MCR analyses were

conducted on these two datasets.

When considering the concentration maps of the reference

cell (Figure 3A), it is clear that components #1 and #4 (dominated

by a high-water content, as already explained before) are mainly

FIGURE 2
Application and spectroscopic validation of the MC2 approach for the analysis of a fixed interphase HEK293 cell. (A) Bright-field and
fluorescence images and concentration maps obtained for the five computed components. The scale bar corresponds to 5 μm and applies to all
images. (B) Spectra extracted for these five components. (C) Raman-like spectra after MEM processing, with the following vibrational modes
highlighted: CH2 symmetric (2,845 cm−1) and = C-H (3,005 cm−1) stretching mainly associated to lipids (red vertical bars), CH3 symmetric
(2,930 cm−1) and C-H aromatic (3,056 cm−1) stretching mainly associated to proteins (green vertical bars), and O-H symmetric stretching
(3,200 cm−1) of water (blue vertical bar). Vertical bars were replicated into (B), taking into account the peak spectral shift that occurs between raw
CARS and MEM-processed data. After fixation, the cell was stained with DAPI.
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related to the aqueous extracellular environment. From a spatial

point of view, component #2 is localized at the nucleus as

depicted by its round shape, overlapping with DAPI staining.

The high-concentration spots highlight specific areas that can

reasonably be attributed to nucleoli in relation to DAPI staining

together with bright-field images. Nucleoli are active nuclear

subcompartments whose one of the main functions is to be the

site for the initial steps of ribosome biogenesis. This implies the

presence of proteins linked to the transcription machinery and

post-transcriptional modifications by small nucleolar

ribonucleoproteins in the dense fibrillary component. The

rRNA assembly with the ribosomal proteins then occurs in

the granular component of the nucleolus (Pederson, 2011).

This is thus in agreement with the high protein content

emerging in spectral profile #2 (Figure 3C). Regarding

component #3, it is concentrated in an area corresponding to

the plasma membrane (or its very close periphery) and it is found

in the cytoplasm as well. This is in line with the chemical species

highlighted by the associated spectrum, that is, a lipid-rich

content with the presence of proteins. Finally, component #5,

which corresponds to a high protein content and an absence of

lipids, is located throughout cell nucleus and cytoplasm, with a

higher concentration in the nucleus and near nucleoli.

Overall, the extracted spectra of HEK293 and C2C12 cells

(Figures 3C,D, respectively) exhibit a reasonable stability when

they are observed pairwise for each component (except for

component #5, which will be examined later). Accordingly,

the concentration maps (Figures 3A,B) reveal a comparable

spatial distribution of the signal between both cells for the

first four components. Hence, with a high-water content,

components #1 and #4 highlight the extracellular milieu. The

observations made for component #2 in the case of the reference

cell are applicable to the second cell, that is, a high protein

content (with more or less lipids) emphasizes the nucleus and

nucleoli (visible in bright-field for both cells). Regarding

component #3 (lipid-rich content with the presence of

proteins), the distribution of the signal in the cytoplasm of

the C2C12 cell is more or less punctiform, suggesting that the

related cytoplasmic structures correspond to lipid droplets. Lipid

droplets are organelles consisting in a phospholipid monolayer

surrounding a core composed of neutral lipids. They are well

described in C2C12 premyoblastic cells (Billecke et al., 2015;

Ichimura et al., 2015), and their abundance in myoblast

cytoplasm was recently associated with a facilitated (induced)

differentiation into myotubes (Tan et al., 2021). Moreover, in

both cells, a portion of component #3 appears to surround the

FIGURE 3
Comparative analysis of fixed (A,C) HEK293 and (B,D) C2C12 cells in interphase (G1/S). (A,B) Bright-field and fluorescence images and
concentration maps obtained for the five computed components. The scale bar corresponds to 5 μm. (C,D) Spectra corresponding to (A,B),
respectively. Vertical bars highlight the presence of lipids (red), proteins (green), and water (blue). After fixation, the HEK293 cell was stained with
DAPI.
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nuclear structure and could be related to the nuclear envelope.

For all these reasons, component #3 seems to relate to cellular

membrane constituents such as phospholipids.

In the case of component #5, a variability is observed between

both cells. For the reference HEK293 cell, this component

represents a pure protein content in the cytoplasm and, more

abundantly, in the nucleus, which is difficult to assign to a

particular cellular compartment. For the C2C12 cell, spectrum

#5 (Figure 3D) reveals a mixed content of proteins, lipids, and

water. In the corresponding concentration map (Figure 3B), the

signal is less diffuse and more reticular than for the HEK293 cell.

This would suggest that endoplasmic reticulum (ER) is

highlighted, assuming that lateral resolution is not sufficient

to resolve individual ER layers and that the seeming presence

of signal in the nucleus is due to positioning the focal plane at the

nucleus periphery. However, further experiments would be

necessary to support this assertion, including the specific

labeling and fluorescence imaging of the ER. Anyhow, in both

cases, the concentration map of component #5 is complementary

to the other four maps. Regarding the variability of the spatial

distribution between HEK293 and C2C12 cells, it can be

hypothesized that component #5 is specific to the cell line,

given that the cells studied here belong to distinct types with

very different physiological functions.

3.3 Comparative analysis of fixed cells in
interphase (G1/S) and mitosis (prophase)

Next, we compared the reference interphasic cell with an

HEK293 unstained cell that was fixed in mitosis (prophase), as

displayed in Figure 4. As previously, MCR analyses were

performed separately.

Again, it is interesting to see that a certain stability is

maintained at the spectral level between both cells for

components #1–#4. Accordingly, in the concentration maps of

the mitotic cell (Figure 4B), the extracellular environment is

disclosed by components #1 and #4. Component #2 (high protein

content) shows a strong and rather homogeneous signal at the

place of nucleus, in agreement with the nuclear rearrangements

occurring during prophase. The observed intensity variations can

be correlated with the level of chromatin condensation. The

concentration map of component #3 (lipid-rich content with

proteins) highlights concentric structures looking like

FIGURE 4
Comparative analysis of fixed HEK293 cells in (A,C) interphase (G1/S) and (B,D) mitosis (prophase). (A,B) Bright-field and fluorescence images
and concentration maps obtained for the five computed components. The scale bar corresponds to 5 μm. (C,D) Spectra corresponding to (A,B),
respectively. Vertical bars highlight the presence of lipids (red), proteins (green), and water (blue). After fixation, the interphase cell was stained with
DAPI.
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membranes, the outermost layer corresponding to the plasma

membrane. During mitosis, a major rearrangement of membrane

structures takes place and is essential for the completion of a

proper cell division leading to fully functional daughter cells

(recently reviewed in Carlton et al., 2020). The fractionation of

some of the organelles such as the ER and the Golgi apparatus,

disassembled during late prophase (or prometaphase), leads to a

new membrane organization with a modification of the protein/

lipid ratio in the resulting membranes. Notably, an important

part of the membrane components is bound to the plasma

membrane. It is interesting to note that the concentric

lamellar signal observed in concentration map #3 suggests

such an organization, which would be consistent with the

division state of the studied cell, visually estimated in

prophase to late prophase.

Regarding component #5, we notice a divergence in the

spectra and concentration maps corresponding to the

interphasic and mitotic cells, respectively. We can assign this

divergence to the different physiological states of the cells. In the

case of the mitotic cell, the extracted spectrum displays a mixed

protein-lipid content and the resulting concentration map

exhibits a specific, polarized, and intracellular structure in the

cytoplasm. As seen in Supplementary Figure S2A, this structure

(plotted in green here) is entangled with component #3 (plotted

in red). The same trend is visualized for another (late) prophase

cell (Supplementary Figure S2B), with an even more distinct

polarization of component #5. These observations would suggest

that this component might be linked to the mitotic spindle of the

cells. The results obtained for an early-metaphase cell

(Supplementary Figure S2C) consolidate this hypothesis, as well.

3.4 Comparative analysis of interphase
(G1/S) fixed and living cells

Cell fixation prior to in situ labeling and/or the use of several

imaging methods have non-negligible effects on cell structure.

These effects differ according to the fixation reagent. For

example, formaldehyde, routinely used, can react with

numerous functional groups of macromolecules, especially

inducing protein or protein-DNA cross-linking (Hoffman

et al., 2015). The consequences of fixation from a chemical

standpoint are accompanied by the alteration of cell

mechanical properties, which were investigated in Kim et al.

(2017) by means of atomic force microscopy and scanning ion

conductance microscopy. For their part, Hobro and Smith (2017)

could use Raman spectroscopic imaging and PCA to evaluate

several fixation methods. In this context, we sought to assess our

approach for the study of cell alterations induced by fixation. In

that way, Figure 5 presents the concentration maps and the

associated spectra, resulting from the application of the MC2

method to the reference cell (Figures 5A,C), fixed with PFA, and

a living HEK293 cell (Figures 5B,D).

First, some common features persist when comparing the

concentration maps of the 2 cells. Components #1 and #4,

dominated by the water content, again points out here the

extracellular environment. Nucleoli visualization is still found

in component #2, while component #3 discloses membrane

structures. However, we can notice some obvious differences

between both cells, which are described later.

In the living cell, component #1 highlights not only the

extracellular milieu but also the nucleus, which is visible for

neighbor cells in the field of view, as well. In addition to the

nucleus, the cytoplasm is shown by component #4, which is

spectrally characterized by the combined presence of water and

lipids. Interestingly, this component spotlights the border of the

nucleus and the nucleoli as low-signal areas, indicating that water

and lipids are not found together in these areas (the sole lipids

being expected at the nuclear envelope and non-expected in the

nucleoli). Overall, the presence of the intracellular aqueous

content is not observed for the fixed cell. This would be

consistent with a loss of cellular content due to the fixation

that may induce shrinkage, especially when performed at room

temperature.

In the case of component #2, besides nucleoli, the border of

the nucleus (the nuclear envelope) is highlighted in the living cell,

in agreement with bright-field and Hoechst 33342 fluorescence

images. A further investigation of spectrum #2 brings out some

vibrational information in the channel plotted in violet

(Figure 5D). This contribution is assigned to CH3

antisymmetric stretching in the 2,960–2,980 cm−1 range

(Matthews et al., 2010). In Supplementary Figure S3, we have

compared the spectra of component #2 obtained for all fixed and

living cells considered so far, including both raw and MEM-

processed spectra. This figure displays a stronger contribution of

the interphase living HEK293 cell in the highlighted

2,960–2,980 cm−1 channel. Following Lu et al., 2015, this

contribution can be attributed to DNA in live cells and can

thus be associated with a structure linked to the nuclear envelope

in the present case (Figure 5B, map #2). Indeed, during

interphase, heterochromatin binds indirectly to the nuclear

envelope by means of proteins involved in tethering

chromatin. The absence of such a perinuclear signal in the

fixed cell (Figure 5A, map #2) would be consistent with the

chemical mechanism of action related to cell fixation with PFA.

Regarding component #3, in the living cell, the cytoplasm

and the nuclear border clearly appear. Taking into account the

combined presence of lipids/proteins and the reticular aspect of

the signal in the cytoplasm, one can suggest that the revealed

structures correspond to the nuclear envelope in contiguity with

the rough ER. This assumption is supported by the weak

contribution of CH3 antisymmetric stretching to component

#3 (Figure 5D, spectrum #3, violet channel), which is assigned

to ribosomal RNA in the cytoplasm (Lu et al., 2015). Finally,

component #5, dominated by proteins and exempt from lipids,

discloses the inner border of the nuclear envelope, likely
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corresponding to the nuclear lamina and the cytoplasm, likely

due to the presence of resident soluble proteins in the latter. The

absence of lipids in this component results in a “double ring”

signal, localized on both sides of the nuclear envelope.

In order to illustrate the potential of the MC2 approach for

single-cell imaging, Figure 6 summarizes the results obtained with

HEK293 and C2C12 cells in the different physiological states (fixed

interphase, fixed mitotic, and living interphase cells). In this figure,

we plotted the concentration maps of components #1, #2, and

#3 from Figures 2A, 3, 4, 5B in false colors, specifically in blue, green,

and red, respectively. The merge column shows the overlay of these

three maps, illustrating the complementarity of the extracted

components under each biological condition. Moreover, an easier

comparative analysis of all results can be made from Figure 6.

For a further validation of our approach, the workflow of

Supplementary Figure S1 (NRB normalization + background

subtraction + MEM + MCR) was applied to the four cells of

Figure 6. Output maps and spectra are available in

Supplementary Figures S4 and S5. Generally speaking,

combining MEM and MCR leads to more noisy images and

spectra, due to additional processing steps and thus potential loss

of information. In Supplementary Figure S4, the parallel

representation of “MCR” and “MEM + MCR” results allows

to validate our new approach, especially by comparing the high-

protein and high-lipid content channels (second and third

columns, in each case). However, even if our approach is

workable and concentration maps are quite similar in this

figure, we draw attention to the fact that, rigorously, the

method is not expected to be quantitative since the raw CARS

signal is not proportional to the concentration.

3.5 Analysis of living cells overexpressing
TrkB and treated or not with brain-derived
neurotrophic factor

Last, we evaluated the robustness and the applicability of the

MC2 method for detecting changes in cells where a variable was

introduced. For this purpose, we analyzed the datasets of two

living HEK293 cells overexpressing the TrkB receptor at a basal

level or activated by the introduction of its ligand, BDNF, in the

culture medium for 72 h (Figure 7). In this case, we used the

spectra calculated for the non-treated cell (Figure 7C) as a

reference, and then we projected both datasets onto this base

to construct the concentration maps of the non-treated

(Figure 7A) and TrkB-activated (Figure 7B) cells. In addition,

FIGURE 5
Comparative analysis of interphase (A,C) fixed and (B,D) living HEK293 cells. (A, B) Bright-field and fluorescence images and concentration
maps obtained for the five computed components. The scale bar corresponds to 5 μm. (C, D) Spectra corresponding to (A, B), respectively. Vertical
bars highlight the presence of lipids (red), proteins (green), DNA/RNA (violet), and water (blue). The fixed and living cells were stained with DAPI and
Hoechst 33342, respectively.
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both cells can be visualized in false colors for components #1–3,

as displayed in Figure 7D.

As an initial investigation, the information contained in

components #1–3 is rather similar to that of the previously

studied living HEK293 cell. Specifically, in both cells, some

water appears in the nucleus (except the nucleoli), the

nucleoli, and the nuclear border are highlighted, as well as the

lipid content in the cytoplasm. As previously, the DNA

contribution is found in spectrum #2, as confirmed in

Supplementary Figure S2 (green spectra). Concerning

component #3, given the punctiform distribution of the

corresponding intracytoplasmic signal and considering the

shape of spectrum #3, it is stressed that this component

exhibits lipid droplets in both cells. Thereupon, the apparent

larger accumulation of lipid droplets in the TrkB-activated cell

would be related to a modification of the lipid metabolism, as

suggested by Guerenne-Del Ben et al., 2020. Further than this

work, here the comparative study of the non-treated and treated

cells is substantially facilitated by the great complementarity

between components #1–3. In the case of component #4, the

obvious increase of high-intensity spots in the second cell may

also correlate with the alteration of the lipid metabolism.

Finally, for component #5, the signal is distributed

throughout the nucleus and the cytoplasm of both cells, but a

more reticular structure is observed in the non-treated one. In

both cases, an intense spot is visible in the nucleus, partially

overlapping with nucleoli and low-water content areas. Another

feature is the presence of the signal, in the TrkB-activated cell, at

the place of the plasma membrane. Yet, proteins constitute the

main vibrational signature in spectrum #5, which furthermore

differs from other spectra by the complete lack of contribution in

the water region. Then, this high protein content near the plasma

membrane may reflect the consequences of cell exposure to the

growth factor, and particularly the activation of TrkB by BDNF at

the cell surface. At this step, it is more difficult to interpret the

intracellular content revealed by component #5.

3.6 Comparison between MC2 and MC2,S

methods applied to the reference cell

We have seen in the previous sections that the MC2 approach

allows to extract interesting biological information from the

MCARS spectra. Nevertheless, we should not forget that only

FIGURE 6
Overview of the application of the MC2 approach to single-cell imaging in different cases. (A,B) Fixed interphase cells. (C) Fixed mitotic cell. (D)
Living interphase cell. Images in 1,2, and 3 are the concentrationmaps of components #1, #2, and#3 extracted from Figures 2A, 3, 4, 5B, respectively,
and plotted in false blue/green/red colors. The scale bar corresponds to 5 μm.
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the spectral data were exploited to generate these maps and that

the spatial information was not exploited in this approach. We

thus developed the MC2,S method in order to take into account

simultaneously the spectral and spatial dimensions, to refine the

extraction of components and to perform cell segmentation.

As mentioned in Section 2, the length penalty µ is an

important parameter to set (between 0 and 1) in the MC2,S

approach. Several values of µ were tested for the reference

cell, as illustrated in Supplementary Figure S6. We could then

study the evolution of the cell contour according to µ variation,

for each of the five components extracted by MCRS. Small values

of µ lead to cropping the bottom-left part of the cell, particularly

in the case of components #1 and #5 (arrow heads,

Supplementary Figure S6). From µ = 0.35, this bottom-left

curve becomes comparable to what is observed without using

the segmentation constraint. Higher values of µ induce an

oversegmentation, visible for components #1, #3, and #4 on

the upper side of the cell (full arrows, Supplementary Figure

S6). For these reasons, we set the value of µ to 0.35.

Then, to appreciate the impact of the addition of the

segmentation constraint to the MCR framework, both MC2 and

MC2,S methods were applied to the reference cell. The results are

shown in Figures 8A,C and in Figures 8B,D, respectively.

The vibrational modes of each extracted spectrum were not

modified by the introduction of the segmentation constraint,

though some noise appeared on the spectral profiles. Regarding

concentration maps, the value added by the new constraint is

undeniable since the cell is clearly delimited from the background

under these new conditions. In addition, the improved contrast

within the cell allows a better rendering of intracellular

structures. The most obvious changes are observed in

concentration maps #1 and #4. In these maps, the

extracellular milieu was initially the main contributing

element. By using the segmentation constraint in the MCR

process, the resolution is tightened on the intracellular area,

resulting in a more accurate extraction of the aqueous content

inside the cell. As a consequence, the main contributions in

concentration maps #1 and #4 now appear in the inner periphery

of the plasma membrane (this is particularly true for component

#4) and, secondarily, in the nucleus and cytoplasm. Beyond the

investigation of intracellular water, MC2,S would be of interest for

the study of elements that are prominent in the cell environment.

FIGURE 7
Analysis of living cells overexpressing TrkB cancer-related protein, in the presence or absence of its ligand BDNF. Application of the MC2

approach to the analysis of a cell that was incubated without BDNF, with its (A) concentration maps and (C) corresponding spectra, considered as
reference spectra. Vertical bars highlight the presence of lipids (red), proteins (green), DNA/RNA (violet), andwater (blue). (B)Concentrationmaps of a
cell that was incubated with BDNF, obtained by the projection of its dataset onto the reference spectra. (D) False-color images corresponding
to concentrationmaps #1 (blue), #2 (green), and#3 (red). Both cells were incubatedwithout/with BDNF during 72 h and stainedwith Hoechst 33342.
The scale bar corresponds to 5 μm.
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3.7 Application of MC2 and MC2,S methods
to the analysis of cell clusters

Three different unlabeled, fixed, HEK293 cell clusters were

analyzed to assess the robustness of MC2 and MC2,S methods

and their applicability to more complex situations (Figure 9).

The corresponding spectra are given in Supplementary

Figures S7–S9.

When looking at the concentration maps obtained by the

MC2 approach, we can notice a good reproducibility in the

extraction of components for each cell cluster, with respect to

previous results.Specifically, components #1 and #4 reveal the

extracellular environment. Component #2 is associated with

nuclei/nucleoli. Component #3 is mostly cytoplasmic and

highlights a perinuclear structure (obvious in 2-cell and 5-

cell clusters), probably made up of intracellular membranes

belonging to the ER. Component #5 allows to visualize other

cytoplasmic elements distributed asymmetrically within the

cells.

The application of the MC2,S method provides the suitable

segmentation of each cell cluster and a better visualization of

intracluster structures. This benefit is noticeable in the false

color representation of concentration maps #1, #2, and #3. In

particular, it is interesting to see the presence of water in the

intercellular space (5-cell and 8-cell clusters) and on the

periphery of the clusters. Of course, the study of aqueous

content would be supplemented by taking component #4 into

account and by investigating the contribution of vibrational

modes reflecting the presence of other chemical species. The

MC2,S approach would thus be of interest to determine the

state of water, namely, free water or water hydrating

macromolecules.

3.8 Statistical analysis of cell segmentation

The accuracy of the segmentation included in the MC2,S

analysis was evaluated by calculating the Dice similarity

coefficients that are well recognized as a valuable metrics

(Hermsen et al., 2019; Eelbode et al., 2020). Dice coefficients

estimate the spatial overlap between the ground truth,

corresponding in our case to a manual segmentation made by

a cell biologist, and the segmentation mask generated by the

MC2,S method. They are defined by DC (Ground truth, MC2,S

segmentation) = 2 (|Ground truth|∩|MC2,S segmentation|)/(|

Ground truth|+|MC2,S segmentation|), where ∩ is the

FIGURE 8
Analysis of a fixed HEK293 cell in interphase (G1/S) without or with segmentation. Concentration maps and corresponding spectra obtained by
means of (A, C) MC2 and (B, D) MC2,S approaches. The scale bar corresponds to 5 μm. Vertical bars in (C, D) highlight the presence of lipids (red),
proteins (green), and water (blue). After fixation, the cell was stained with DAPI.
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intersection. Dice coefficients are comprised between 0 and 1,

0 being a total absence of overlapping, and 1 a total overlap

betweenmanual and automatic segmentations. We calculated the

Dice coefficients for a total of 18 comparisons that correspond to

cells or clusters included in Guerenne-Del Ben et al., 2019 and to

unpublished results obtained in the context of the cited work.

These comparisons were classified according to four categories,

as shown in Supplementary Figure S10 (interphase fixed cells),

Supplementary Figure S11 (mitosis fixed cells), Supplementary

Figure S12 (interphase living cells), and Supplementary Figure

S13 (fixed cell clusters).

Overall mean of Dice coefficients was 0.86 ± 0.07. In light of

this result, MC2,S segmentation can be considered of good quality,

all the more so as manual segmentation from bright-field images

is a source of error and CARS measurement differs from bright-

field by its optical sectioning capability (causing lateral shift and/

or size modification between both modalities, as seen in several

cases). Finally, we plotted in Figure 10 the calculated Dice

coefficients, according to the physiological state of the cells.

Following the p-value analysis of these data (p > 0.05), no

significant difference was observed between the different cell

categories, highlighting the robustness of the proposed method

toward the cell morphology.

4 Discussion

4.1 Determination of the number of
components used in multivariate curve
resolution

Here, we discuss the strategy that we adopted to set the

number of components to K � 5.

From the signal analysis point of view, we consider that the

analyzed MCARS hypercube is created by various sources of

information, each of them having an internal structure that can

be exploited. There are many methods in the literature for solving

this source separation problem. A first family of methods relies on

stochastic assumptions, the main approach in this field being PCA.

The latter consists in diagonalizing the covariance matrix to build a

projection basis and thus decorrelate the data (specifically, the

second-order moments). A second family of methods aims at

providing the sparsest approximation, allowing to reconstruct the

initial dataset as best as possible. A typical example is the matching

pursuit (Shi et al., 2013). We position our approach in this second

family ofmethods. As previouslymentioned, in the case ofMCR, the

Cmatrix can be interpreted as the projection of original data onto a

new vector basis defined by ST, which contains K rows (i.e., K

FIGURE 9
Application of MC2 and MC2,S approaches to the analysis of cell clusters. (A) 2-cell cluster, (B) 5-cell cluster, and (C) 8-cell cluster. For each
cluster, the concentration maps computed by MC2 and MC2,S are plotted in first and second rows, respectively, using two different colormaps. The
scale bar corresponds to 5 μm. The corresponding spectra are available in Supplementary Material.
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components). Whichever method is chosen, a difficult question is to

estimate the size of the projection space ensuring the selection of the

informative components from the analyzed signal.

For the PCA approach, most of the estimators work exclusively

from the eigenvalues of the covariance matrix. It is usual to use a

screen test, which consists in detecting the existence of a significant

decay in the eigenvalues diagram for determining the rank (the

number of eigenvectors to retain). In practice, this method is not

always reliable because of its subjectivity. Anothermethod is to use the

approximation error to determine the best choice of the number of

components: during the iterative construction of the projection basis,

the Euclidean normof the approximation error is used in the stopping

criterion. In the case of a linear transformation like conventional PCA,

these two methods of rank selection are actually equivalent.

For the MCR approach, it is common practice to determine

the dimension of the projection space by studying the eigenvalues

of the covariance matrix—by means of PCA—before the MCR

computation. However, in our case, we focus on building the best

approximation of the initial dataset. Therefore, we introduce the

use of the LOF to evaluate the quality of the MCR decomposition

according to the value of K. In this context, the LOF mean and

standard deviation, μLOF and σLOF, respectively, were calculated

for the whole group of datasets considered in the present work.

The elbow method (Thorndike, 1953) was then applied to

determine the best value of K. Table 1 shows μLOF and σLOF
with K varying from 1 to 15. The corresponding curve is plotted

in Supplementary Figure S14. According to the elbow method,

we derive 4≤K≤ 6 with 0.243≥ μLOF ≥ 0.202 and

0.443≥ σLOF ≥ 0.361. Given that K � 5 provides new

information compared to K � 4, whereas K � 6 only brings

redundancy, and the number of components is set to K � 5.

As a comparison, by applying the criterion of decay of the

eigenvalues, we obtain K � 2, which is clearly insufficient in

view of the information effectively contained in the datasets.

Thus, we suggest that our strategy is appropriate to realize the

unsupervised exploration of the different cell samples.

FIGURE 10
Dice coefficients according to the physiological state of the cells. The similarity was calculated between the ground truth, corresponding to the
manual segmentation from bright-field images and the segmentation mask generated by the MC2,S method.

TABLE 1 LOF evolution according to the number of components. First row is the number of components K extracted by MCR, second row is the LOF
meanμLOF (in percent), and third row is the LOF standard deviation σLOF (in percent). The corresponding curve is given in Supplementary Figure S7.

K 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

μLOF(%) 0.481 0.369 0.262 0.243 0.214 0.202 0.20 0.192 0.193 0.189 0.186 0.186 0.186 0.175 0.175

σLOF(%) 0.771 0.592 0.463 0.443 0.373 0.361 0.365 0.356 0.363 0.362 0.355 0.354 0.355 0.327 0.327

The “elbow” points are underlined, and the selected value is in bold.
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4.2 Robustness and relevance of the MC2

method for label-free cell imaging

For all the cells considered in this study, except those

overexpressing TrkB, the first four MCR components are

remarkably stable, highlighting cell common constituents (in

both spectra and maps) and allowing a consistent comparison

between the samples. Component #5 appears to be more specific

to each studied individual condition and contains information

related to this specificity, namely, cell type, step of the cell cycle,

and (patho) physiological or metabolic status. In this sense,

component #5 is highly relevant and confirms the capability of

the MC2 method to extract peculiar information. However, as this

component is specific, a direct comparison of different cells

(regarding component #5) is not sufficient for a reliable analysis.

Hence, the use of MC2 on a reference cell/condition and the

subsequent projection of data obtained with different cells/

conditions onto the reference spectra is particularly useful. This

kind of data relativization is commonly used in biology, for example

in metabolic activity assays, or for representing qRT-PCR data

(ΔΔCT method). The choice of the reference cell/condition is

then crucial, and modifying this choice allows to carry out a

systematic and deeper analysis, considering the specificity of

component #5. Of course, this approach is applicable to all

components extracted by MCR. Furthermore, it is stressed that it

is valid when only a unique variable is introduced in the

experimental context (e.g. pharmacological treatment, ligand

binding, etc.), as in the case of living cells overexpressing TrkB

and treated or not with BDNF.

In view of the overall results presented in this work, the MC2

method shows its great potential in label-free cell imaging. First, the

observations made here are consistent with the previous ones using

largely the same datasets (Guerenne-Del Ben et al., 2019; Guerenne-

Del Ben et al., 2020). Beyond that, we could make more accurate

analyses and comparisons of experimental situations, thanks to the

superior unmixing of cell constituents and the extraction of

additional contributions. For instance, when comparing cells in

different stages of the cell cycle, it was possible to propose a better

estimation of the mitotic subphase (from late prophase/

prometaphase to metaphase). New information came also from

the comparison of the living cell with the fixed one regarding the loss

of cellular content due to the fixation. Yet, the reader should note

that these findings are based on the study of individual cells to

establish a proof-of-concept, and that they cannot, at this step, be

generalized to cell populations.

4.3 Refinement of intracellular/
intracluster analysis by the addition of a
segmentation constraint (MC2,S method)

As displayed in Figure 8 for the reference cell, the MC2,S

method performs a good extraction of the cell from its

environment and improves the image contrast within the

cell, allowing to refine the intracellular analysis. The use of

the segmentation constraint makes the LOF increase from

0.165 to 55.6% in this case, expressing that a major part of

data (the extracellular milieu) was removed. Therefore,

MC2,S can be of particular interest for studying

intracellular events linked to a component that is in

abundance in the extracellular milieu. The aqueous

content, associated with components #1 and #4, is a

perfect illustration of this perspective, as seen in the

corresponding concentration maps (Figure 8B). In that

respect, it is worth noting that the study of “biological

water” can raise different view angles and interests,

depending on the involved disciplinary field (interestingly

outlined in Jungwirth, 2015). Anyhow, we stress that the

detailed knowledge of the water state and distribution in

cellular compartments would have a high (patho)

physiological relevance. Moreover, several optical

approaches were recently introduced for intra/

extracellular water imaging, based on MCARS (Nuriya

et al., 2019), stimulated Raman excited fluorescence (Shi

et al., 2019), or fluorescence lifetime measurement (Rao

et al., 2019). In this context, we suggest that the MC2,S

approach could significantly contribute to the field by

taking into account both spatial and spectral dimensions

from data acquisition to numerical processing. Obviously,

our approach can be extended to the O-H stretching and

fingerprint regions, as we already demonstrated ultra-

multiplex CARS with 500–4,000 cm−1 coverage in previous

works (Kano et al., 2019; Nuriya et al., 2019; Kaneta et al.,

2021).

Finally, the potentialities offered by the MC2,S method are

confirmed in the case of cell clusters, whatever number of cells is

considered. Here, the extraction of information is refined inside

the cluster and, in particular, the water content can be clearly

visualized between the cells forming the cluster. These results

show that the MC2,S method is also applicable to the study of

biological tissues.

To conclude, this work establishes MC2,S as a new

methodology for MCARS hyperspectral cell imaging and

segmentation, based on a simple, unsupervised workflow

without any spectrum-to-spectrum phase retrieval

computation. Such easy-to-use methodology, combined with

the constant simplification of MCARS instrumentation, should

substantially participate in disseminating coherent Raman

technologies into the biomedical field.
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