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Drosophila models of neurological disease contribute tremendously to research progress
due to the high conservation of human disease genes, the powerful and sophisticated
genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most
prevalent heritable cause of intellectual disability and autism spectrum disorders, and the
Drosophila FXS disease model has been critical for the genetic screening discovery of new
intercellular secretion mechanisms. Here, we focus on the roles of three major signaling
pathways: BMP,Wnt, and insulin-like peptides. We present Drosophila FXSmodel defects
compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular
junction (NMJ) synapse model, and the developing adult brain. All three of these secreted
signaling pathways are strikingly altered in FXS disease models, giving new mechanistic
insights into impaired cellular outcomes and neurological phenotypes.Drosophila provides
a powerful genetic screening platform to expand understanding of these secretory
mechanisms and to test cellular roles in both peripheral and central nervous systems.
The studies demonstrate the importance of exploring broad genetic interactions and
unexpected regulatory mechanisms. We discuss a number of research avenues to pursue
BMP, Wnt, and insulin signaling in future FXS investigations and the development of
potential therapeutics.
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INTRODUCTION

The Drosophila genome contains ~ 70% conserved homologs of human disease genes, which have
been repeatedly proven to mediate equivalent functions in similar cells and tissues (Ugur et al., 2016;
Chatterjee and Deng, 2019). A combination of forward and reverse genetic strategies are used to
model human diseases (Yamaguchi and Yoshida, 2018). In forward genetics, mutations are randomly
induced by chemical mutagens (for example, ethyl methanesulfonate) or transposon insertion (for
example, p-elements), with screening for a phenotype of interest. In reverse genetics, targeted
mutations are made by transposon-mediated mutagenesis (for example, p-element excision) or,
more recently, through using clustered regularly interspaced short palindromic repeats/Cas9
(CRISPR/Cas9). To express or knockdown genes, targetable binary expression systems (for
example, Gal4/UAS) allow rescue studies with Drosophila or human genes, as well as RNA
interference (RNAi) to reduce transcripts at specific times and in defined cells. For neurological
disease models, the developing Drosophila central nervous system (CNS) has been extensively
characterized at the level of individually-identified neural stem cells and neurons (Harding and
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White, 2018; Rossi et al., 2021). For critical synapse studies, the
Drosophila glutamatergic neuromuscular junction (NMJ) offers
superior imaging and electrophysiological access that has proven
invaluable in modeling numerous disease states (Tian et al., 2017;
Frank et al., 2020; Tue et al., 2020). Most recently, Drosophila
brain neural circuit mapping using sophisticated transgenic
fluorescent imaging studies and transmission electron
microscope ultrastructure reconstruction has provided
astonishing single-cell resolution (Golovin et al., 2019; Phelps
et al., 2021). Together, these combined tools have allowed
Drosophila neurological disease modeling to contribute
tremendously to fundamental mechanistic discoveries.

Drosophila screening approaches have been essential in
defining secreted intercellular signaling pathways, including
the discovery of Wingless (Wg) as the founding Wnt ligand
(Nüsslein-Volhard and Wieschaus, 1980), and the discovery of
bone morphogenetic protein (BMP) ligands (Upadhyay et al.,
2017). More recent reverse genetic strategies have revealed
important roles for Drosophila insulin-like peptide (ILP)
secretion and signaling (Semaniuk et al., 2021). These secreted
signals are critical for numerous cell regulatory processes;
including proliferation, differentiation, migration, growth,
function, and programmed death (Sedlmeier and Sleeman,
2017; Ng et al., 2019; Saltiel, 2021). At the Drosophila
glutamatergic NMJ, Wnt/BMP/ILP ligands and their receptors
participate in bidirectional trans-synaptic neuron-muscle and
intercellular neuron-glia communication (Dani et al., 2012;
Mahoney et al., 2016; Chou et al., 2020). More generally,
interfering with these secreted intercellular signaling pathways
in the CNS causes aberrant neurogenesis/gliogenesis,
synaptogenesis, and neural circuit remodeling starting in
embryonic stages (Luo et al., 2010; Guo et al., 2011), and
consequently generating defects in sensory processing,
coordinated movement, and higher brain function (Goel et al.,
2019; Golovin et al., 2021). Consistently, autistic and
neurodegenerative disorders are characterized by poorly
regulated secretion of BMPs, Wnts, and ILPs (Timberlake
et al., 2017; de Mello et al., 2019; Serafino et al., 2020; Russo
and Wharton, 2022). For instance, an Alzheimer’s disease model
accumulates Wnt ligands, causing inflammation of postsynaptic
cells (Ali et al., 2020). Nevertheless, secreted intercellular
signaling in neurological disease states is understudied,
especially for neurodevelopment. Recently, Drosophila forward
and reverse genetic screening strategies have begun to reveal
important secretion mechanisms in a disease model context.

Fragile X syndrome (FXS) is the leading neurodevelopmental
disorder causing inherited intellectual disability (Razak et al.,
2020), often associated with autism spectrum disorder (ASD)
comorbidity (Rajaratnam et al., 2017). Most FXS disease cases
result from the expansion of CGG repeats (>200) in the 5’
untranslated region of the Fragile X Mental Retardation 1
(FMR1) gene (Hagerman et al., 2017), leading to epigenetic
hypermethylation and loss of the gene product Fragile X
Mental Retardation Protein (FMRP) (Bagni and Zukin, 2019).
A few reported disease cases are point mutations (for example.,
Gly266GLu (G266E), Ile304Asn (I304N)) in FMRP RNA-binding
domains (RBDs), which impair the canonical FMRP mRNA

translational regulation function (Starke et al., 2022).
Clinically, FXS patients exhibit low-scale IQ, social autism,
hyperactivity, and delayed developmental learning/speech
(Ciaccio et al., 2017). In mammals, FMRP has two paralogs,
Fragile X Related 1 (FXR1) and FXR2, with separable functions
(Drozd et al., 2018). Only FMRP loss causes FXS, and only human
FMRP can rescue Drosophila FXS model neurological defects
(Coffee et al., 2010), including supernumerary synapse formation
in the NMJ and brain (Pan et al., 2004; Dear et al., 2017), defective
brain neural circuit remodeling (Tessier and Broadie, 2008; Doll
et al., 2017), and impaired learning/memory (Bolduc et al., 2008;
Jiang et al., 2016). Recent studies show BMP, ILP, and Wnt
signaling defects are causatively implicated in Drosophila FXS
disease model phenotypes. This article reviews key discoveries for
these secreted intercellular signaling pathways in the Drosophila
FXSmodel in comparison with the mouse FXS model and human
FXS patients. We discuss promising new avenues for future FXS
investigations of signaling defects and the potential for new
therapeutic treatment strategies based on the correction of
secretory communication impairments.

PART 1: BMP SIGNALING IN FXS

BMP signaling pathways are widely involved in the regulation of
cellular proliferation (Sachdeva et al., 2019), differentiation
(Abdal Dayem et al., 2018), and death (Bollum et al., 2017;
Yang et al., 2021). Consistently, BMPs have essential roles in
neurogenesis and gliogenesis during embryonic CNS
development, and these secreted signaling functions are known
to be impaired in the FXR family (FMR1, FXR1, and FXR2)
mutants. For example, FXR2 deficiency mice exhibit inhibition of
BMP signaling through upregulation of the secreted BMP-
binding Noggin, which normally functions in preventing BMP
ligands from binding to their receptors, resulting in aberrant
neural progenitor cell (NPC) proliferation and differentiation
within the hippocampal dentate gyrus (DG) (Guo et al., 2011).
Acting as an RNA-binding regulator, FXR2 reduces the half-life
of the targeted nogginmRNA, thereby repressing Noggin protein
levels specifically secreted from DG-NPCs and resulting in
increased neuronal differentiation and decreased astrocytic
differentiation within the developing hippocampus. Both
exogenous BMP2 treatment and an endogenous Noggin block
in FXR2 knockout mice rescue the neuronal and astrocytic
differentiation/proliferation defects of the DG-NPCs (Guo
et al., 2011). BMP signaling is also misregulated in human-
induced pluripotent stem cells (hiPSCs) obtained from FXS
patients (Boland et al., 2017). Gene expression profiling shows
that both the BMP7 ligand and the BMP type 2 receptor (BMPR2)
are FMRP-target genes in hiPSCs. However, this report stopped
short of linking aberrant BMP signaling to defects in neuronal
differentiation. It is therefore highly important to investigate the
role of BMP ligands and BMPRs in the decision-making
mechanisms of stem cells driving neurogenesis/gliogenesis in
the FXS condition.

Later in neurodevelopment, secreted trans-synaptic BMP
signaling regulates synaptic structure and function at the
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Drosophila larval glutamatergic NMJ (Figure 1), including
motoneuron terminal growth (Sulkowski et al., 2016;
Kamimura et al., 2019), neurotransmission strength
(Kamimura et al., 2019; Politano et al., 2019), and maintained
homeostasis (Chou et al., 2020). Three known BMP ligands
Decapentaplegic (Dpp), Glass-bottom boat (Gbb), and Screw
(Scw) (Upadhyay et al., 2017) are secreted from either
presynaptic boutons or postsynaptic muscles to activate BMP
type I receptors Thick veins (Tkv) and Saxophone (Sax), and
either of two the type II receptors Wishful thinking (Wit) or Punt
(Put) (Kim and O’Connor, 2014; Upadhyay et al., 2017). In the
presynaptic boutons, BMP signaling promotes microtubule-
associated protein (MAP) positive regulator futsch (human
MAP1B) mRNA translation by repressing mRNA-bound
FMRP function, thus up-regulating synaptic growth (Nahm
et al., 2013; Kim et al., 2019). In mice, presynaptic FMRP also
binds BMPR2 mRNA (Drosophila Wit homolog) to inhibit full-
length isoform translation, thus causing accumulation of the
noncanonical BMP pathway component Lin11/Isl1/Mec3
domain kinase 1 (LIMK1) within neurons (Kashima et al.,
2016). Combining insights from both Drosophila and mouse
models shows downstream increased LIMK1 hyper-
phosphorylates cofilin to stimulate actin polymerization,
which, in turn, results in Drosophila NMJ bouton and mouse
neuronal dendritic spine overgrowth (Kashima et al., 2016), as

well as Drosophila larval hyperactivity (Kashima et al., 2017). In
FXS patient brain cortexes, full-length BMPR2 protein and
phospho-cofilin levels are both increased (Kashima et al.,
2016), consistent with the Drosophila and mouse FXS model
discoveries.

In the Drosophila NMJ postsynaptic domain, FMRP inhibits
noncanonical trans-synaptic BMP signaling to negatively regulate
presynaptic bouton formation (Figure 1; Song et al., 2022).
Postsynaptic FMRP binds double-strand RBP (dsRBP) staufen
(stau) mRNA to stabilize the transcripts in muscle (Figure 1).
The translated Stau protein, in turn, binds coracle (cora) mRNA
to restrict translation of this glutamate type II A receptor
(GluRIIA) anchoring actin scaffold (Figure 1; (Chen et al.,
2005). Coracle belongs to the actin-binding 4.1 ezrin-radixin-
moesin (FERM) family, which normally has the receptor-
interacting ERM domain on their N-terminus (Chen et al.,
2005; McClatchey, 2012). However, the Coracle C-terminus
was demonstrated to bind GluRIIA in a yeast two-hybrid
study (Chen et al., 2005), therefore the F-actin and glutamate
receptor binding domains of Coracle remain ambiguous
(Figure 1). Nevertheless, the GluRIIA accumulation in the
Drosophila FXS model (Pan and Broadie, 2007) is well
explained by the postsynaptic FMRP-Stau-Cora regulative
pathway, which activates phosphorylation of presynaptic
Mothers against Decapentaplegic (Mad) to drive NMJ bouton

FIGURE 1 |Noncanonical BMP signaling is restricted by FMRP to limit synaptogenesis. In the Drosophila larval neuromuscular junction postsynaptic compartment
(bottom), FMRP directly binds to staufen (stau) mRNA to promote translation. Staufen, in turn, binds coracle (cora) mRNA to inhibit translation. Coracle acts as an actin
scaffold to anchor the glutamate receptor type II A (GluRIIA) opposing the presynaptic active zone scaffolded by Bruchpilot (Brp). GluRIIA accumulation induced by loss
of postsynaptic FMRP activates noncanonical, trans-synaptic signaling via the BMP receptor (BMPR) Wishful Thinking (Wit) to drive Mad phosphorylation (pMad)
around presynaptic active zones, resulting in synaptic bouton formation. Figure created with BioRender (BioRender.com).
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overgrowth (Figure 1; Song et al., 2022). Interestingly, Coracle
overexpression and RNAi phenocopy (Song et al., 2022), as in
other neurodevelopmental contexts (Landsverk et al., 2007;
Tokuda et al., 2014; Fulterer et al., 2018), and GluRIIA-
induced pMad production does not involve BMP ligands
(Friedman et al., 2013; Sulkowski et al., 2016; Kamimura et al.,
2019), but does depend on BMP receptors Wit and Sax
(Sulkowski et al., 2016; Kamimura et al., 2019). GluRIIA is
thought to interact with Wit through the transmembrane
GluR-clustering protein Neto (Chou et al., 2020), but the
mechanism of this FMRP-dependent noncanonical trans-
synaptic BMP signaling remains to be fully elucidated.

Finally, BMP signaling also has important roles in the
regulation of neuronal apoptosis (Hayano et al., 2015) and
autophagy (Yang et al., 2021). Since programmed cell death
plays key functions in maintaining tissue homeostasis (Ghose
and Shaham, 2020), dysregulation of cell death is associated with
a variety of human neurodevelopmental diseases, including ASD
(Wei et al., 2014; Fricker et al., 2018). In this process, BMP
receptors and downstream SMAD (C. elegans small (SMA) +
Drosophila Mad) signaling serve to link mitochondrial and Wnt
signaling regulatory networks (see below). Mechanistically,
augmented phospho-SMAD1/5/9 (pSMAD1/5/9) binds to the
tumor suppresser p53 protein, thus preventing p53 degradation
from forming complexes with ubiquitin ligase murine double
minute 2 (MDM2) (Hayano et al., 2015). Consequently,
accumulated p53 activates the Bax-mediated apoptotic
pathway in BMP type 1A receptor (BMPR1a) mutant mice
(Hayano et al., 2015). To inhibit autophagy of newborn mice
activin A type 1 receptor (ACVR1, another BMP type 1 receptor)
mutated cranial neural crest cells (CNCCs), accumulated
pSMAD1/5/9 activates mammalian target of rapamycin
complex 1 (mTORC1) to block β-catenin degradation and
increase Wnt/β-catenin signaling (Yang et al., 2021). While
FMRP shows strong interaction with this type of BMP
signaling, BMP-mediated neural cell death defects in FXS
models have not yet been well studied. Given that RNA-
binding FMRP binds to SMAD family transcripts (Ascano
et al., 2012), we hypothesize that FMRP controls SMAD
protein levels to directly modulate BMP signaling, and this
likely impacts the events from neurogenesis to synaptogenesis
to the regulation of cell death during neurodevelopment. Taken
together, FMRP can directly activate BMP signaling through
cascade pathways, and target BMP receptors and downstream
molecules, to regulate neuronal development and survival.

PART 2: INSULIN-LIKE PEPTIDE
SIGNALING IN FXS

Studies of aberrant insulin-like peptide (ILP) signaling in FXS
originated from elevated phosphatase and tensin (PTEN), target
of rapamycin (TOR), phosphoinositide 3-kinase (PI3K), and
activated protein kinase B (Akt) in FXS model and patient
neurons (Sharma et al., 2010; Hoeffer et al., 2012; Gross et al.,
2015), consistent with elevated insulin signaling discovered in
from transcriptome profiling of the mouse FXS model

hippocampus (Prilutsky et al., 2015). In Drosophila FXS stem
cells, FMRP also suppresses the insulin-like receptor (InR) via
LIN-28, an RNA-binding protein required for the translation of
insulin-like growth factors (Luhur et al., 2017). Drosophila FMRP
inhibits ILP secretion from adult brain neurons to enable
circadian behavior, and promote short- and long-term
memory, through control of downstream PTEN and phospho-
Akt (pAkt) activation (Monyak et al., 2017). Genetically reducing
ILP ligands or InR in dfmr1mutants significantly rescues both the
circadian and memory defects, consistent with results of
expressing pAkt inhibitor PTEN in dfmr1 null neurons. In
parallel, dfmr1 mutants fed metformin also show ameliorated
short-term and long-term memory defects. Likewise, the mouse
FXS model fed metformin shows improved cognitive function
and reduced seizure incidence in adults (Gantois et al., 2017).
Moreover, metformin treatment also rescues dendritic
overgrowth, elevated matrix metalloproteinase 9 (MMP-9)
secretion levels, upregulated extracellular-signal-regulated
kinase (ERK) signaling, and hyperphosphorylated eukaryotic
translation initiation factor 4E (eIF4E) in adult FXS male
mice. Consistently, two FXS patients clinically treated with
metformin for 1 year showed significant improvement in their
cognition and speech behavior (Protic et al., 2019), suggesting
that correction of insulin signaling could provide an exciting new
avenue for possible FXS therapeutic treatment.

In the Drosophila FXS model, FMRP regulation of ILP
signaling is involved in CNS development. In Drosophila
progenitor stem cells (neuroblasts) and subsequently, in
developing glia, FMRP sequentially limits the reactivation of
larval brain neuroblasts by inhibiting ILP signaling (Callan
et al., 2012). Following neuroblast-targeted FMRP knockdown,
the number of cells containing cyclin E, a marker of G1/S phase
transition, is significantly upregulated only in young animals
(6–12 h after larval hatching; ALH), indicating that FMRP is
required to restrict autonomous neuroblast reactivation.
However, FMRP knockdown specifically in glia elevates
cyclin E positive cell number at a later developmental stage
(12–24 h ALH), showing FMRP in glia is also required for non-
autonomous neuroblast reactivation. Using pAkt as a positive
readout for ILP signaling, FMRP loss induces upregulated
signaling in neuroblasts, but not in glia (Callan et al., 2012).
In developing Drosophila adult brains, ILP signaling later
participates in neuronal removal when neural circuits
undergo remodeling companied by programmed cell death
(Chihara et al., 2014; Kessissoglou et al., 2020). To maintain
brain homeostasis, glial cells prune neuronal processes and
remove entire neurons via a phagocytosis mechanism
(Freeman, 2015; Kim et al., 2020; Bittern et al., 2021;
Raymond et al., 2022). For example in a Drosophila adult
injury model involving cutting off the antenna, damaged
neurons release ILP ligands that activate glial InRs, leading
to augmented expression of glial phagocytosis receptor Draper
(Drpr) and subsequent glial engulfment and clearance of axons
(Musashe et al., 2016). This work clearly shows ILP signaling is
involved in the glial phagocytosis of neurons following injury
and raises the question of a similar mechanism during normal
brain development.
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In developmentally-transient pigment-dispersing factor tri
(PDF-tri) clock neurons, FMRP is required to mediate
removal from the early adult Drosophila brain (Gatto and
Broadie, 2011). In the Drosophila FXS model, neuron-to-glia
ILP signaling is required to drive the Dynamin (Drosophila
shibire) glial phagocytosis mechanism of neural clearance
(Figure 2; Vita et al., 2021). In dfmr1 mutants, phospho-InR
(p-InR) levels are also significantly reduced on glial membranes,
correlating with the delayed developmental clearance of the PDF-
tri neurons. Furthermore, constitutively activating glial InRs in
dfmr1 mutants restores normal neuron clearance, showing that
FMRP-dependent glial InR activation is required for phagocytosis
(Figure 2). Moreover, reducing the level of the ESCRT-III
membrane remodeler Shrub in dfmr1 null mutants helps
restore the downregulated glial p-InR levels and PDF-tri
neuron clearance defects, suggesting FMRP works via Shrub to
promote InR phosphorylation and glial phagocytosis (Vita et al.,
2021). Note that FMRP regulation of ILP-InR signaling currently
appears to be cell-type (for example, neural vs. glial InR) and
developmental-stage (for example, immature vs. mature brain)
dependent (Monyak et al., 2017). It is not known how neuronal
FMRP-dependent ILP signaling induces glial phagocytosis
together with other signals, including neuronally-derived
ligands for the glial Draper receptor (Figure 2), which are
essential for glial phagocytosis (Vita et al., 2021). FMRP is
proposed to regulate the secretion of multiple neuronal
ligands, which act sequentially or cooperatively as “find me”
and “eat me” signals driving glial phagocytosis (Figure 2). It will

be important to identify and order these FMRP-dependent
secreted signals and to place them in hierarchical order with
ILP to fully understand the glial phagocytosis remodeling
mechanism.

PART 3: WNT SIGNALING IN FXS

The Wnt acronym derives from Drosophila Wingless (Wg),
whose developmental role was identified in the famous
segment polarity screen (Nüsslein-Volhard and Wieschaus,
1980), and mouse INT-1, from a virus-induced breast
tumorigenesis screen (Nusse and Varmus, 1982). There are 7
Wnts in Drosophila and 19 in mice. Cysteine-palmitoylated Wnts
are secreted with the assistance of seven-pass transmembrane
proteins Wntless (Wls) and evenness interrupted (Evi) (Willert
et al., 2003; Bänziger et al., 2006; Bartscherer et al., 2006). Wnt
receptors include the Frizzled (Fz) family, low-density lipoprotein
receptor-related proteins-5/6 (LRP-5/6), receptor tyrosine
kinase-like orphan receptor-1/2 (ROR1/2), and related to
tyrosine (Y) kinase (Ryk). Importantly, amyloid precursor
protein (APP) was recently reported as a receptor for Wnt3a/
5a in limiting neural outgrowth in mice (Liu et al., 2021). Wnt
signaling pathways are widely involved in developmental
decisions, tissue self-renewal, and cell death (Ghosh et al.,
2017; Majidinia et al., 2018; Nayak et al., 2018). In FXS
disease models, dysregulated Wnt signaling impairs embryonic
development, neurogenesis/gliogenesis, and later synaptogenesis.
FMRP deficiency causes reduced Wnt signaling, resulting in
decreased neuronal differentiation but increased astrocyte
differentiation in immature adult neural progenitor cells
(aNPCs) in the mouse hippocampus (Luo et al., 2010). FMRP
binds glycogen synthase kinase 3β (GSK3β) mRNA, a well-
known β-catenin inhibitor in canonical Wnt signaling, with
FMRP loss increasing GSK3β levels to inhibit β-catenin in
Wnt3a-positive aNPCs. This pathway downregulates
neurogenesis and promotes gliogenesis (Luo et al., 2010). This
study also reports that FMRP binds cyclin D1 and CDK4 mRNAs
to restrict neural progenitor cell proliferation.

In the mouse FXS model, pharmacological inhibition of
GSK3β significantly improves hippocampus-dependent
learning by rescuing neurogenesis and neuronal maturation
defects (Guo et al., 2012), further confirming Wnt signaling is
involved in FXS brain development. However, clinical trials of
GSK3β inhibition as a potential FXS treatment show only minor
improvements (Berry-Kravis et al., 2008; Liu and Smith, 2014;
Telias, 2019), possibly because FMRP regulation ofWnt signaling
for neural differentiation happens during early development,
which was bypassed in these trials (Telias et al., 2015). In the
mouse adolescent FXS model, inhibiting GSK3α also corrects
aberrant protein synthesis, audiogenic seizures, sensory cortex
hyper-excitability, and deficits in learning and memory
(McCamphill et al., 2020). In addition to the GSK3 family,
several other Wnt/β-catenin signaling pathway component
transcripts are also targeted by FMRP in the embryonic mouse
cortex, including Abelson Helper Integration Site 1 (Ahi1),
Catenin Alpha 2 (Ctnna2), and Catenin Beta 1 (Ctnnb1)

FIGURE 2 | Secreted signals regulated by neuronal FMRP orchestrate
glial phagocytosis. In early adult Drosophila brain PDF-Tri neurons, FMRP is
proposed to promote the secretion of insulin-like peptides (ILPs) that drive glial
insulin receptor phosphorylation (InR-P) to trigger glial phagocytosis of
neuronal processes. In the glia, Draper (Drpr) phagocytosis receptor
expression is decreased by loss of neuronal FMRP. However, the neuronal
Drpr ligands (for example, Pretaporter, phosphatidylserine) involved in this
FMRP-dependent mechanism remain unknown. Neuronal FMRP may
regulate numerous other “find me” and “eat me” secreted neural signals that
recruit glia and instruct glial phagocytosis, ranging from individual synapses to
whole brain neurons. Figure created with BioRender (BioRender.com).
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(Casingal et al., 2020). The SRY-related HMG-box (SOX)
transcription factors modulate Wnt signaling with a variety of
mechanisms, including β-catenin interactions and cofactor
recruitment (Grimm et al., 2020; Stevanovic et al., 2021). In
Wnt signaling, SOX2/9 contributes to neurodevelopment (Liu
et al., 2015; Lee et al., 2016; Lefebvre et al., 2019; Kinney et al.,
2020) with FMRP inhibiting SOX2 and enhancing SOX9
expression to promote the Fragile X-human neural precursor
cell (FX-NPC) neuron-to-glia ratio (Telias et al., 2015). These
discoveries suggest Wnt signaling manipulation could be a viable
therapeutic strategy for FXS treatment and should motivate
researchers to continue screening possible target molecules
impacting Wnt signaling.

In the Drosophila FXS model, FMRP regulates trans-synaptic
Wnt signaling to modulate glutamatergic NMJ larval
synaptogenesis (Friedman et al., 2013). Wingless (Wg) is the
Wnt ligand, although Wnt2/5 could be involved (Liebl et al.,
2008, 2010). Frizzled-2 (Fz2) is the Wg receptor. FMRP loss
increases Wg secretion from presynaptic boutons to induce
cleavage of the larval muscle Fz2 C-terminus (Fz2-C), which is
translocated as a second messenger into postsynaptic nuclei
(Friedman et al., 2013). Consistently, Wg overexpression
within the presynaptic motor neuron will activate Fz2-C
accumulation within postsynaptic muscle nuclei (Mathew
et al., 2005). In the Drosophila FXS model, the GPI-anchored
heparan sulfate proteoglycan (HSPG) glypican Dally-like protein
(Dlp) acting as a Wg co-receptor, as well as the transmembrane
HSPG syndecan (Sdc), are both highly elevated at the NMJ
synaptic terminal (Friedman et al., 2013). In dfmr1 mutants,
elevated presynaptic Wg secretion and postsynaptic Dlp co-
receptor levels drive larval supernumerary synaptic bouton
formation and elevated neurotransmission strength.
Genetically restoring Dlp and Sdc in the dfmr1 null
independently rescues the NMJ structure and function defects
(Friedman et al., 2013). As Dlp is negatively regulated by secreted
heparan sulfate 6-O-endosulfatase (Sulf1) to promote Fz2-C
signaling (Dani et al., 2012), the reduced nuclear Fz2-C level
in dfmr1mutants suggests that FMRP may be required to restrict
Dlp by maintaining Sulf1, thus increasing Fz2-C translocation to
postsynaptic nuclei. Taken together, FMRP acts at multiple levels
to regulate Wg trans-synaptic signaling, including presynaptic
Wg secretion, postsynaptic Wg co-receptor control, and the
signal transduction of the cleaved Fz2-C receptor second
messenger into the postsynaptic nuclei.

In the Drosophila FXS model, FMRP regulates the secretion of
matrix metalloproteinase 1 (MMP1), a proteinase that cleaves
extracellular proteins, to modulate larval synaptic structure and
function by modulating secreted Wnt signaling (Dear et al., 2016,
2017). Null dfmr1 mutants exhibit upregulation of MMP1 and
MMP1 proteolytic enzymatic activity surrounding presynaptic
boutons at the glutamatergic NMJ. Drosophila only has two
MMPs (secreted MMP1 and the GPI-anchored MMP2), with
the secreted protease specifically affected by FMRP. In the mouse
adult FXS model, secreted MMP7/9 are likewise positively
upregulated out of at least 23 MMPs, correlated with Wnt
signaling differences (Ingraham et al., 2011; He et al., 2012).
Whereas direct studies of a Wnt-MMP regulatory network have

not been reported in mice, the synaptic MMP1 upregulation
dfmr1 larval mutants is prevented by genetically correcting
synaptic Dlp levels (Dear et al., 2017). The mechanism works
downstream of neuronal activity to control rapid synaptic bouton
formation, with Dlp promoting the localized synaptic MMP1
proteolytic activity. These findings indicate an FMRP-Wg-Dlp-
MMP1 regulatory network interacts in the secreted
synaptomatrix space to control activity-dependent NMJ
synaptogenesis. One hint at the mechanism is that MMP2
cleaves Dlp in the Drosophila ovary so that it no longer acts as
a Wg co-receptor (Wang and Page-McCaw, 2014). It can
therefore be hypothesized that MMP2-dependent Dlp
processing may antagonize the MMP1-Dlp interaction,
consequently resulting in less postsynaptic Fz2-C translocation
in the FXS condition. While the mechanism needs further
investigation, these studies demonstrate Wnt signaling
dysregulation in FXS synaptogenesis, providing novel
directions to pursue possible treatments.

CONCLUSION AND FUTURE DIRECTIONS

FMRP-Dependent BMP/ILP/Wnt Signaling
at the Synapse
This article reviews and discusses BMP, ILP and Wnt secreted
signaling dysfunction in Fragile X syndrome (FXS) in different
developmental stages, particularly in the nervous system. New
discoveries suggest that FMRP occupies core roles linking BMP,
ILP, and Wnt regulatory networks that mediate neurogenesis,
gliogenesis, synaptogenesis, and glial functions during neural
circuit remodeling. To study synaptogenesis and
neurotransmission function regulated by this FMRP-dependent
signaling, the Drosophila glutamatergic NMJ provides an
attractive model to test ligand secretion, receptor activation,
co-receptor function, and the downstream second messenger
cascades. For BMP signaling, a new noncanonical trans-
synaptic pathway involves postsynaptic FMRP and Staufen
RNA-binding proteins regulating the FERM Coracle scaffold
for glutamate receptors communicating through presynaptic
BMP receptors to activate local Mad phosphorylation (p-Mad)
and drive synaptic bouton formation (Song et al., 2022). This
novel FMRP-Staufen-Coracle-GluRIIA-BMPR-pMad pathway
strengthens neurotransmission (Figure 1). While the
mechanism of bouton development is limited by an FMRP-
BMPR-LIMK1-cofilin pathway in the presynaptic terminal is
relatively well studied (Kashima et al., 2016), we do not know
how postsynaptic FMRP induces trans-synaptic signaling via
BMP receptors. Although there is good evidence that pMad
accumulates around presynaptic active zones with the removal
of postsynaptic FMRP (Song et al., 2022), the mechanism by
which pMad is induced and works with other interactors to
regulate synaptogenesis remains to be studied. Since pMad is
well-known to work with the cofactor Medea (Med) to serve as a
transcription factor (Berndt et al., 2020), it would be interesting to
map gene expression related to synaptic development modulated
by presynaptic pMad-Med interaction following targeted
postsynaptic knockdown of FMRP.
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Numerous studies show BMP signaling bidirectionally
interacts with insulin signaling to modulate cell metabolism,
growth, and programmed death (Clark et al., 2021; Kim and
O’Connor, 2021; Mao et al., 2021). In Drosophilamotor neurons,
insulin signaling also negatively regulates presynaptic
neurotransmitter release via the FOXO-dependent regulation
of the eukaryotic initiation factor 4e binding protein (4eBP)
translational inhibitor (Mahoney et al., 2016). It will be
important to test if presynaptic FMRP acts upstream of the
PTEN-PI3K-pAkt-FOXO pathway to control this functional
secretion mechanism. FMRP was also just recently reported to
modulate activity-dependent bulk endocytosis (ADBE) in the
mouse FXS model (Bonnycastle et al., 2022), suggesting the need
for further testing of synaptic vesicle cycling and trafficking
mechanisms. On the postsynaptic side of the larval Drosophila
NMJ, InR-mediated signaling induces synaptic development
through the guanine-nucleotide exchange factor dPix
promoting Discs Large (Dlg) scaffold recruitment to the
muscle subsynaptic reticulum (SSR) (Ho and Treisman, 2020).
With the new evidence that postsynaptic FMRP restricts
presynaptic bouton formation (Figure 1), it is possible that a
postsynaptic FMRP-BMP-ILP network regulates NMJ growth
expansion through secreted ligands and receptor activation.
Broadening this interaction even further, NMJ Wnt (Wg)
signaling in the FXS disease model is likely also connected to
this network. In dfmr1 mutants, presynaptic Wg secretion is
elevated (Friedman et al., 2013), but we do not yet know if this
increased secretion is regulated by presynaptic FMRP,
postsynaptic FMRP, or possibly both. While postsynaptic
FMRP is suspected to participate in cleaved Fz2-C intracellular
translocation or degradation, this involvement is still speculative.
Continuing to explore the FMRP-dependent control of trans-
synaptic signaling mechanisms remains a high priority.

FMRP-Dependent BMP/ILP/Wnt Signaling
in Neuron-to-Glia Communication
Multiple FMRP-dependent secreted signals likely mediate
intercellular communication between neurons and glia in
brain development and circuit remodeling (Figure 2). In the
CNS, BMPs modulate neuronal metabolism (Xu et al., 2017;
Jensen et al., 2021), synaptic plasticity (Vickers et al., 2020; Jensen
et al., 2021), blood-brain barrier function (Wevers and de Vries,
2016; Abdullahi et al., 2017a, 2017b; Petersen et al., 2021), and cell
death (Hart et al., 2020). Mouse BMP2-10 are broadly distributed
across the brain, while BMP11-15 has not been well studied
(Jensen et al., 2021). None of the Drosophila BMP ligands (Dpp,
Gbb, Scw) have been well characterized in the CNS, but likely
show a similarly robust distribution. In both mouse and
Drosophila, multiple reports demonstrate that BMP signaling
plays essential roles in communication between neurons and
glia in development, in neural remodeling after injury, and during
aging (Petersen et al., 2017; Díaz-Moreno et al., 2018; Sasaki et al.,
2019; Hart et al., 2020). However, the role of BMP signaling in the
CNS of FXS disease models has not yet been investigated. In the
Drosophila FXSmodel, FMRP is required in neurons, but not glia,
for glial phagocytosis during brain clock circuit remodeling

(Figure 2; Vita et al., 2021). FMRP binds Drosophila BMPR2
homologWit mRNA to inhibit translation (Kashima et al., 2016),
suggesting it might limit BMP signaling on the receptor side.
FMRP may also regulate secreted “find me” or “eat me” signals to
affect neuronal removal during adult brain circuit remodeling
(Figure 2). In this hypothesis, is it possible that glial-secreted
BMPs feedback to neuronal FMRP-modulated phagocytosis
signals? In addition, loss of FMRP increases pMad signaling in
neurons (Song et al., 2022), and reduced neuronal pMad may
impair glial-dependent neuronal clearance in the FXS model. It
will be important to test possible FMRP-pMad mechanisms of
glial phagocytosis.

The role of FMRP-dependent insulin and Wnt signaling in
neuron-glia communication has just begun to be studied. Neurally
secreted ILPs are suspected to activate glial engulfment for neuronal
clearance (Vita et al., 2021). However, it is not clear if the secreted ILP
signal is a “find me” or “eat me” signal activating the glial InRs
(Figure 2).Drosophila InRs in ensheathing glia and astrocyte-like glia
are required for neuronal clearance following injury (Musashe et al.,
2016) as well as restriction of lifespan extension (Woodling et al.,
2020). In mice, an InR deficiency in astrocyte glia leads to aberrant
morphology, mitochondrial function, and circuit connectivity
(García-Cáceres et al., 2016; Rhea and Banks, 2019). In
Drosophila, signaling downstream of activated glial InRs promotes
Akt phosphorylation, which is essential for Draper phagocytosis
receptor expression (Musashe et al., 2016). These discoveries
provide exciting hints that neuronal FMRP may facilitate ILP
secretion to activate glial phagocytosis function by promoting
Draper expression, which could also activate glia to respond to
the neuronal FMRP-controlled “eat me” signals (Figure 2). It will
be important to integrate roles of proposed neuronal “eat me” ligands
activating Draper, such as phosphatidylserine (PS) and Pretaporter
(Kuraishi et al., 2009; Kurematsu et al., 2022). Moreover, Wnt
signaling may also likely play a role in neuron-glial
communication in the FXS model (Casingal et al., 2020; Peteri
et al., 2021). Perhaps we can learn about neuron-glia Wnt
signaling from neurodegeneration disease models? For example,
mouse Parkinson’s disease (PD) models show the Wnt/β-catenin
pathway plays a central role in the response of astrocyte andmicroglia
to neuroinflammation, neural mitochondrial dysfunction,
dopaminergic neuroprotection, and oxidative stress (Marchetti,
2020). Similarly, it will be important to test the possible role of
the neuron-glial Wnt (Wg) signaling cascade in the FXS model. We
need to explore howWnt signaling may work together with secreted
BMP and ILP signals to regulate glial phagocytosis during brain
circuit remodeling. Numerous studies suggest that both Wnt and
BMP signaling bidirectionally regulate an insulin-dependent network
for developmental homeostasis (Chen et al., 2010; Foley, 2012; Cabrae
et al., 2020; Baboota et al., 2021; Mao et al., 2021; Tian et al., 2021).
BMP-Wnt cross interactions also help maintain physiological
processes (Thorne et al., 2018; Chhabra et al., 2019; Wang et al.,
2020). Nevertheless, it is hard to define upstream and downstream
roles in this signaling. Although FMRP has a number of direct targets
in all three signaling cascades, it is urgent to profile the overlapping
core targets to guide drug design for FXS animal models and clinical
trials. Identifying therapeutic treatments is desperately needed to
combat devastating neurological impairments in FXS patients.
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