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Pacific abalone, Haliotis discus hannai, is a highly commercial seafood in Southeast Asia.
The present study aimed to determine the influence of saccharides and vitamins on post-
thaw sperm quality, ATP content, fertilization capacity, hatching capacity, and mRNA
content of motility and fertilization-associated genes of Pacific abalone. Sperm
cryopreserved using saccharides improved the post-thaw sperm quality including
motility, acrosome integrity (AI), plasma membrane integrity (PMI), and mitochondrial
membrane potential (MMP). However, vitamins (L-ascorbic acid) did not result in any
significant improvement in sperm quality. Sperm cryopreserved using saccharides also
improved ATP content, DNA integrity, and mRNA content of motility and fertilization-
associated genes of post-thaw sperm than sperm cryopreserved without saccharides.
Among sperm cryopreserved using different saccharides, post-thaw sperm quality
indicators (except PMI) and mRNA content of motility and fertilization-associated genes
did not show significant differences between sperm cryopreserved using 3% sucrose (S)
combinedwith 8% dimethyl sulfoxide (DMSO) and sperm cryopreserved using 1% glucose
(G) combined with 8% ethylene glycol (EG). However, sperm cryopreserved using 3% S +
8%DMSO showed higher post-thaw sperm quality (motility: 58.4 ± 2.9%, AI: 57.1 ± 3.2%,
PMI: 65.3 ± 3.3%, and MMP: 59.1 ± 3.2%), ATP content (48.4 ± 1.8 nmol/ml), and% DNA
in tail (2.09 ± 0.20%) than sperm cryopreserved using other saccharides. When sperms
were cryopreserved using 3% S + 8% DMSO, the mRNA content of motility (heat shock
protein 70, HSP70; heat shock protein 90, HSP90; protein kinase A, PKA-C; axonemal
protein 66.0, Axpp66.0; and tektin-4) and fertilization-associated (sperm protein 18 kDa,
SP18 kDa) genes were higher than in sperm cryopreserved using other saccharides.
However, changes in themRNA contents of these genes were insignificant between sperm
cryopreserved using 3% S + 8%DMSO and 1%G + 8% EG. Taken together, these results
indicate that cryopreservation using 3% S + 8% DMSO can improve post-thaw sperm
quality and mRNA contents better than other examined cryoprotectants. The present
study suggests that 3% S + 8% DMSO is a suitable cryoprotectant for sperm
cryopreservation and molecular conservation of this valuable species.
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1 INTRODUCTION

Pacific abalone, Haliotis discus hannai is high-priced seafood
highly demandable in Korea and Southeast Asia (Sukhan et al.,
2022). It contains bioactive molecules with antioxidant and
anticancer activities that are beneficial for human health
(Suleria et al., 2017; Hossen et al., 2021a). Among invertebrate
species, the Pacific abalone is the main commercial aquaculture
species in Korea (Sharker et al., 2020; Sukhan et al., 2021).
Commercial aquaculture of abalone mostly depends on
hatchery-produced seeds (Sukhan et al., 2022). Seed
production of Pacific abalone using in vitro fertilization
requires good quality and a high quantity of sperm (Kim
et al., 2020a). Cryopreserved sperm can solve those issues by
supplying sperm through in vitro fertilization (Liu et al., 2014a;
Kim et al., 2020a). Cryopreservation is an auspicious
biotechnique that can ensure the conservation of genetic
diversity and a continuous supply of sperm (Gheller et al.,
2019; Kim et al., 2020b). Sperm cryopreservation is widely
applied to provide gametes throughout the year for artificial
insemination or to ensure alternative broodstock management
(Iorio et al., 2019; Hossen et al., 2021c).

The success of cryopreservation mostly depends on the types
and concentrations of cryoprotectants (CPAs) (Soni et al., 2019;
Hossen et al., 2021c). CPAs are categorized into basic two types
(penetrating CPA and non-penetrating CPA) depending on their
cell membrane permeability (Jang et al., 2017). Penetrating CPAs
(P-CPAs) reduce ice growth and cell dehydration during
cryopreservation (Wowk, 2007). Non-penetrating CPAs such
as saccharides, protein, amino acids, and vitamins are known
to play protective roles against extracellular ice crystallization
(Cabrita et al., 2011; Zhu et al., 2017; Ariyan et al., 2021). Non-
penetrating CPAs such as saccharides or vitamins combined with
penetrating CPAs have been recently used to improve the quality
of post-thaw sperm of fish and shellfish (Liu et al., 2014a; Liu
et al., 2014b; Liu et al., 2016; Sandoval-Vargas et al., 2021).
Saccharides such as glucose and sucrose can stabilize
phospholipids in the cell membrane and decrease the toxicity
of CPAs during cryopreservation (Hossen et al., 2021c). A
vitamin (ascorbic acid) is a water-soluble antioxidant which
can break chain reactions and remove free radicals during
cryopreservation (Zhang et al., 2012). Ascorbic acid can act as
a free radical scavenger by producing monodehydroascorbate
radicals that can prevent oxygen or other molecules from
producing more reactive radicals (Alamaary et al., 2020).

Despite its benefit, cryopreservation can reduce the
intracellular adenosine triphosphate (ATP) content of sperm
(Kommisrud et al., 2020). ATP is the main source of
biochemical energy that can regulate sperm motility (Cosson,
2012). Cryopreservation is known to decrease the quality of
sperm by damaging the acrosomal membrane, plasma
membrane, and mitochondrial membrane (Xin et al., 2018;
Soni et al., 2019; Hossen et al., 2021c; Khan et al., 2021).
Plasma membrane integrity (PMI), mitochondrial membrane

potential (MMP), and acrosome integrity (AI) are indicators
of the quality of cryopreserved sperm (He and Woods, 2004;
Hossen et al., 2021a). The fluorescent technique is an important
method to evaluate sperm quality. Recently, this technique has
been applied to assess PMI, MMP, and AI of shellfish sperm
(Pereira et al., 2010; Liu et al., 2014a; Kim et al., 2020a; Hossen
et al., 2021a; Hossen et al., 2021b). Cryopreservation can also
denature sperm deoxyribonucleic acid (DNA) integrity which can
be used to assess the success of sperm cryopreservation (Hossen
et al., 2021c; Khan et al., 2021; Kuo and Gwo, 2022).

Knowledge about the molecular basis of the cryopreservation
process and sperm damage is limited. Cryopreservation can alter
mRNA stability, gene and protein abundance, and epigenetic
content of sperm (Hezavehei et al., 2018). Cryopreservation using
only penetrating cryoprotectants (P-CPAs) can significantly
reduce the mRNA abundance of heat shock proteins
(HSP70 and HSP90) in oyster and Pacific abalone sperm
(Riesco et al., 2019; Hossen et al., 2021a). HSP70 could
activate Ca2

+-ATPase activity, whereas HSP90 is engaged in
intracellular calcium homeostasis and protein tyrosine
phosphorylation of sperm (Li et al., 2014; Zhang et al., 2015).
Calcium is a crucial secondary messenger that can control sperm
motility (Alshawa et al., 2019). Cryopreservation using P-CPAs
can also suppress the mRNA abundance of protein kinase A
(PKA-C) in Atlantic salmon and Pacific abalone sperm (Lee-
Estevez et al., 2019; Hossen et al., 2021a). PKA-C can regulate
CatSper channels which is crucial for the motility and fertility of
sperm (Mannowetz et al., 2017; Orta et al., 2018). PKA-C can
phosphorylate axonemal proteins (Axp). Axp66.0 has two PKA-
C phosphorylation sites that might regulate sperm motility
(Sukhan et al., 2020; Speer et al., 2021). Tektins are an
important family of proteins in the axoneme. They are the
main components of the sperm flagellum cytoskeleton that can
regulate sperm motility (Cao et al., 2018; Alshawa et al., 2019).
Cryopreservation can also suppress tektins in post-thaw sperm of
abalone (Sukhan et al., 2022).

To date, information on Pacific abalone sperm
cryopreservation is limited. Previously published studies have
reported sperm cryopreservation based on intracellular CPAs and
antifreeze proteins (Kim et al., 2020a; Hossen et al., 2021a;
Hossen et al., 2021b). However, the effects of saccharides and
vitamin on the post-thaw sperm quality of Pacific abalone have
not been reported yet. It is presently unclear whether
supplementation of saccharides or vitamins as non-penetrating
CPAs with P-CPAs could improve the post-thaw sperm quality of
Pacific abalone. There are limited studies on gene expression
fluctuations of important regulatory genes involved in motility
and their relationship with the fertilizing potential of
cryopreserved Pacific abalone sperm. Hence, the present study
aimed to assess the effects of supplementation of different
saccharides or vitamins with P-CPAs on the post-thaw sperm
quality of Pacific abalone. Cryopreserved sperm quality was
determined based on motility, AI, PMI, MMP, DNA integrity,
ATP content, and fertilization capacity. qRT-PCR was performed
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to quantify the mRNA content of spermmotility-associated genes
(HSP70, HSP90, PKA-C, Axp 66.0, and Tektin-4) and
fertilization-associated gene (SP18 kDa).

2 MATERIALS AND METHODS

2.1 Ethics Statement
Experimental protocols were approved by the Animal Care and
Use Committee of ChonnamNational University (CNU IACUC-
YS-2020-5). All experiments were conducted following the
Guidelines for the Care and Use of Laboratory Animals of the
National Institutes of Health.

2.2 Experimental Reagents
Glucose (G), sucrose (S), trehalose (T), L-ascorbic acid (L-As),
dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene
glycol (PG), glycerol (GLY), methanol (MeOH), and JC-1 dye
were purchased from Sigma-Aldrich (S. Louis, MO,
United States). Phosphate buffered saline (PBS: Ca2+ and Mg
free) was obtained from Life Technologies Ltd. (Paisley, UK).
LysoTracker™ green DND-26, and the LIVE/DEAD® sperm
viability kit were bought from Invitrogen Molecular Probes
(Eugene, OR, United States). A comet assay® (single-cell gel
electrophoresis) kit was purchased from Trevigen Inc.
(Gaithersburg, MD, United States).

2.3 Animal Handling and Management
Abalone hatchery (Tou-Jong soosan) in Yeosu, South Korea,
provided 3-year old mature Pacific abalone (H. discus hannai)
during the spawning season. Abalones were reared in cemented
tanks supplied with continuous seawater and an aeration system.
Brown algae, Saccharina latissima, were supplied to the tank as
food for the abalone. Cleaning was accomplished when required.
Abalones were carefully chosen by observing the whitish color of
swollen gonads.

A total of 185 abalones (male: n = 155; female: n = 30) were
used to conduct the experiments. Inducing and sperm collection
were accomplished according to the methods previously
described by Hossen et al. (2021a, 2021b). Briefly, abalones
were induced in sunlight for 1 hour with the shell facing down
and another 30 min with the muscle facing down. Abalones were
gently stripped to collect sperm. Sperm samples were
immediately transferred to Eppendorf tubes using a disposable
plastic dropper and kept in a refrigerator (4°C) until use (no more
than 15 min).

2.4 Quality Evaluation of Fresh Sperm
Sperm quality indicators such as motility, plasma membrane
integrity (PMI), acrosome integrity (AI), mitochondrial
membrane potential (MMP), and DNA integrity were
assessed to ensure the quality of fresh sperm. Experiments
were conducted using sperm having more than 90% motility.
Sperm motility was observed according to the method
described previously (Kim et al., 2020a; Hossen et al.,
2021a; 2021b). Briefly, the sperm were diluted 10 times
with filtered seawater (FSW) in an Eppendorf tube.

Subsequently, 1 µL of the diluted sample was gently mixed
with 50 µL of FSW on a glass slide (Superfrost Plus,
microscope slide, Fisher Scientific, United States) and
observed under a microscope (Nikon Eclipse E200) using a
20x objective lens. Fresh sperm motility is present as percent
value (mean ± SD) (n = 10). PMI, AI, MMP, and DNA
integrity were determined using LIVE/DEAD®, LYSO-G/PI®,
JC-1 dye, and a comet assay kit® (described in Section 2.6 and
Section 2.7), respectively.

2.5 Sperm Cryopreservation Protocol
The basic sperm cryopreservation protocol was applied according
to the method described previously (Kim et al., 2020a; Hossen
et al., 2021a). Briefly, the sperm were diluted with filtered
seawater (FSW) at a ratio of 1:10 (sperm:SW). Penetrating
cryoprotectant (P-CPA) solutions were prepared by mixing
each P-CPA (8% DMSO, 8% EG, 6% PG, 2% GLY, or 2%
MeOH) with FSW. Saccharides (glucose, sucrose, and
trehalose) or vitamin (L-ascorbic acid) at different
concentrations (described in Section 2.5) were separately
mixed with P-CPA solutions to prepare final extenders.
Diluted sperm were mixed with each extender at an equal
ratio (v:v) with a final concentration of 3.85 × 107 cells/mL.
Sperm samples were equilibrated for 10 min and transferred into
0.5 ml straws using an Eppendorf syringe. Sealing powder was
used to seal the straws. The straws were then positioned in a 5 cm
rack height of a Styrofoam box (length: 25.0 cm x width: 25.0 cm x
height: 21.0 cm) for 10 min and subsequently submerged into
liquid nitrogen for at least 2 hours. The straws were then
transferred into a 38-L storage tank (model: 38VHC-11M,
serial: 80907, Worthington Industries, United States) until
further use. The straws were then thawed at 60°C for 5 s in a
water bath (JISICO lab & Scientific Instrument, Seoul, South
Korea) using seawater.

2.6 Effects of Saccharides and Vitamin on
Post-Thaw Sperm Motility
To determine the effects of saccharides and vitamin combined
with penetrating CPAs, five types of penetrating CPAs at suitable
concentrations (8% DMSO, 8% EG, 6% PG, 2% GLY, or 2%
MeOH) were selected based on our previous findings (Kim et al.,
2020a). Three saccharides, glucose (G), sucrose (S), and trehalose
(T), and a vitamin, L-ascorbic acid (L-As), were also selected to
conduct the experiment (n = 10).

2.6.1 Experiment-1: Effects of Saccharides + DMSO or
Vitamin + DMSO on Post-Thaw Sperm Motility
Saccharides were separately mixed with 8% DMSO at different
final concentrations (1, 2, 3, 4, and 5%). L-As was mixed with 8%
DMSO at final concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5%.

2.6.2 Experiment-2: Effects of Saccharides + EG or
Vitamin + EG on Post-Thaw Sperm Motility
Saccharides were separately mixed with 8% EG at different final
concentrations (1, 2, 3, 4, and 5%). L-As was supplemented with
8% EG at final concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5%.
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2.6.3 Experiment-3: Effects of Saccharides + PG or
Vitamin + PG on Post-Thaw Sperm Motility
Saccharides were separately mixed with 6% PG at different final
concentrations (1, 2, 3, 4, and 5%). L-As was supplemented with
6% PG at final concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5%.

2.6.4 Experiment-4: Effects of Saccharides + GLY or
Vitamin + GLY on Post-Thaw Sperm Motility
Saccharides were separately mixed with 2% GLY at different final
concentrations (1, 2, 3, 4, and 5%). L-As was supplemented with
each penetrating CPA at final concentrations of 0.1, 0.2, 0.3, 0.4,
and 0.5%.

2.6.5 Experiment-5: Effects of Saccharides + MeOH or
Vitamin + MeOH on Post-Thaw Sperm Motility
Saccharides were separately mixed with 2% MeOH at different
final concentrations (1, 2, 3, 4, and 5%). L-As was supplemented
with 2% MeOH at final concentrations of 0.1, 0.2, 0.3, 0.4,
and 0.5%.

2.7 Fluorescence Technique to Assess
Post-Thaw Sperm Quality
Five cryoprotectant solutions (3% S + 8% DMSO, 1% G + 8% EG,
2% G + 6% PG, 3% G + 2% GLY, and 4% T + 2% MeOH) were
selected to assess the post-thaw sperm quality based on the best
findings from each motility experiment.

2.7.1 Plasma Membrane Integrity (PMI)
Plasma membrane integrity (PMI) was visualized using a LIVE/
DEAD® sperm viability kit following the protocol described by
Hossen et al. (2021a) with slight modifications. Briefly, the sperm
samples were diluted with FSW to a final concentration of 1 × 106

cells/mL. Diluted sperm samples were fixed using a
hemocytometer (Paul Marienfeld GmbH & Co., Germany). A
2.5 µL aliquot of SYBR™ 14 dye was mixed with 500 μL of the
sperm sample and incubated at 37°C for 10 min in the dark.
Subsequently, PI (5 µL) was gently mixed with each sample for
further incubation at 37°C for 10 min in the dark. A 2 μL aliquot
of the stained sample was placed on a glass slide and visualized
under a fluorescence microscope (Nikon Eclipse E600, Japan).
SYBR14-stained images of intact plasma membranes (SYBR14+/
PI−) were captured using a green filter (excitation wavelength:
450–490 nm). PI-stained images of damaged plasma membranes
(SYBR14-/PI+) were captured using a red filter (emission
wavelength: 510–560 nm). Visualization and analysis (n = 10)
were performed according to the method described by Hossen
et al. (2021c).

2.7.2 Acrosome Integrity (AI)
Acrosome integrity of fresh and cryopreserved sperm was
determined using a previously described LYSO-G/PI® method
(Hossen et al., 2021a; Hossen et al., 2021b) with slight
modifications. Briefly, the sperm were diluted with FSW to a
final concentration of 1 × 106 cells/mL. LYSO-G and PI dye were
pre-incubated in a thermobath (model: ALB128, FINEPCR®,

Korea) at 37°C for 10 min. After that, 5 µL of LYSO-G and
10 µL of PI were gently mixed with 500 µL of the sample and
incubated at 37°C for 30 min in the dark. The stained sample
(2 µL) was placed on a glass slide and covered with a cover
slip. Samples were instantly observed under a fluorescence
microscope (Nikon Eclipse E600, Japan). LYSO-G-stained
images of intact acrosomes (LYSO-G+/PI−) were captured
using a green filter (B-2A; Ex 450–490 nm). PI-stained images
of damaged spermatozoa were captured using a red filter (G-2A;
Ex 510–560 nm). Fluorescence images captured with green and
red filters were merged with pictures taken without a filter to
determine the AI values of fresh and cryopreserved sperm.
Visualization and analysis (n = 10) were performed according
to the method described in the “plasma membrane integrity”
section.

2.7.3 Mitochondrial Membrane Potential (MMP)
Mitochondrial membrane potential (MMP) values of fresh and
cryopreserved sperm were detected using a previously described
JC-1 fluorescent dye method (Binet et al., 2014), with minor
modifications. Briefly, 2.5 μL of JC-1 dye was mixed with 300 μL
of the sample (1 × 106 cells/mL) and incubated at 37°C in the dark
for 18 min. Subsequently, JC-1-stained images of intact
mitochondrial membranes (red) were captured using a red
filter (G-2A; ex: 510–560 nm). The fluorescence images
captured with the red filter were merged with the pictures
taken without a filter to detect the MMP values of fresh and
cryopreserved sperm. Sperm having a red colored mitochondrial
membrane was considered intact mitochondria. Visualization
and analysis (n = 10) were performed according to the
method described in the previous section.

2.8 Comet Assay to Detect DNA Integrity of
Sperm
Comet assays (single-cell gel electrophoresis) of sperm
cryopreserved using 3% S + 8% DMSO, 1% G + 8% EG, 2%
G + 6% PG, 3% G + 2% GLY, and 4% T + 2% MeOH were
performed using a Comet assay® kit following a published
protocol (Hossen et al., 2021a) with minor modifications.
Briefly, fresh and post-thaw sperm were diluted with pre-
chilled 1× PBS to a final concentration of 1 × 105 cells/mL.
the sperm were immobilized on comet slides™ using comet
agarose. The slides were treated with pre-chilled lysis buffer
solution for 1 hour and then treated with pre-chilled alkaline
unwinding solution for another hour. After that, the slides were
electrophoresed in a cometAssay® electrophoresis system for
30 min at 21 V with an alkaline electrophoresis solution. The
slides were washed twice with distilled deionized water, dried in a
37°C incubator for 30 min, and stained with Vista Green DNA
dye. Stained comets were visualized and captured using a
fluorescence microscope (Ex 450–490 nm, Nikon Eclipse E600,
Japan) with a 20× lens. A minimum of 100 comets from each
replication was used to analyze the comet parameters (n = 5).
Sperm DNA integrity parameters such as % DNA in tail and olive
tail moment were analyzed using comet Assay IV image analysis
software (version 4.3.2, Perceptive Instruments Ltd., UK).
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2.9 Adenosine Triphosphate (ATP) Assay
Intracellular adenosine triphosphate (ATP) contents in fresh and
cryopreserved sperm were detected using an ATP assay kit (code
# BM-ATP-100, PicoSens™, Biomax, Seoul, South Korea).
Briefly, sperm samples were homogenized in 100 μL of assay
buffer and later resuspended in assay buffer to a concentration of
3.87 × 106 cells/mL. Then, 50 μL of each sample (n = 10) was
transferred to a well in a 96-well plate. Subsequently, 50 μL of the
ATP reactionmixture was added to each well andmixed by gently
shaking the plate for 2 min in a rotary shaker to induce cell lysis.
After 30 min of incubation at room temperature in the dark, the
absorbance at 570 nm was measured using a microplate reader
(Epoch 2, BioTek, Winooski, VT, United States). To generate a
standard curve, ATP standard solutions were prepared from a
10 mM ATP standard. The absorbance value for each test sample
was converted to the corresponding ATP concentration (nM)
using the standard curve.

2.10 mRNA Content of Motility-Associated
Genes in Sperm Cryopreserved Using
Saccharides Supplemented With
Penetrating CPAs
After the sperm were cryopreserved with different cryoprotectant
solutions (3% S + 8% DMSO, 1% G + 8% EG, 2% G + 6% PG, 3%
G + 2% GLY, and 4% T + 2% MeOH), the mRNA content of
motility and fertilization-associated genes was quantified (n = 5).

2.10.1 Total RNA Extraction and cDNA Synthesis of
Cryopreserved Sperm
Total RNAs were extracted from fresh and cryopreserved (3% S +
8% DMSO, 1% G + 8% EG, 2% G + 6% PG, 3% G + 2% GLY, and
4% T + 2% MeOH) sperm (n = 5). An RNeasy mini kit (Qiagen,
Hilden, Germany) was used to extract the total RNA according to
the method described by Hossen et al. (2021a; 2021b). Genomic
DNA contamination was eliminated by performing RNase-free
DNase (Promega, Madison, WI, United States) treatment.
Concentrations of the total RNA were measured with a
spectrophotometer (ACTGene ASP-2680, United States). The
Total RNA was reverse transcribed to cDNAs using a

Superscript® III First-Strand synthesis kit (Invitrogen,
Carlsbad, CA, United States).

2.10.2 Quantitative Real-Time PCR
Quantitative PCR (qRT-PCR) was performed to determine the
mRNA expression levels of HSP70, HSP90, PKA-C, Axp66.0,
Tektin-4, and SP18 kDa in fresh and cryopreserved (3% S + 8%
DMSO, 1% G + 8% EG, 2% G + 6% PG, 3% G + 2% GLY, and 4%
T + 2% MeOH) sperm samples. Gene-specific primers (Table 1)
were designed to perform qRT-PCR in a LightCycler® 96 System
(Roche, Germany) using a 2× qPCRBIO SyGreen Mix Lo-Rox kit
(PCR Biosystems, Ltd., London, UK) according to published
methods (Hossen et al., 2021a; Hossen et al., 2021b). Briefly, a
20 µL reactionmix containing 1 µL cDNA template of each sperm
sample, 1 µL (10 pmol) of each forward and reverse primer, 10 µL
SyGreen Mix, and 7 µL PCR-grade water were used to perform
qRT-PCR. The melting temperature was determined using a
default setting: 95°C for 10 s, 65°C for 1 min, and 97°C for
1 min. PCR conditions were fixed according to conditions
described by Hossen et al. (2021a). The relative mRNA
content was quantified using the 2−ΔΔct method (Livak and
Schmittgen, 2001). mRNA contents were normalized against
the expression level of β-actin, a housekeeping gene.

2.11 Fertility and Hatchability Test
Reproductively matured females (N = 30) were selected from
the rearing tank. Induction of spawning was accomplished
according to a method described by Hossen et al. (2021a).
After spawning, the egg quality was checked under a
microscope (Nikon Eclipse E200, Japan) to evaluate the
shape of the envelope, the nucleus, and egg color. Sperm
cryopreserved with 8% DMSO or 8% DMSO combined with
3% sucrose were used in in vitro fertilization to observe the
fertilization and hatching rates. Fertilization experiments
were conducted using a series of plastic bowls (2 L,
40,000 eggs in each bowl). The sperm to egg ratio of
10,000:1 was maintained in the fertilization experiment
according to a previous report (Hossen et al., 2021a).
Fertilized eggs were washed three times (30 min intervals)
using FSW. The water temperatures of experimental bowls

TABLE 1 | List of primers used for qRT-PCR quantification of genes in sperm.

Gene Primer Sequence Amplicon length (Bp) GenBank/References

β-actin Sense 5′-CCGTGAAAAGATGACCCAGA-3′ 204 AY380809.1
Antisense 5′-TACGACCGGAAGCGTACAGA-3′

HSP70 Sense 5′-CAGAGAACACAATCTTCGATGC-3′ 277 DQ324856.1
Antisense 5′-CGTTGAGAGTCGTTGAAGTAAG-3′

HSP90 Sense 5′-AACAGTACATCTGGGAGTCG-3′ 216 GU014545.1
Antisense 5′-CCTCCTTGTCTCTTTCCTTCT-3′

PKA-C Sense 5′-AGCCAGCAGTTGCAAATGC-3′ 199 Kong et al. (2020)
Antisense 5′-CTTCTCATTTAATGTGTGCTCC-3′

Axp66.0 Sense 5′-GGTCAAGTTCAACAACCAGC-3′ 200 MN270935.1
Antisense 5′-GCATCTTGTTGTACGCCTCG-3′

Tektin-4 Sense 5′-TCCGAGGTGACCAAGAAGC-3′ 185 MZ265399.1
Antisense 5′-CAGTTCAGATTGTCTGTTGCA-3′

SP18 kDa Sense 5′-GTATCCGCAATGAAGGTAGGG-3′ 194 OL411494.1
Antisense 5′-CCTCTCGCCTTTATCATCAG-3′
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were maintained at 18–20 °C. The fertilization rate (n = 3) was
calculated based on a 2 h post-fertilized embryo. The hatching
rate (n = 3) was analyzed based on 16 h post-fertilized veliger
larvae. The fertilization rate and hatching rate were
calculated based on the method described by Hossen et al.
(2021a).

2.12 Statistical Analysis
All statistical analyses were performed using SPSS 16.00 (SPSS Inc.,
Chicago, IL, United States). All statistical data generated in figures
and tables are presented as mean ± standard deviation (SD). One-
way analysis of variance (ANOVA) and Duncan’s multiple
comparisons test were used to evaluate different treatments.

FIGURE 1 | Effects of saccharides (sucrose, glucose, and trehalose) and vitamin (L-ascorbic acid) on the post-thaw sperm quality of Pacific abalone. (A) Post-thaw
motility of sperm cryopreserved using different concentrations of saccharides (1, 2, 3, 4, and 5%) and vitamin (0.01, 0.02, 0.03, 0.04, and 0.05%) combined with 8%
DMSO. (B) Post-thaw motility of sperm cryopreserved using different concentrations of saccharides (1, 2, 3, 4, and 5%) and vitamin (0.01, 0.02, 0.03, 0.04, and 0.05%)
combined with 8% EG. (C) Post-thaw motility of sperm cryopreserved using different concentrations of saccharides (1, 2, 3, 4, and 5%) and vitamin (0.01, 0.02,
0.03, 0.04, and 0.05%) combined with 6% PG. (D) Post-thaw motility of sperm cryopreserved using different concentrations of saccharides (1, 2, 3, 4, and 5%) and
vitamin (0.01, 0.02, 0.03, 0.04, and 0.05%) combined with 2%GLY. (E) Post-thawmotility of sperm cryopreserved using different concentrations of saccharides (1, 2, 3,
4, and 5%) and vitamin (0.01, 0.02, 0.03, 0.04, and 0.05%) combined with 2% MeOH. Significant difference (p < 0.05) is denoted by different letters.
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Differences were considered statistically significant at p < 0.05.
Pearson correlation analysis was performed to determine the
relationships between sperm quality with oxidative stress-
associated parameters. GraphPad Prism software (GraphPad
Prism version 9.3.1 for Windows; GraphPad Software, CA,
United States) was used to generate graphs. Pearson’s correlation
coefficient was determined using SPSS 16.00 with the standard
procedure. Pearson’s correlation coefficient was determined using
a standard procedure in SPSS 26.00. The correlation was considered
significant at the 0.01 level (two-tailed).

3 RESULTS

3.1 Experiment-1: Effects of Saccharides +
DMSO or Vitamin + DMSO on Post-Thaw
Sperm Motility
Sperm cryopreserved using 3% S + 8% DMSO showed significantly
higher post-thaw motility (58.4 ± 2.9%) than sperm in other groups

(Figure 1A). Supplementation of L-As with 8% DMSO did not
improve the post-thaw motility (Figure 1A).

3.2 Experiment-2: Effects of Saccharides +
EG or Vitamin + EG on Post-Thaw Sperm
Motility
The highest post-thaw motility was detected when the sperm were
cryopreserved using 1% G + 8% EG (58.3 ± 2.1%) (Figure 1B).
However, cryopreservation with 3% S + 8% EG improved the post-
thawmotility compared with the control. Notably, L-As with 8% EG
did not improve post-thaw motility (Figure 1B).

3.3 Experiment-3: Effects of Saccharides +
PG or Vitamin + PG on Post-Thaw Sperm
Motility
Sperm cryopreserved with 2% G + 6% PG had the highest post-thaw
spermmotility (33.7 ± 1.8%) (Figure 1C). Sperm cryopreserved with
2%G+ 6%PGalso showed significantly improved post-thawmotility

FIGURE 2 | Effects of saccharides (sucrose, glucose, and trehalose) on plasma membrane integrity (PMI) of post-thaw sperm. (A) SYBR14/PI-stained images of
fresh and cryopreserved sperm. (B)PMI values of different types of post-thaw sperm. Results are presented asmean values ±standard deviation (n = 10). DMSO+S: 8%
dimethyl sulfoxide (DMSO) combined with 3% sucrose (S), EG + G: 8% ethylene glycol (EG) combined with 1% glucose (G), PG + G: 6% propylene glycol (PG) combined
with 2% glucose (G), GLY + G: 2% glycerol combined with 3% glucose (G), and MeOH + T: 2% methanol (MeOH) combined with 4% trehalose (T). Significantly
different levels (p < 0.05) are denoted by different letters.
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compared with the control. However, L-As with 8% EG did not
improve post-thaw motility compared with the control (Figure 1C).

3.4 Experiment-4: Effects of Saccharides +
GLY or Vitamin + GLY on Post-Thaw Sperm
Motility
In this experiment 3% G, 3% T, and 0.2% L-As individually
combined with 2% GLY significantly improved the post-thaw
sperm motility (Figure 1D). Sperm cryopreserved with 3% G +
2% GLY showed the highest post-thaw motility (54.1 ± 3.8%).

3.5 Experiment-5: Effects of Saccharides +
MeOH and Vitamin + MeOH on Post-Thaw
Sperm Motility
In this experiment, 3% S, 1% G, or 4% T combined with 2%
MeOH significantly improved the post-thaw sperm motility
(Figure 1E). Sperm cryopreserved with 4% T + 2% MeOH
showed the highest post-thaw motility (44.1 ± 2.8%).

3.6 Fluorescent Technique for Assessing
PMI, AI, and MMP of Cryopreserved Sperm
3.6.1 Plasma Membrane Integrity (PMI)
Sperm cryopreserved using 3% S + 8% DMSO showed
significantly (p < 0.05) higher plasma membrane integrity
(PMI) (65.3 ± 3.3%) than sperm cryopreserved with other
types of cryoprotectant solutions (Figure 2). However, the
PMI of sperm cryopreserved using 1% G + 8% EG (60.5 ±
1.8%) was not significantly different from that of the sperm
cryopreserved using 3% G + 2% GLY (57.2 ± 2.9%) (p > 0.05).

3.6.2 Acrosome Integrity (AI)
Sperm cryopreserved using 3% S + 8% DMSO showed
improved acrosome integrity (AI) (57.1 ± 3.2%) than sperm
cryopreserved with other types of cryoprotectant solutions
(Figure 3). However, the sperm cryopreserved using 2% G
+ 6% PG showed significantly (p < 0.05) lower AI (30.4 ± 2.9%)
than sperm cryopreserved with other types of cryoprotectant
solutions.

FIGURE 3 | Effects of saccharides (sucrose, glucose, and trehalose) on acrosome integrity (AI) of post-thaw sperm. (A) LYSO-G/PI-stained images of fresh and
cryopreserved sperm. (B) AI values of different types of post-thaw sperm. Results are presented as mean values ±standard deviation (n = 10). DMSO + S: 8% dimethyl
sulfoxide (DMSO) combined with 3% sucrose (S), EG + G: 8% ethylene glycol (EG) combined with 1% glucose (G), PG + G: 6% propylene glycol (PG) combined with 2%
glucose (G), GLY + G: 2% glycerol combined with 3% glucose (G), and MeOH + T: 2% methanol (MeOH) combined with 4% trehalose (T). Significantly different
levels (p < 0.05) are denoted by different letters.
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3.6.3 Mitochondrial Membrane Potential (MMP)
Sperm cryopreserved using 3% S + 8% DMSO showed an improved
mitochondrial membrane potential (MMP) (60.1 ± 4.3%) than
sperm cryopreserved with other types of cryoprotectant solutions
(Figure 4). However, sperm cryopreserved using 2% G + 6% PG
showed a significantly (p < 0.05) lower MMP (30.0 ± 3.4%) than
sperm cryopreserved with other types of cryoprotectant solutions.

3.7 Sperm DNA Integrity
Results of deoxyribonucleic acid (DNA) integrity of different types of
post-thaw sperm are shown in Figure 5. The%DNA in tail of sperm
cryopreserved with 3% S + 8% DMSO was 2.09 ± 0.20%, which was
not significantly (p > 0.05) different from that of sperm
cryopreserved using 1% G + 8% EG (2.16 ± 0.15%) or 3% G +
2% GLY (2.19 ± 0.17%).

3.8 Adenosine Triphosphate (ATP) Contents
Sperm cryopreserved using saccharides (Figure 6) showed improved
intracellular ATP concentrations than those cryopreserved without

the addition of saccharides (Supplementary Figure S1). Sperm
cryopreserved using 3% sucrose combined with 8% DMSO
presented the highest intracellular ATP content among all
cryopreserved sperm. Sperm cryopreserved using 2% glucose
combined with 6% PG showed a significantly lower ATP content
than other examined cryopreserved sperm samples. However, fresh
sperm showed significantly higher ATP contents than all examined
cryopreserved sperm.

3.9 Gene Expression in Cryopreserved
Sperm
3.9.1 Expression of Motility Regulating Gene in
Cryopreserved Sperm
3.9.1.1 Expression Analysis of the HSP70 mRNA Transcript
The relative mRNA content of HSP70 in fresh and
cryopreserved sperm is given in Figure 7A. Sperm
cryopreserved using 3% sucrose combined with 8% DMSO
showed improved mRNA content than other types of post-

FIGURE4 | Effects of saccharides (sucrose, glucose, and trehalose) on themitochondrial membrane potential (MMP) of post-thaw sperm. (A) JC-1-stained images
of fresh and cryopreserved sperm. (B)MMP results of different types of post-thaw sperm. Results are presented as mean values ±standard deviation (n = 10). DMSO +
S: 8% dimethyl sulfoxide (DMSO) combined with 3% sucrose (S), EG + G: 8% ethylene glycol (EG) combined with 1% glucose (G), PG + G: 6% propylene glycol (PG)
combined with 2% glucose (G), GLY + G: 2% glycerol combined with 3% glucose (G), and MeOH + T: 2% methanol (MeOH) combined with 4% trehalose (T).
Significantly different levels (p < 0.05) are denoted by different letters.
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thaw sperm, although the mRNA content of sperm
cryopreserved using 3% sucrose combined with 8% DMSO
was not significantly different (p > 0.05) from that of sperm
cryopreserved using 1% glucose combined with 8% EG.
However, sperm cryopreserved using 2% glucose combined
with 6% PG showed significantly lower mRNA content of
HSP70 than other cryopreserved sperm.

3.9.1.2 Expression Analysis of the HSP90 mRNA Transcript
Post-thaw sperm showed significantly (p < 0.05) lower
HSP90 mRNA content than fresh sperm. The mRNA content
of HSP90 in sperm cryopreserved using 3% sucrose combined
with 8% DMSO was improved than those in sperm cryopreserved
using other types of CPAs (Figure 7B). However, the
HSP90 mRNA content of sperm cryopreserved using 3%

sucrose combined with 8% DMSO was not significantly (p >
0.05) different from that of sperm cryopreserved using 1% glucose
combined with 8% EG.

3.9.1.3 Expression Analysis of the PKA-C mRNA Transcript
Sperm cryopreserved using 3% sucrose combined with 8%DMSO
showed a higher PKA-C mRNA content than those
cryopreserved using other types of cryoprotectants
(Figure 7C), except for those cryopreserved using 1% glucose
combined with 8% EG which showed no significant (p > 0.05)
difference in the PKA-C mRNA content with sperm
cryopreserved using 3% sucrose combined with 8% DMSO.
However, significantly (p < 0.05) lower mRNA content of
PKA-C was found for post-thaw sperm cryopreserved using
2% glucose combined with 6% PG.

FIGURE 5 | Deoxyribonucleic acid (DNA) integrity of sperm cryopreserved using saccharides (sucrose, glucose, and trehalose). (A) Vista green dye-stained comet
images of fresh and cryopreserved sperm. (B) Sperm nuclear DNA fragmentation (% DNA in tail) in different types of post-thaw sperm. (C) Olive tail moment of different
types of post-thaw sperm. Results are presented as mean values ±standard deviation (n = 5). DMSO + S: 8% dimethyl sulfoxide (DMSO) combined with 3% sucrose (S),
EG +G: 8% ethylene glycol (EG) combined with 1% glucose (G), PG +G: 6%propylene glycol (PG) combined with 2% glucose (G), GLY +G: 2% glycerol combined
with 3% glucose (G), and MeOH + T: 2% methanol (MeOH) combined with 4% trehalose (T). Significantly different levels (p < 0.05) are denoted by different letters.
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3.9.1.4 Expression Analysis of the Axp66.0 mRNA Transcript
Cryopreserved sperm showed relatively lower Axp66.0 mRNA
content than fresh sperm (Figure 7D). However, the
Axp66.0 mRNA content in sperm cryopreserved using 3% sucrose
combined with 8% DMSO showed significant improvement (p <
0.05) than those cryopreserved using other types of cryoprotectants.
Post-thaw sperm cryopreserved using 2% glucose combined with 6%
PG showed significantly (p < 0.05) lower mRNA content of Axp66.0.

3.9.1.5 Expression Analysis of the Tektin-4 mRNA Transcript
Tektin-4mRNA in cryopreserved spermwas relatively lower than
that in fresh sperm (Figure 7E). Sperm cryopreserved using 3%
sucrose combined with 8% DMSO showed improved Tektin-4
mRNA content than those cryopreserved using other types of
cryoprotectant. However, significantly (p < 0.05) lower mRNA
expression of tektin-4 was quantified from post-thaw sperm
cryopreserved using 2% glucose combined with 6% PG.

3.9.2 Expression of a Fertilization Protein (SP18-kDa)
in Cryopreserved Sperm
The SP18-kDa mRNA content was comparatively lower in
cryopreserved sperm than in fresh sperm (Figure 7F).
However, sperm cryopreserved using 3% S + 8% DMSO or
1% G + 8% EG showed significantly higher expression than
other examined cryopreserved sperm (Figure 7F).

3.10 Correlations Among Sperm Quality
Parameters
Correlations among post-thaw sperm quality parameters are
presented in Table 2. Post-thaw sperm motility showed

strongly positive correlations with AI (r = 0.917; p < 0.01) and
MMP (r = 0.913; p < 0.01). However, post-thaw motility showed
moderately negative correlations with % DNA in tail (r = -0.879;
p < 0.01).

3.11 Fertilization and Hatching Rates of
Cryopreserved Sperm
Saccharide (sucrose) supplementation with penetrating CPAs
improved fertilization and hatching rates than
cryopreservation using penetrating CPAs only (Figure 8).
However, sperm cryopreserved using 3% sucrose combined
with 8% DMSO showed significantly (p < 0.05) lower
fertilization and hatching rates than fresh sperm.

4 DISCUSSION

The goal of the present study was to investigate the effects of
saccharides (sucrose, glucose, and trehalose) or vitamin
(L-ascorbic acid) with P-CPAs on post-thaw sperm quality
(motility, PMI, AI, MMP, DNA integrity, and ATP content),
changes in the mRNA content of motility and fertilization-
associated genes, fertilization capacity, and hatching capacity
of Pacific abalone, H. discus hannai. The addition of
saccharides or a vitamin to a penetrating CPA is a potential
strategy to improve post-thaw sperm quality. It has been used in
several aquatic species and marine invertebrates for sperm
cryopreservation (Cabrita et al., 2011; Liu et al., 2014a; Liu
et al., 2014b; Liu et al., 2016; Rusco et al., 2019; Anjos et al.,
2021; Hossen et al., 2021c). The present study revealed that the
combination of saccharides with P-CPAs improved post-thaw
sperm motility than cryopreservation with only P-CPAs (8%
DMSO, 8% EG, 6% PG, 2% GLY, or 2% MeOH). This is likely
because saccharides such as glucose and sucrose can stabilize cell
membrane phospholipids during the cooling step of
cryopreservation (Ahn et al., 2018). On the other hand,
trehalose is a non-reducing disaccharide of glucose. It can act
as an extracellular CPA by exhibiting a protective role against
osmotic effects (Zhu et al., 2017; Ariyan et al., 2021). It can protect
the sperm against damage, thereby preventing fertility reduction
by protecting ice crystal formation inside the sperm (Purdy, 2006;
Ariyan et al., 2021). On the other hand, the supplementation of a
vitamin with different P-CPAs did not improve post-thaw
motility except 2% GLY.

In the present study, the supplementation of saccharides with
P-CPAs improved the ATP content than the control without the
supplementation of saccharides. Particularly, sperm
cryopreserved using 3% S + 8% DMSO showed improved
ATP content than all types of cryopreserved sperm samples.
Motility, MMP, and fertilization success depend on the ATP
content of the sperm (Figueroa et al., 2017). ATP produced by
mitochondria through oxidative phosphorylation is crucial for
maintaining the suitable function of sperm during the
fertilization process (Thuwanut et al., 2015; Figueroa et al.,
2019). The possible explanation of the ATP content in sperm

FIGURE 6 | Adenosine triphosphate (ATP) contents in different types of
post-thaw sperm cryopreserved using saccharides. DMSO + S: 8% dimethyl
sulfoxide (DMSO) combined with 3% sucrose (S), EG + G: 8% ethylene glycol
(EG) combined with 1% glucose (G), PG + G: 6% propylene glycol (PG)
combined with 2% glucose (G), GLY + G; 2% glycerol combined with 3%
glucose (G), and MeOH + T: 2% methanol (MeOH) combined with 4%
trehalose (T). Results are presented as mean values ±standard deviation (n =
10). Significantly different levels (p < 0.05) are denoted by different letters.
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cryopreserved with CPAs supplemented with saccharides might
be because saccharides can protect the sperm against membrane
damage during the freeze-thaw process.

The sperm of Pacific abalone has an outer acrosomemembrane,
a plasma membrane, an outer mitochondrial membrane, and
flagella. Thus, AI (vital parameter of fertility potential), PMI
(crucial physiological indicator), and MMP (key indicator of
mitochondrial activity) are quality indicators of sperm (Hossen
et al., 2021b). In the present study, supplementation of saccharides
with P-CPAs during cryopreservation improved AI, PMI, and
MMP, hence improving post-thaw sperm quality. Similar findings
have been reported for oyster (C. angulate) sperm (Anjos et al.,
2021). Among various combinations, 3% S + 8% DMSO showed
improved AI, PMI, and MMP of post-thaw sperm. Such
improvements might be possible because saccharides can be
used as energy sources. They can also reduce ice crystallization
and decrease toxicity during the cryopreservation process (Tian
et al., 2015; Hossen et al., 2021c). Saccharides have an osmotic
shock protective role during extracellular water exhaustion caused
by ice formation. They might also preserve the structural and
functional integrity of cell membranes (Ohki et al., 2014).

DNA integrity is a crucial indicator of fertilization capacity and
embryo quality (Shamsi et al., 2011; Liu et al., 2022). To provide
secured genetic materials to the offspring, intact DNA is essential
(Cabrita et al., 2010). The freeze-thaw process of cryopreservation
may damage the post-thaw sperm DNA integrity (Hossen et al.,
2021c). Rather than 2% G + 6% PG, other examined post-thaw
samples showed significantly similar DNA integrity. However, in
the present study, saccharides supplemented with P-CPAs
improved the post-thaw sperm DNA integrity than those
cryopreserved with P-CPAs alone (Hossen et al., 2021a).

Present findings indicate that supplementing saccharides can
improve the stability of post-thaw DNA integrity. Although
saccharides cannot penetrate the plasma membrane, they can
create an osmotic pressure and induce cell dehydration. It is
known that saccharides can interact with plasma membrane
phospholipids and increase sperm survivability during the
freezing step of cryopreservation (Sarıözkan et al., 2012).

Quantitative RT-PCR (qPCR) is a vital technique to determine
post-thaw sperm quality by assessing the mRNA content of sperm
motility-regulating genes (Riesco et al., 2019; Hossen et al., 2021a).
In marine mollusk, this method has been applied previously for
abalone and oyster sperm (Riesco et al., 2019; Hossen et al., 2021a;
Hossen et al., 2021b; Sukhan et al., 2022). It is well-known that the
ion channel regulates the motility of sperm (Ren et al., 2001;
Navarro et al., 2008). In this study, supplementing saccharides to
the extender improved mRNA content of ion channel-regulating
genes (HSP70, HSP90, and PKA-C) in post-thaw sperm than the
control without the addition of saccharides (Hossen et al., 2021a).
The same research group has previously reported such
improvements when sperm were preserved using antifreeze
protein supplemented with P-CPAs (Hossen et al., 2021b).
However, post-thaw sperm had lower mRNA content of
motility-associated ion channel-regulating genes than fresh
sperm. A similar downregulation pattern of mRNA in
cryopreserved sperm was previously reported in abalone and
oyster sperm (Riesco et al., 2019; Hossen et al., 2021a; Hossen
et al., 2021b). The present study also found that the mRNA content
of motility-regulating genes (Axp66.0 and tektin-4) was
downregulated in cryopreserved sperm than in fresh sperm.
Sperm cryopreserved using 3% S + 8% DMSO showed higher
mRNA content of Axp66.0 and tektin-4 than other examined

FIGURE 7 | mRNA content of motility and fertility-associated gene in saccharide-supplemented cryopreserved sperm of Pacific abalone (n = 5). (A) Heat shock
protein 70 (HSP70) mRNA content. (B) Heat shock protein 90 (HSP90) mRNA content. (C) cAMP-dependent protein kinase (PKA-C) mRNA content. (D) Axonemal
protein 66.0 (Axp66.0) mRNA content. (E) Tektin-4 mRNA content. (F) Fertilization protein (SP18 kDa) mRNA content. mRNA content values were normalized against
average ΔCT values of the control. DMSO + S: 8% dimethyl sulfoxide (DMSO) combined with 3% sucrose (S), EG + G: 8% ethylene glycol (EG) combined with 1%
glucose (G), PG + G: 6% propylene glycol (PG) combined with 2% glucose (G), GLY + G: 2% glycerol combined with 3% glucose (G), and MeOH + T: 2% methanol
(MeOH) combined with 4% trehalose (T). Significantly different levels (p < 0.05) are denoted by different letters.
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samples. Downregulated mRNA content of tektin-4 was also
previously reported in sperm cryopreserved using P-CPAs
(Sukhan et al., 2022). The present study is the first to report the
mRNA content of Axp66.0 in cryopreserved sperm of any
organism. The possible explanation for such improvement in
the mRNA content is that saccharides can protect sperm during
cryopreservation. Present findings suggest that improved mRNA
content of motility-regulating genes might be responsible for the
improved motility of sperm cryopreserved using saccharides.

Furthermore, cryopreservation suppressed the mRNA content
of fertilization protein (SP18-kDa). However, sperm
cryopreserved using 3% S + 8% DMSO showed comparatively
higher SP18-kDa mRNA content than sperm cryopreserved with

other CPAs. The present study is the first to report the mRNA
content of SP18-kDa in cryopreserved sperm in any organism.
SP18-kDa is one of the principal acrosome proteins of abalone.
SP18-kDa may bind a receptor gene of the egg plasma membrane
and mediate egg-sperm fusion (Aagaard et al., 2010). This
suggests that SP18-kDa might be used as a fertility marker of
cryopreserved sperm.

Correlations among post-thaw sperm quality parameters
showed that sperm DNA fragmentation was negatively
correlated with other examined quality indicators. This finding
suggests that reduced DNA fragmentation might be responsible
for improved post-thaw sperm quality indicators. Negative
correlations of DNA fragmentation with other quality
indicators have been reported previously (Alcay et al., 2020;
Hossen et al., 2021b).

Fertility and hatchability are vital indicators of the
reproduction success of post-thaw sperm. Improved
fertilization and hatching rates were observed during in vitro
fertilization of abalone using saccharide (sucrose)-supplemented
cryopreserved sperm compared to control sperm, cryopreserved
without saccharides. Similar phenomena have been reported
previously for cryopreserved greenlip abalone (Liu et al.,
2014a) and salmon sperm (Sandoval-Vargas et al., 2021). Such
improvement might be due to the protective effects of saccharides
on sperm quality indicators of Pacific abalone as discussed in
previous sections.

Previous studies have reported that sperm cryopreserved using an
antifreeze protein (AFP) combined with 8% DMSO showed
improved sperm quality than sperm cryopreserved using only 8%
DMSO (Hossen et al., 2021a). The present finding also reported
similar results, that is, 3% S combinedwith 8%DMSOalso improved
sperm quality than 8%DMSO only. Since sperm cryopreserved with
an AFP or sucrose combined with 8% DMSO showed similar
improvement in sperm quality, hatchery owners may use any
combination of cryoprotectants for large-scale sperm
cryopreservation of Pacific abalone and hatchery seed production.
However, saccharides are heat-tolerant, cheaper, and more readily
available than an AFP. Thus, they could be cost-effective
cryoprotectants for the large-scale cryopreservation of abalone
sperm.

5 CONCLUSION

The present study reports positive influences of saccharides on
post-thaw sperm quality including motility, AI, PMI, MMP, ATP

TABLE 2 | Correlation among post-thaw sperm quality parameters of Pacific abalone.

Motility PMI AI MMP % DNA in tail

PMI 0.888** 1 — — —

AI 0.917** 0.885** 1 — —

MMP 0.882** 0.914** 0.904** 1 —

DNA fragmentation −0.879** −0.868** −0.857** −0.865** 1
ATP 0.898** 0.864** 0.882** 0.879** −0.841**

**Correlation is significant at the 0.01 level (2-tailed).

FIGURE 8 | Effects of sucrose on the fertilization and hatching capacity
of post-thaw sperm of Pacific abalone (n = 3). (A) Two-cell division occurred at
1 hour post-fertilization and trochophore larvae hatched out at 14 h post-
fertilization. (B) Fertility and hatchability of Pacific abalone sperm
cryopreserved using 3% sucrose combined with 8% DMSO. DMSO: 8%
dimethyl sulfoxide, DMSO + S: 8% dimethyl sulfoxide (DMSO) combined with
3% sucrose (S). Significantly different levels (p < 0.05) are denoted by different
letters.
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content, and the fertilization potential of sperm of Pacific abalone,
H. discus hannai. Saccharides dramatically improved the DNA
integrity of post-thaw sperm. Sperm cryopreserved using 3% S +
8% DMSO showed higher sperm quality and mRNA content,
although the sperm showed insignificant differences in sperm
quality indicators (except PMI) compared to those cryopreserved
using 1% G + 8% EG. It could be concluded that 3% sucrose
combined with 8% DMSO improved sperm quality compared to
other examined cryoprotectants. All examined parameters
including motility and fertility-associated gene expression
proved that 3% sucrose combined with 8% DMSO for sperm
cryopreservation was comparatively more suitable than other
cryoprotectants for sperm cryopreservation and molecular
conservation of Pacific abalone.
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