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MicroRNAs (miRNAs) play various roles in the implantation and pregnancy

process. Abnormal regulation of miRNAs leads to reproductive disorders

such as repeated implantation failure (RIF). During the window of

implantation, different miRNAs are released from the endometrium, which

can potentially reflect the status of the endometrium for in vitro fertilization

(IVF). The focus of this review is to determine whether endometrial miRNAsmay

be utilized as noninvasive biomarkers to predict the ability of endometrium to

implant and provide live birth during IVF cycles. The levels of certain miRNAs in

the endometrium have been linked to implantation potential and pregnancy

outcomes in previous studies. Endometrial miRNAs could be employed as non-

invasive biomarkers in the assisted reproductive technology (ART) cycle to

determine the optimal time for implantation. Few human studies have evaluated

the association between ART outcomes and endometrial miRNAs in RIF

patients. This review may pave the way for more miRNA transcriptomic

studies on human endometrium and introduce a specific miRNA profile as a

multivariable prediction model for choosing the optimal time in the IVF cycle.
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1 Introduction

Implantation is a process in which the blastocyst attaches to and attacks the mother’s

endometrium within the time frame of the implantation window (Achache and Revel,

2006). The receptive endometrium plays an active role in the implantation process

(Kliman and Frankfurter, 2019). In response to steroid hormones, the endometrial tissue

undergoes morphological, cellular, and molecular changes in cycles (Davidson and

Coward, 2016; Kliman and Frankfurter, 2019). Reproductive specialists currently use

methods such as transvaginal ultrasound and hormonal analysis of serum to predict

endometrial receptivity for embryo transfer (ET). However, these methods do not provide
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beneficial predictions for the outcome of in vitro fertilization

(IVF) (Craciunas et al., 2019; Horcajadas et al., 2008; Quinn and

Casper, 2009). Taking into account the molecular changes of the

endometrium during the implantation window provides us with

crucial information regarding endometrial receptivity, which is

of great importance (Craciunas et al., 2019).

Thus far, a range of single molecules, including miRNAs,

have been examined as biomarkers of uterine receptivity (Edgell

et al., 2013). Reproductive disorders such as polycystic ovary

syndrome (PCOS), repeated implantation failure (RIF), and

endometriosis are linked to abnormal miRNA regulation

(Liang et al., 2017; Shokrzadeh et al., 2018). About 15%–20%

of infertile couples who undergo IVF-ET suffer from Repeated

implantation failure (RIF) (Simon and Laufer, 2012). About

15%–20% of infertile couples who undergo IVF-ET suffer

from RIF. MiRNAs might have the capacity to predict RIF.

The present review may help to identify various biomarkers

through miRNA detection.

2 Repeated implantation failure

The inability of an embryo to implant into the uterine wall

after multiple transfers during IVF treatment is referred to as

RIF. However, due to the lack of a unified definition, various

definitions of RIF are proposed in IVF centers. RIF is defined

by some sources as the non-implantation of embryos in three

consecutive cycles with the transfer of up to three high-quality

embryos in each cycle, taking into account the number of

embryos transferred in each cycle and the IVF success rate

(Shufaro and Schenker, 2011). In some centers, the absence of

a sac approximately 45 days (week 5 onwards) after the

transfer of at least three embryos or the transfer of more

than 10 embryos in multiple transfers is considered RIF

(Salehpour et al., 2016). The incidence and prevalence of

RIF are rarely reported due to the various definitions of

this condition (Table 1) (Maesawa et al., 2015). Various

types of RIF are classified into three broad categories

(Timeva et al., 2014), including endometrial RIF, idiopathic

RIF, and multifactorial RIF (Figure 1). The main causes for

this complication are fetal defects, decreased uterine

receptivity, abnormal anatomy of the uterus, and the

medical condition of the mother (Margalioth et al., 2006).

Other factors influencing RIF include chromosomal and

uterine abnormalities, hormonal and placental disorders,

smoking, certain medications, maternal heart and kidney

disease, and the quality of the transferred embryo

(Coughlan et al., 2014).

Thus far, RIF has been managed in a variety of ways, but

no consensus has emerged on the most effective method. Some

of the RIF-management methods are blastocyst transfer,

assisted hatching, co-culture system, sequential transfer,

hysteroscopy, endometrial scratching, salpingectomy for

tubal disease, extra number embryo transfer, natural cycle,

oocyte donation, intra-tubal ET, immune therapy, and

endometrial receptivity array (ERA) (Choi et al., 2016;

Katzorke et al., 2016).

TABLE 1 Definition of RIF.

References Definition

Choi et al. (2016) Failure to conceive in at least three previous IVF cycles with
good quality embryos

Revel et al. (2011) At least four ART cycles with embryo transfer failure

Shi et al. (2017) Three embryo transfer failures in which at least four
morphologically high-grade embryos were transferred

Rekker et al.
(2018)

Three unsuccessful IVF cycles with embryo transfer

Xu et al. (2019) Three transplantation failures with at least four good-quality
embryos

Tan et al. (2005) Non-pregnancy after transfer of more than 10 high-quality
embryos, after 2–6 IVF cycles

FIGURE 1
Types of RIF and their causes. The failure of an embryo to
implant into the uterine wall after multiple transfers during IVF
treatment is referred to as RIF or recurrent implantation failure. RIF
types are divided into three categories: Endometrial RIF,
which occurs due to the low thickness (≤6 mm) of the
endometrium; idiopathic RIF, which is unexplained failure to
achieve pregnancy after the transfer of good quality embryos;
multifactorial RIF, which is caused by a wide variety of reasons
(male-related factors, genetic abnormalities, infections,
immunological factors, psychological factors, lifestyle, and other
similar variables).
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3 Relationship between hormone
balance and microRNAs in repeated
implantation failure

The human endometrium undergoes cyclical changes due to

sex steroid hormones (Klinge, 2012). Previous studies have

examined the relationship between sex steroid hormones and

miRNAs at different stages of the menstrual cycle. According to

these studies, some endometrial miRNAs regulate the expression

of estrogen and progesterone, and on the other hand, estrogen

and progesterone are involved in regulating the expression of

some endometrial miRNAs. The effect of sex steroid hormones

on the expression of endometrial miRNAs in animal models such

as zebrafish (Cohen et al., 2008) as well as humans (Klinge, 2012)

has been investigated. Reed et al. (2018) reported increased

expression of miR-181b and let-7e, and decreased expression

of mi-R27b in cultured human endometrial stromal cells exposed

to estradiol. Similarly, the induction of miR-125b and miR-133a

expression has been reported in the cell culture of human

endometrial epithelial cells (Chen et al., 2016; Pan et al.,

2017). At the time of ovulation, women with high blood

progesterone levels under the ovulation stimulation protocol

had a higher endometrial expression of miR-30b, miR-125b,

miR-424, and miR-451 than women with low blood progesterone

levels (Li et al., 2011). Another study compared the expression

levels of several miRNAs in the mid-secretory and late

proliferative phases of human endometrial epithelial cells. This

study indicated that miR-29b, miR-29c, miR-30b, miR-30d, miR-

31, miR-193a-3p, miR-200c, miR-203, miR-204, miR-210, miR-

345, and miR-582-5p levels were higher in the mid-secretory

phase compared to the late proliferative phase. On the contrary,

the expression of miR-105, miR-127, miR-134, miR-214, miR-

222, miR-369-5p, miR-370, miR-376a, miR-382, miR450, miR-

503, and miR-542-3p was lower in the mid-secretory phase

compared to the late proliferative phase (Kuokkanen et al., 2010).

The actions of estrogen and progesterone are related to the

altered expression of their receptors in the human endometrium.

There is not much information about the regulation of estrogen

receptors by miRNAs in the human endometrium. However, one

study reported that endometrial cancer cells transfected with a

miR-107 mimic had lower estrogen receptor expression (Bao W

et al., 2019). In addition, miR-22-5p transfection in endometrial

stromal cells of female endometriosis in the culture medium

altered the estrogen receptor expression (Xiao et al., 2020).

Moreover, miR-194-3p transfection in cultured endometrial

stromal cells resulted in a significant reduction in

progesterone receptor protein levels (PR-A and PR-B) (Pei

et al., 2018). Zhou et al. (2016) reported a decrease in protein

levels of PR-A and PR-B in endometrial stromal cells transfected

with miR-196a (Zhou et al., 2016). They also identified PRs as

targets for miR-196a, miR-297, miR-575, miR-628-3p, miR-635,

miR-921, miR-938, and miR-1184. It should be noted that miR-

92a transfection in the endometrial stromal cell line resulted in

progesterone resistance and increased cell proliferation (Zhou

et al., 2016).

4 The role of endometrial microRNAs
in repeated implantation failure

According to the literature, the expression of miRNAs varies

in different phases and pathological conditions of the

endometrium (Shariati et al., 2019; Shokrzadeh et al., 2019) It

has been established that the upregulation of certain miRNAs

promotes implantation (pro-implantation miRNAs) while the

upregulation of others causes implantation failure (anti-

implantation miRNAs) (Reza et al., 2019). MiRNAs that are

involved in implantation can also be classified based on their

roles into categories such as proliferation, decidualization,

angiogenesis, and apoptosis, among others (Table 2)

(Figures 2A,B).

The first study to investigate the different expressions of

miRNAs in the secretory phase endometrium of RIF patients was

published in 2011, and it found 13 miRNAs that could be used to

diagnose and treat RIF (Revel et al., 2011). Since then, many

human studies have found different expressions of several

miRNAs in the endometrial tissue or peripheral blood of

women with RIF (Figure 2C). These studies have shown that

the profile of miRNAs in the pre-receptive and receptive

endometrium of RIF patients is different from that of normal

individuals, indicating the role of miRNAs in the implantation

failure in these patients. The following is an overview of some

RIF-related miRNAs (Table 3).

4.1 MiR-145

MiR-145 was first discovered in 2001 on chromosome 18 in

mice, and then in 2003, on chromosome 5 in humans (Yuan et al.,

2019). It is abundant in mesoderm-derived tissues, such as the

uterus, ovaries, testes, prostate, and heart, and plays a key role in

endometrial differentiation. (Chang et al., 2017). This miRNA

inhibits the SMAD-1 pathway, angiogenesis, and stromal cell

differentiation while also regulating decidua cell proliferation

(Sirohi et al., 2019). MiR-145 shows a threefold increase in RIF

patients compared to fertile individuals (Liu et al., 2020a). Targets of

this miRNA include insulin-like growth factor 1 receptor (IGF1R),

rhotekin (RTKN), estrogen receptor alpha (Era), octamer-binding

transcription factor 4 (OCT4), SRY-related HMG-box 11 (SOX11),

mucin 1 (Muc1), PAL-1, homeobox A10 (HOXA10), and

homeobox A11 (HOXA11). The attachment of the mouse

embryo to the endometrium is inhibited during an increase in

miR-145 levels or a decrease in IGF1R levels in endometrial

epithelial cells (Kang et al., 2015). The expression of miR-145 in

the endometrium ofmice treated with ormeloxifene, which is a non-

steroidal oral medication used to prevent endometrial receptivity on
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the first day of pregnancy, is increased (Sirohi et al., 2018).

Moreover, miR-145 affects receptivity and implantation by

targeting PAL-1 and reducing its expression in the endometrium

of RIF patients (Liu et al., 2020a). This miRNA inhibits SOX11 in

endometrial cancer and suppresses the proliferation, migration, and

invasion of HCC-1 cell lines while increasing the induction of

apoptosis. In addition, by inhibiting OCT4, it also prevents the

growth of endometrial cancer cells (Chang et al., 2017). Elevated

miR-145 expression inhibits HOXA10 and HOXA11. Inhibition of

these genes (HOXA10 and HOXA11) by acting on IGFBP-1 and

avB3 leads to infertility (Nazarian et al., 2022).

4.2 MiR-22

MiR-22 is an anti-implantation miRNA whose expression

is increased during the normal cycle window of implantation

in RIF patients. MiR-22 leads to the dysregulation of

decidualization in endometrial stromal cells by targeting

Tiam1. Tiam1 with the help of Race1 is involved in stromal

cell decidualization, uterine receptivity regulation, migration,

and implantation (Grewal et al., 2008). An increased

expression of miR-22 leads to a decreased expression of

Tiam1. As a result, the reduction of Tiam1/Race1 signaling

will lead to implantation failure in RIF patients (Ma et al.,

2015). The abnormal expression of miR-22 and Tiam1/

Race1 has been linked to a decrease in the progesterone/

estradiol (P/E2) ratio in RIF patients. Transfection of miR-

22 in cultured stromal cells isolated from the endometrium of

female endometriosis leads to changes in estrogen receptor

(ER) expression. MiR-22 suppresses the estrogen signaling

pathway by targeting estrogen receptor 1 (ESR1), which is

essential for the formation of the male glands (Xiao et al.,

2020; Li et al., 2021; Shekibi et al., 2022).

4.3 MiR-181

The expression of miR-181 is reduced in RIF patients (Chu

et al., 2015). Leukemia inhibitory factor (LIF) and Kruppel-like

factor 12 (KLF12) are the targets of miR-181. Estrogen has been

shown to regulate empty spiracles homeobox 2 (EMX2) levels,

which in turn control miR-181 expression. In fact, estrogen

reduces the expression of EMX2 and EMX2 suppresses the

expression of miR-181 (Troy et al., 2003). Subsequently, the

reduction of miR-181 expression leads to a rise in LIF levels,

TABLE 2 Endometrial miRNAs and implantation.

miRNA Anti/pro
implantation

Target gene Role Species References

miR-17–92 Pro-implantation E2Fs, TGFβ Decidualization - Mogilyansky and Rigoutsos (2013)

miR-21 Pro-implantation RECK, MMP9, PTEN Proliferation Mice Hu et al. (2008)

miR-21 Pro-implantation KLF12 Decidualization Human Jiang et al. (2013)

miR-29a Pro-implantation Bak1, Bmf, Bcl-w Apoptosis Rat Xia et al. (2014a)

miR-101a Pro-implantation Cox-2 Decidualization Mice Chakrabarty et al. (2007)

miR-199a Pro-implantation Cox-2 Decidualization Mice Chakrabarty et al. (2007)

miR-199a Pro-implantation Muc1 Decidualization Mice Inyawilert et al. (2014)

miR-199a Pro-implantation Grb10 Proliferation and apoptosis Rat Xia et al. (2014b)

miR-22 Anti-implantation Tiam1, Rac1 Cell migration-motility Mice Ma et al. (2015)

Let-7 Pro-implantation Muc-1 Inhibits proliferation-promotes differentiation Mice Inyawilert et al. (2015)

miR-200 Anti-implantation Zeb1, Zeb2, PTEN Proliferation and apoptosis Mice Jimenez et al. (2016)

miR-30d Pro-implantation H19, NNMT Proliferation, hormonal responses, methylation status Human Moreno-Moya et al. (2014)

miR-98 Anti-implantation Bcl-xL Promotes proliferation and inhibits apoptosis Rat Xia et al. (2014c)

miR-141 Anti-implantation PTEN Proliferation, apoptosis Mice Liu et al. (2013)

miR-143 Pro-implantation LIFR Proliferation, invasion, decidualization Rat Tian et al. (2015)

miR-181a Pro-implantation KLF19 Decidualization, differentiation Human Zhang et al. (2015)

miR-193 Pro-implantation GRB7 Migration Mice Li et al. (2014)

miR-429 Anti-implantation Pcdh8 Invasion Mice Li et al. (2015a)

miR-451 Pro-implantation Ankrd46 Angiogenesis, invasion, and proliferation Mice Li et al. (2015b)

miR-222 Anti-implantation CDKN1C, p57kip2 Differentiation cell cycle, decidualization Human Qian et al. (2009)

miR-424 Anti-implantation - - Human Li et al. (2011)

miR-30b Pro implantation P4HA2 - Human Li et al. (2011)

miR-125b Anti-implantation MMP26 Migration and invasion Mice Li et al. (2011)
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resulting in implantation success. LIF is a proinflammatory

cytokine from the interleukin 6 (IL-6) family that plays an

important role in preparing the uterus for embryo

implantation (Aghajanova et al., 2009). Mariee et al. (2012)

reported decreased LIF expression in RIF patients. MiR-181a

is a member of the miR-181 family whose expression is

suppressed by estrogen. MiR-181a also inhibits the expression

of KLF12, which is required for endometrial receptivity. It has

been reported that KLF12 expression is increased in the

endometrium of RIF and endometriosis patients (Maillot

et al., 2009; Zhang et al., 2015).

4.4 MiR-424-5p

MiR-424-5p can be a useful marker in assessing

endometrial receptivity. The expression of this miRNA

increases in the endometrium of RIF patients (Rekker et al.,

2018). Moreover, decreased miR-424-5p expression has been

reported in the mid-secretory endometrium of fertile women

(Rekker et al., 2018). The targets of miR-424-5p include the

secreted phosphoprotein 1 (SPP1), serum/glucocorticoid

regulated kinase 2 (SGK2), and angiogenin (Ang) genes.

Osteopontin is a glycoprotein encoded by SPP1 and its

expression in the endometrium is associated with infertility.

MiR-424-5p targets osteopontin and thus regulates adhesion

and cell migration during implantation (Johnson et al., 2014;

Kang et al., 2014). Progesterone also regulates osteopontin

expression during the endometrial menstrual cycle (Casals

et al., 2010). SGK2 is a protein kinase, that is, involved in cell

proliferation as well as the regulation of endometrial

receptivity by acting on ion channels (Gamper et al., 2002).

In addition, Ang is a gene, that is, regulated by miR-424-5p

and encodes the vascular endothelial growth factor (VEGF)

protein. MiR-424-5p expression is reduced in tissues with

high progesterone levels compared to those with normal

progesterone levels. The role of miR-424-5p in cancer has

also been reported, which, given the miR-424-5p targets listed

above, could introduce a common molecular pathway between

implantation and cancer (Kolanska et al., 2021).

4.5 MiR-155-5p

MiR-155-5p expression is increased in RIF patients (Chen P

et al., 2021; Drissennek et al., 2022). MiR-155-5p is involved in

implantation by targeting genes such as membrane

palmitoylated protein 5 (MPP5), insulin-like growth factor 2

FIGURE 2
Relationship between the endometrial miRNA expression and implantation. (A) Pro-implantation miRNA. The expression of the miRNA has a
positive association with the implantation outcome. (B) Anti-implantation miRNA. The expression of the miRNA has a negative association with the
implantation outcome. (C) Endometrial miRNAs lead to implantation failure through their effect on target mRNA in the endometrial tissue of RIF
patients. The red circle represents miRNA, the green and purple circles represent mRNA, the orange circle represents hormones, the yellow
circle represents the drug, the blue circle represents the signaling pathway, and the navy blue circle represents infection. ThemiRNA-mRNA network
is based on Section 4in this article.
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(IGF2), and transforming growth factor beta (TGFβ). TGFβ is

involved in leukocyte extravasation signaling, which has been

reported to play a role in implantation. Alteration in miR-155-

5p expression contributes to implantation failure because it

leads to the inhibition of smad2/3 as well as the suppression of

essential processes in implantation (cell proliferation,

migration, apoptosis, and invasion) (Lin et al., 2018; Chen

et al., 2019; Luo et al., 2020). Because smad2/3 is one of the

most important genes in TGFβ signaling, miR-155-5p may be

involved in implantation failure by altering this

pathway (Drissennek et al., 2022). MiR-155-5p affects the

function of the MPP5 protein in the menstrual cycle of RIF

patients. MPP5 expression in the normal menstrual cycle

gradually decreases from the beginning of the

proliferation stage to the end of the secretory stage (Li et al.,

2017). IGF2 is another protein whose expression is greatly

increased during the implantation window and miR-155-5p

suppresses the expression of this protein (Whitby et al., 2018).

TABLE 3 Endometrial miRNAs and repeated implantation failure.

Year Sample Group compare miRNA
measurement

miR Expression
pattern

Targets/
regulators

References

2011 EB Receptive
endometrium in RIF
patients vs. fertile
patients

TaqMan miR-23b, miR-145, miR-
99a, miR-27b, miR 652,
miR-139-5p, miR-195,
miR-342-3p, miR-150,
miR-374b and miR-32,
miR-628-5p, miR-874

Upregulated in RIF,
and Downregulated
in RIF

N-cadherin,
H2AFX, Netrin-4,
SFRP4

Revel et al.
(2011)

2015 EB Infertile patients with
RIF, vs. control group

Real-Time PCR miR-22 Upregulated in RIF Tiam1/Rac1 Ma et al. (2015)

2015 EB Women with a
normal menstrual
cycle

- miR-181a - KLF12 Zhang et al.
(2015)

2016 EB Healthy volunteers
and RIF

miRNA
microarrays

miR-138-1-3p, miR-29b-
1-5p, miR-363-3p, miR-
34b-3p, miR-146a-5p,
miR-363-3p

Upregulated in RIF S100P, CXCL13,
SIX1

Choi et al.
(2016)

2017 EB Receptive
endometrium in RIF
patients vs. infertile
patients

miRNA Complete
labeling

miR-1207-5p, miR-4306,
miR-572, miR-5739, miR-
30b, miR-6088 and miR-
374a-5p, miR-145-5p,
miR-196b-5p, miR-199a-
5p, miR-449a, miR-424-
5p, miR-125b-5p,miR-
21-5p

Downregulated in RIF
and Upregulated
in RIF

ERα, RTKN Shi et al. (2017)

2018 Blood, EB Fertile and RIF
patients

Small RNA
sequencing

miR-30b-5p, miR-30d-3p,
miR-30d-5p, miR-30a-5p

Dysregulation CDK5, STAT3 Rekker et al.
(2018)

2019 Blood RIF in women with or
without metabolic
syndrome

Real-Time PCR miR-21, miR-223, miR-
146a

Increased in RIF-MS
patients, declined in
RIF-MS patients

- Sheikhansari
et al. (2019)

2019 EB RIF and healthy
female controls

- miR-489, miR-199A, miR-
522, miR-369-3p, miR-422

Considered as the key
regulatory factors
during RIF

UBE2I, PLK4,
XPO1, AURKB,
NUP107, E2F4,
SIN3A

Wang and Liu
(2020)

2020 EB Normal fertile
women and RIF

Real-Time PCR miR-31 Increase in RIF FOXP3 Dehghan and
Salehi (2020)

2020 EB RIF RT-qPCR miR-152-3p, miR-155-5p,
miR-455-3p, miR-4423-3p

Overexpression - Drissennek et al.
(2020)

2020 EB Women with and
without RIF

Microarray, RT-
qPCR

miR-148a-3p Upregulated in RIF HOXA8 Zhang et al.
(2020)

2020 Human
endometrial
HEC-1A cell

- Microarray miR-15, miR-22, miR-196-
5p and miR-1207-5p

Upregulated in RIF,
and Downregulated
in RIF

- Bortolotti et al.
(2020)

2020 EB RIF, control group RT-qPCR miR-145 Upregulated in RIF PAI-1 Liu et al.
(2020b)
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4.6 MiR-31

MiR-31 is a candidate for endometrial receptivity whose

expression is increased in RIF patients compared to healthy

women (Shi et al., 2017). MiR-31 expression is increased in

the secretory phase of fertile women compared to the

proliferative phase (Azhari et al., 2022). Moreover, miR-31

expression is increased in the serum of fertile patients in the

secretory phase. MiR-31 expression is also reduced in the

endometrial secretory phase of RIF patients compared to the

proliferative phase. In addition, miR-31 expression is increased

in the early secretory stage compared to the midluteal stage in the

endometrium of women with regular menstrual cycles.

Considering the above, miR-31 plays an important role in

implantation (Ghafouri-Fard et al., 2021; Kresowik et al.,

2014). MiR-31 target genes include forkhead box P3 (FOXP3)

and C-X-C motif chemokine 12 (CXCL12), which are suppressed

by miR-31 in the secretory phase of fertile women (Azhari et al.,

2022). Increased expression of miR-31 leads to decreased

expression of FOXP3 (immune suppressor), which can be

considered the reason for implantation failure and recurrent

miscarriage in RIF patients (Azarpoor et al., 2020). Another

target of this miRNA is MMPs, which are involved in

decidualization during implantation, defense mechanisms, and

immune responses (Azhari et al., 2022).

4.7 MiR-34c-5p

Another miRNA of interest in RIF is miR-34c-5p (Tan et al.,

2020). This miRNA is involved in endometrial receptivity and

inflammation (Cai et al., 2018; Gao et al., 2019). An increase in

the levels of this miRNA leads to a decrease in GAS1 during

implantation, which results in implantation failure. Thus, miR-

34c-5p is negatively associated with implantation. Tan et al.

found an increase in miR-34c-5p in exosomes, indicating that

endometrial receptivity-associated miRNAs are present in the

small extracellular vesicles (sEVs) of uterine fluid. During

endometrial implantation, miR-34c-5p is increased in these

vesicles to suppress RAB27B and it is simultaneously

decreased in the endometrium; therefore, miR-34c-5p levels in

sEVs can be used as a marker to assess the physiological

condition of the uterus and confirm the most appropriate

time for implantation (Tan et al., 2020).

4.8 MiR-1290

MiR-1290 expression is increased in the endometrium of RIF

patients (Liu et al., 2021). An elevated expression of this miRNA

has also been observed in the endometrial extracellular vesicles of

RIF patients (Ponsuksili et al., 2014). MiR-1290 has an inhibitory

role in endometrial cell proliferation, and YWHAZ and RAP2C

are the targets of this miRNA. MiR-1290 reduces YWHAZ in RIF

patients. An increase in miR-375 and miR-1305 has also been

reported in RIF (Luo et al., 2021).

4.9 MiR-148a-3p

The HOX genes, specifically the HOXA10 and HOXA11

genes, have an important role in implantation (Cakmak and

Taylor, 2011). In addition, HOXC8 is involved in cell

proliferation, differentiation, migration, adhesion, and

tumorigenesis (Liu et al., 2018). HOXC8 is introduced as a

target for miR-148a-3p (Zhang et al., 2020). With the increase

of miR-148a-3p (miR-148/152 family) in RIF patients,HOXC8 is

suppressed, which leads to implantation failure due to reduced

decidualization. According to Chen et al. (2013), miR-148a-3p

also suppresses tumors and is involved in various processes such

as differentiation and development (Choi et al., 2016; Zhang

et al., 2020).

4.10 MiR-21 and MiR-146a

Given the increase in inflammatory miRNAs and cytokines

in RIF, Sheikhansari et al. (2019) reported that the expression of

miR-21 was increased in the RIF-metabolic syndrome (MS)

group and the expression of miR-223 and miR-146a was

reduced in this group. The reduction of miR-146a leads to an

increase in inflammatory factors and the inhibition of the

IRAK1-TRAF6-NF-κB pathway (Ghaebi et al., 2019). The

function of miR-21 can lead to inflammatory responses,

suppression of the immune system, or stimulation of

inflammation by inhibiting the TGFβ signaling pathway

(Sheedy, 2015).

4.11 MiR-135b-5p

MiR-135b-5p is increased in the endometrium of RIF

patients compared to healthy women (Shang et al., 2022). The

targets of miR-135b-5p are podoplanin (PDPN) and

angiotensinogen (AGT) (Shang et al., 2022). The reduction of

miR-135b-5p expression plays a role in increasing the

decidualization of endometrial stromal cells (Wang et al.,

2021). Moreover, this miRNA is introduced as a biomarker in

breast cancer due to its role in proliferation andmigration (Bao C

et al., 2019).

4.12 Other microRNAs

In addition to the miRNAs mentioned above, a number of

miRNAs have been introduced in the literature, the expression of
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which is different in RIF patients at different stages or when

compared to the control group. However, further validation and

determination of specificity, sensitivity, and accuracy are

required before these miRNAs can be studied in RIF patients.

For this purpose, we merely covered basic information on these

miRNAs in this section.

Shi et al. (2017) found a decrease in miR-4668-5p expression

and an increase in miR-429, miR-5088, and miR-374 expressions

in the RIF group (Shi et al., 2017). MiR-374 is involved in

implantation by activating Wnt/β-catenin signaling. RIF

patients also have lower levels of targets associated with miR-

429 andmiR-5088, which include dipeptidyl peptidase-4 (DPP4),

SERPING1, and aquaporin 3 (AQP3). An increase in miR-30b

expression is not associated with RIF since this miRNA is also

overexpressed in the normal endometrium (Shi et al., 2017).

MiR-152-3p is another RIF-related miRNA, which suppresses

cell proliferation, migration, and angiogenesis (Haouzi et al.,

2009; Drissennek et al., 2020).

Other miRNAs associated with RIF include miR-489, miR-

199A, miR-369-3p, miR-422, and miR-522. The role of miR-

489 has been established in many cancers, and the genes

associated with this miRNA include RBBP6, NHS, ATRX,

and XPO1. Genes associated with miR-199A, which is

reduced in endometriosis, include CTDSPL2, HOXA9,

LUC7L3, EML4, HYOU1, and PDS5B. Moreover, UBE2I,

PLK4, XPO1, AURKB, and NUP107 are other genes involved

in cell division and endometrial stromal cell differentiation,

which have an elevated or reduced expression in RIF patients.

Other associations that affect the function of miRNAs include

miRNA-transcription factor (TF) interactions. According to

the findings of Wang and Liu (2020), E2F4 and SIN3A are

among the TFs effective in RIF, which are linked to genes

related to several miRNAs involved in this condition (Wang

and Liu, 2020). Furthermore, theHTR1A,NR3C1, andGABRA3

genes are essential in determining the medication treatment of

RIF. Due to its identified features in RIF, NR3C1 has attracted

the most attention (Tuckerman et al., 2010).

MiR-23a and miR-23b, in conjunction with the long non-

coding RNA (lncRNA) PART1, decrease DUSP5 and ultimately

inhibit the mitogen-activated protein kinase (MAPK) pathway in

RIF patients. In addition, the association of miR-96-5p with the

phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)

pathway and the PTEN gene leads to endometrial

abnormalities and affects endometrial receptivity (Chen C. H

et al., 2021).

The expressions of miR-138-1-3p, miR-29b-1-5p, miR-363-

3p, miR-34b-3p, miR-146a-5p, and miR-363-3p in RIF patients

were different (Choi et al., 2016). Finally, it is worth noting that

FIGURE 3
MiRNAs as biomarkers. In this graph, mRNAs and miRNAs are compared as two biomarker candidates. MiRNAs can be used as therapeutic
targets in a number of ways. Depending on whether the miRNA is upregulated or downregulated in the disease, there are generally two approaches:
miRNA inhibition and miRNA replacement. If an increase in the miRNA expression leads to pathology (e.g., RIF), the use of miRNA antagomirs in
therapeutic methods will prevent the binding of miRNAs to the target mRNA and will reduce the symptoms of the disease. On the other hand, if
a reduction inmiRNA expression leads to pathology, amiRNA delivery system (miRNAmimic) can be used. There are several techniques for detecting
miRNAs (northern blotting, reverse transcription quantitative real-time PCR (RT-qPCR), microarray technology, nanomaterial-based methods, and
nucleic acid amplification).
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the study of polymorphisms in some miRNAs in RIF patients has

gained much attention in recent years (Lee et al., 2020).

5 Are microRNAs potential
biomarkers of repeated implantation
failure detection in assisted
reproductive technology?

Finding suitable strategies with acceptable specificity and

sensitivity and minimal invasiveness is essential for determining

the window of implantation.

The role of miRNAs in regulating biological cascades makes

them potent diagnostic biomarkers. MiRNAs obtained from

plasma, plasma exosomes, follicular fluid, uterine fluid, and

endometrial tissue are presented as diagnostic biomarkers to

estimate the window of implantation. Chen P et al. (2021)

showed that endometrial-specific miRNAs can be considered

diagnostic biomarkers for RIF prediction. They compared

endometrial tissue biopsies from RIF and non-RIF patients

using ERA technology and miRNA expedition. They identified

three miRNAs, including miR-20b-5p, miR-155-5p, and miR-

718, which can serve as biomarkers in RIF with 90% accuracy

(specificity: 100.0%; sensitivity: 80.0%; positive prediction value:

100.0%; negative prediction value: 85.7%) (Chen P et al., 2021).

In another study on miRNAs extracted from plasma and plasma

exosomes, miR-150-5p, miR-150-3p, miR-149-5p, and miR-

146b-3p were introduced as candidates for non-invasive

biomarkers of RIF (Zeng et al., 2021). Moreover, a study on

cumulus cells and follicular fluid of the RIF patients’ oocytes

identified the overexpression of miR-34-5p and miR-26-5p as an

indicator of a successful pregnancy (Habibi et al., 2022). In

addition, von Grothusen et al. (2022) reported the decline of

the expression of miR-486-5p and miR-92b-3p in the uterine

fluid as a non-invasive biomarker of RIF conditions.

In this regard, targeting these miRNAs to either down or

upregulate them may be an effective treatment for RIF.

Therefore, manipulating miRNA-related signaling in favor of

implantation by targeting these miRNAs can be considered a

potential therapeutic approach (Figure 3) (Krützfeldt, 2016).

Further studies are necessary to introduce miRNAs that can

be used to determine the window of implantation time.

6 Conclusion and prospects

RIF is a growing problem in the field of reproductive

medicine. Repetition of failed cycles in RIF patients is very

costly for the patients and affects the physical and

psychological health of those under treatment. Determining

the expression of miRNAs and key genes in the endometrium

can be beneficial in predicting the success rate of implantation in

clinics. Since one type of miRNA can affect several target

signaling pathways, and subsequently, change the fate of the

cell, it is possible to use miRNAs to prevent implant failure or

treat RIF patients. Nevertheless, research on the treatment of RIF

using miRNA-targeting strategies is still lacking. In this review,

we identified three miRNAs that are capable of acting as

biomarkers in RIF, namely miR-20b-5p, miR-155-5p, and

miR-718. In conclusion, specific endometrial miRNAs are

suitable as diagnostic or therapeutic biomarkers in RIF.
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