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Spontaneous activity plays a crucial role in brain development by coordinating the
integration of immature neurons into emerging cortical networks. High levels and
complex patterns of spontaneous activity are generally associated with low rates of
apoptosis in the cortex. However, whether spontaneous activity patterns directly
encode for survival of individual cortical neurons during development remains an open
question. Here, we longitudinally investigated spontaneous activity and apoptosis in
developing cortical cultures, combining extracellular electrophysiology with calcium
imaging. These experiments demonstrated that the early occurrence of calcium
transients was strongly linked to neuronal survival. Silent neurons exhibited a higher
probability of cell death, whereas high frequency spiking and burst behavior were almost
exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring
neurons exerted a pro-survival effect, whereas on the functional level, networks with a high
modular topology were associated with lower cell death rates. Using machine learning
algorithms, cell fate of individual neurons was predictable through the integration of
spontaneous activity features. Our results indicate that high frequency spiking activity
constrains apoptosis in single neurons through sustained calcium rises and thereby
consolidates networks in which a high modular topology is reached during early
development.
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1 INTRODUCTION

Immature neuronal networks display several patterns of spontaneous activity, whose spatial and
temporal organization plays an instrumental role for circuit assembly in the developing brain (for
review, see Ben-Ari, 2001; Spitzer, 2006; Kirkby et al., 2013; Luhmann et al., 2016). By driving neuronal
migration and the establishment of connectivity (Xu et al., 2011; Bando et al., 2016), activity patterns
coordinate the integration of neurons into the cortex and distinctively shape cortical areas during early
development (for review, see Kilb et al., 2011; Martini et al., 2021). Concomitantly, high levels and
complex patterns of spontaneous activity across different brain regions are associated with low rates of
apoptosis (Blanquie et al., 2017a; Denaxa et al., 2018; Duan et al., 2020) and disruption of adequate
neuronal activity in the cortex determines an increase in cell death (Ikonomidou et al., 1999; Heck et al.,
2008; Lebedeva et al., 2017). Indeed, besides genetic programs and neurotrophic factors, electrical
activity and synaptic inputs directly regulate neuronal survival in the central nervous system (for
review, see Dekkers et al., 2013). In turn, alterations of physiological apoptotic rates in critical phases of
development are associated with abnormal structure of cortical circuits (Fang et al., 2014) and can lead
to impaired functionality of the brain (Nakamura et al., 2016; for review, see Wong and Marín, 2019).
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Spontaneous activity in the developing cortex evolves from
uncorrelated neuronal firing to synchronized network oscillations
in local neuronal assemblies (for review, see Egorov and Draguhn,
2013; Molnár et al., 2020). Here, synchronous network activity is
marked by discontinuous high frequency oscillations, which are
observed at regular intervals in several animal models, both in
vivo and in vitro (Allène et al., 2008; Yang et al., 2009; for review,
see Khazipov and Luhmann, 2006; Luhmann et al., 2022). At the
cellular level, these rhythmic discharges translate into bursts of
action potentials (Cunningham et al., 2004; Minlebaev et al.,
2007), which are thought to strengthen synaptic contacts
(Winnubst et al., 2015) and ensure communication between
neurons (for review, see Lisman, 1997). High frequency firing
leads to intracellular calcium transients (Murphy et al., 1992) that
trigger numerous transcriptional programs (Tyssowski et al.,
2018) and modulate key molecular processes for network
development (Miyasaka and Yamamoto, 2021; for review, see
Greer and Greenberg, 2008). Among these, burst activity and
somatic calcium rises have been shown to support survival of
developing neuronal populations (Collins et al., 1991;Wong Fong
Sang et al., 2021), while lower calcium activity has been observed
in neurons prior to cell death (Murase et al., 2011; Wong et al.,
2018).

Hence, spontaneous activity guides the assembly of neuronal
circuits, which are structurally characterized by densely
interconnected neighboring neurons and long-range patchy
connections between distant neuronal clusters (Voges et al.,
2010; Robert et al., 2012). Such a modular topology fosters the
emergence and sustainment of synchronous burst events
(Okujeni et al., 2017) and has been demonstrated to be
functionally efficient for information transfer and processing
in cortical networks (for review, see Bullmore and Sporns,
2009). Although activity plays a predominant role in
neuronal circuit formation and its silencing can dramatically
affect network maturation (for review, see Ackman and Crair,
2014), absence of electrical activity does not lead to generalized
cell death (Fishbein and Segal, 2007; Priya et al., 2018; Wong
et al., 2018). Moreover, during early development, a large
proportion of neurons is silent or only sparsely displays
action potentials (Corlew et al., 2004; Sun et al., 2010).
Therefore, the relationship between early spontaneous
activity and survival of individual neurons is still elusive and
the question whether activity profiles can anticipate survival or
death of individual neurons remains open.

To unravel the relevance of spontaneous activity from single
neuron to the network level for neuronal survival, we
longitudinally followed developing neurons in primary
cortical cultures. The transgenic expression of a genetically
encoded calcium indicator and a fluorescent nuclear tag
allowed the direct observation of single neurons while
preserving stereotypical features of network development. By
combining microelectrode array (MEA) electrophysiology with
calcium imaging, we monitored spontaneous firing in large
neuronal populations and investigated whether spiking
frequency differentially encodes for survival of individual
neurons. To characterize pro-survival factors of active, as
well as silent neurons, we explored how both the local

cellular surrounding and the emerging functional
connectivity of the network influence cell death. Finally, we
show that by means of machine learning algorithms, it is
possible to predict neuronal survival based on activity
profiles and infer activity features that are decisive for
survival of developing cortical neurons.

2 MATERIALS AND METHODS

2.1 Experimental Model and Techniques
2.1.1 Primary Cortical Cultures
Primary neuronal cultures were prepared from newborn
(postnatal day 0) C57BL/6NRj mice (RRID: MGI:6236253).
All animal experiments conducted in this study were in
accordance with national and European laws for the use of
animals in research (2010/63/EU) and were approved by the
local ethical committee (Landesuntersuchungsamt Rheinland-
Pfalz 23.177–07/G10-1-010 and G20-1-006). After decapitation,
brains were extracted from the skull and transferred to ice-cold
Ca2+- and Mg2+-free Hank’s balanced salt solution (HBSS,
Gibco, Thermo Fisher Scientific, Waltham, Massachusetts,
United States) supplemented with penicillin and streptomycin
(50 U/mL, Sigma-Aldrich, Merck, Darmstadt, Germany),
sodium pyruvate (11 mg/mL, Sigma-Aldrich), glucose (0.1%,
Sigma-Aldrich), and HEPES (10 mM, Sigma-Aldrich). Upon
dissection of the cerebral hemispheres, meninges were
removed and cortices isolated from the hippocampus,
striatum and thalamic nuclei. Dissected cortices were
incubated in 0.05% Trypsin-EDTA (Gibco) at 37°C for
20 min, followed by DNAse digestion (200 U/mL, Sigma-
Aldrich) at room temperature (RT) for 5 min. Trypsinization
was blocked by washing steps with HBSS followed by Minimal
Essential Medium (Gibco) supplemented with 10% horse serum
(Gibco) and 0.6% glucose. Cells were dissociated by mechanical
trituration through fire-polished pipettes with declining
diameter and filtered through a cell strainer with a mesh size
of 40 µm (Greiner Bio-One, Frickenhausen, Germany). Alive
cells were counted after trypan blue (Sigma-Aldrich) staining
and seeded on microelectrode arrays (standard glass MEAs, NMI
Technologie Transfer, Reutlingen, Germany), glass coverslips
(NeuroClean, PrimeGlass, Forstinning, Germany) or 24 and
96 multiwell plate (Greiner Bio-One) with an initial plating
density of approximately 2,000–2,500 cells/mm2. MEAs were
coated with polyethyleneimine (0.05% in borate-buffered
solution, Sigma-Aldrich) and coverslips or multiwell plates
with poly-L-ornithine (0.1 mg/mL, Sigma-Aldrich). After
25 min, plating medium was suctioned and cells were
incubated in Neurobasal™ A medium (Gibco) supplemented
with 2% B27 (Gibco) and 1 mM L-glutamine (Gibco). Cells were
maintained at 37°C in a humidified atmosphere (95% air and 5%
CO2) and 30% of the culture medium was exchanged at day
in vitro (DIV) 7 with BrainPhys™ medium (StemCell
Technologies, Vancouver, Canada) supplemented with SM1
(StemCell Technologies). At DIV 2, neuronal cultures were
treated with 5 µM ara-C (Sigma-Aldrich) to inhibit glial
proliferation.
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2.1.2 Viral Transduction
Cortical neurons were transduced at DIV 1 with a recombinant
adeno-associated virus (rAAV1/2, appr. 1–4 × 104 viral genomes
per cell) carrying GCaMP6s-P2A-nls-dTomato under the pan-
neuronal promoter hSyn1. Plasmid DNA for generation of AAV-
hSyn1-GCaMP6s-P2A-nls-dTomato was a gift from Jonathan
Ting (Addgene plasmid # 51084). Viral production was done
according to During et al. (2003). In brief, HEK293 cells were co-
transfected with plasmids carrying the rep and capsid sequence of
AAV serotype 1 and 2, a helper plasmid and the above-described
plasmid carrying the genes of interest flanked by inverted
terminal repeat (ITR) sequences. After 48 h, rAAV was
harvested, extracted and purified via Heparin columns
(HiTrap® Heparin columns, Sigma-Aldrich). Virus titer was
determined by quantitative real time PCR.

2.1.3 MEA Recordings
Extracellular electrophysiological recordings were performed
using planar 120-channel microelectrode arrays (120MEA100/
30iR-ITO-pr, Multi Channel Systems, Harvard Bioscience, Inc.,
Holliston, Massachusetts, United States) with a MEA2100 system
(Multi Channel Systems). Electrodes on MEAs had a layout of
12 × 12, a tip diameter of 30 µm and an inter-electrode (center
to center) distance of 100 µm. Recordings were carried out for
10 min and temperature was maintained at 37°C with a
temperature controller (TC02, Multi Channel Systems).
Analog signals were amplified (bandwidth 0.1 Hz–10 kHz) and
acquired with MC_Rack 4.6 software (Multi Channel Systems) at
a sampling frequency of 50 kHz. Raw traces were processed with a
200 Hz high-pass filter (Butterworth second-order) and spikes
were detected using a negative threshold-based detector set
to 7× the standard deviation of the noise level. Only channels
that recorded at least 1 spike per minute were considered active
and included in the analysis. Mean spike rate was computed as the
average number of spikes recorded across all channels per second.

2.1.4 Live-Cell Imaging
Live-cell imaging was carried out with an upright microscope
(BX61WI, Olympus, Tokyo, Japan) connected to a digital CCD
camera (ORCA-R2, C10600-10B, Hamamatsu Photonics K.K.,
Hamamatsu, Japan) and a xenon arc light source (MT20-E,
Olympus). Fluorescence and bright field images were taken
with a 10× water-immersion objective (UMPLFLN10XW,
Olympus) and acquired with xcellence software (Olympus).
For calcium imaging, time-lapse videos were sampled at a
frequency of 2 Hz with a green filter set (FITC, excitation 485/
20, emission 521 nm). Red filter set (CY3, excitation 560/25 nm,
emission 607 nm) was used for imaging of nls-dTomato or
calcein red-orange signals. Electrophysiological and optical
recordings were synchronized with TTL pulses delivered via a
microcontroller board (Leonardo, Arduino, Boston,
Massachusetts, United States).

2.1.5 Cell Viability
Viability of primary neuronal cultures was assessed with
alamarBlue™ HS Cell Viability Reagent (Invitrogen, Thermo
Fisher Scientific), based on the redox indicator resazurin.

Neurons were incubated with Alamar Blue (10% v/v in
culturing medium) at 37°C in humidified 95% air and 5% CO2

for 60 min. Fluorescence was measured with a microplate reader
(Infinite M1000, Tecan, Maennedorf, Switzerland) with
excitation wavelength of 560 nm and emission of 590 nm.
Background from blank wells was subtracted and all values
were normalized to averaged untreated control.

Single cell viability was assessed using CellTrace™ Calcein
Red-Orange AM (Invitrogen) or Hoechst (Invitrogen) according
to the manufacturer’s guidelines. In short, cell cultures were
incubated for 30 min at 37°C with calcein AM or Hoechst at a
final concentration of 1 μM and 5 μg/mL, respectively. After
subsequent wash with phosphate-buffered saline (PBS) to
minimize background fluorescence, neuronal cultures were
imaged in transparent culture medium.

2.1.6 Caspase Assay
Caspase activity was measured by the luminescent Caspase-Glo®
3/7 Assay (Promega, Madison, Wisconsin, United States). This
homogeneous, luminescent assay provided a luminogenic
caspase-3/7 substrate, which contained the tetrapeptide
sequence DEVD, in a reagent optimized for caspase activity,
luciferase activity, and cell lysis. The protocol was performed
according to the manufacturer’s guidelines. In short, equal
amounts of Caspase-Glo® 3/7 reagent and PBS were added to
the cells upon removal of the medium. Cells and buffer were
mixed for 30 s using a plate shaker at 400 rpm (Infinite M1000,
Tecan) and incubated for 60 min at RT. Luminescence was
measured with a microplate reader (Infinite M1000, Tecan)
and normalized for statistical analysis.

2.1.7 Immunocytochemistry
For immunocytochemical analysis, cells were fixed in 4%
formaldehyde in phosphate buffer (ROTI® Histofix 4%, Carl
Roth, Karlsruhe, Germany) for 15 min and washed with PBS.
Unspecific binding of antibodies was blocked with normal
donkey serum (Cat #017-000-121, Jackson ImmunoResearch,
Laboratories Inc., Dianova Hamburg, Germany)/0.3% (v/v)
triton (Triton® X-100, Sigma-Aldrich) in PBS 0.01 M for 2 h at
RT. For antigen detection, cells were incubated overnight at 4°C in
PBS 0.01 M/2% bovine serum albumin (Cat #001-000-161,
Jackson ImmunoResearch)/0.05% sodium azide (S002, Sigma-
Aldrich)/0.1% triton with the following primary antibodies:
mouse monoclonal (Cat #MAB377, Millipore, Merck, RRID:
AB_2298772) or rabbit monoclonal (Cat #ab177487, Abcam,
Cambridge, United Kingdom, RRID: AB_2532109) anti-NeuN,
goat polyclonal anti-mCherry (Cat #AB0040-200, Sicgen, Lisbon,
Portugal, RRID: AB_2333092), goat polyclonal (Cat #AB0020-
200, Sicgen, RRID: AB_2333100) or rabbit polyclonal (Cat #A-
11122, Life Technologies, Thermo Fisher Scientific, RRID:
AB_221569) anti-GFP, rabbit polyclonal anti-GAD67 (Cat
#198 013, Synaptic Systems, Goettingen, Germany, RRID:
AB_2107718). For fluorescence labeling, the following
fluorophore conjugated secondary antibodies were used:
DyLight 405 – donkey anti-Rabbit (Cat #711-475-152, Jackson
ImmunoResearch, RRID: AB_2340616), Cy2 – donkey anti-Goat
(Cat #705-225-147, Jackson ImmunoResearch, RRID:
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AB_2307341), DyLight 488 – donkey anti-Rabbit (Cat #A120-
208D2, Bethyl Laboratories, Biomol, Hamburg, Germany, RRID:
AB_10627668), Cy3 – donkey anti-Goat (Cat #705-165-147,
Jackson ImmunoResearch, RRID: AB_2307351) or Alexa Fluor
647 – donkey anti-Mouse (Cat #715-605-151, Jackson
ImmunoResearch, RRID: AB_2340863), Alexa Fluor
647 – donkey anti-Rabbit (Cat #711-605-152, Jackson
ImmunoResearch, RRID: AB_2492288). Images from fixed
neurons were taken with a 10× objective (UPLFLN10X2PH,
Olympus) with an epifluorescence microscope (IX81,
Olympus) connected to a CCD camera (XM10, Olympus)
using the cellSens software (Olympus). Representative images
were taken with a confocal laser scanning microscope (TCS SP5,
Leica Microsystems, Wetzlar, Germany) at a magnification
of 40× with an oil-immersion objective (HC PL APO 40×/
1,30 OIL PH3 CS2, Leica Microsystems) using LAS AF
software (Leica Microsystems). Images were subsequently
analyzed in Fiji. For quantification of expression levels, an
automatic routine was written in ImageJ Macro language.

2.1.8 Pharmacology
In a subset of experiments, staurosporine (1.5 µM, Sigma-
Aldrich), a non-selective protein kinase inhibitor (Koh et al.,
1995) was administered to induce apoptosis in cortical cultures.
In another subset of experiments, tetrodotoxin (TTX, 1 μM,
Tocris, Bio-Techne, Minneapolis, Minnesota, United States)
and isradipine (Isr, 10 μM, Sigma-Aldrich) were used to
prevent Na+ action potentials and block voltage-gated Ca2+

channels.

2.2 Data Analysis and Statistics
2.2.1 Image Preprocessing
Image preprocessing was performed in Fiji (Schindelin et al.,
2012) using a custom written routine. First uneven illumination
due to spherical aberration was corrected according to a blurred
mask obtained with Gaussian Blur filter. Multiple imaging
sessions, including bright field (BF), nls-dTomato (CY3) and
GCaMP6s (FITC) time-lapse images, were registered and aligned
to the first experiment time-point. Electrodes and neuronal
region of interests (ROIs) were obtained with Analyze Particles
after image automatic thresholding. Minimum thresholding was
applied to BF picture to identify dark electrodes. For neuron ROI
identification, Triangle thresholding followed by Watershed
segmentation was applied to CY3 nls-dTomato pictures. A
background ROI devoid of cells and neurites and a reference
ROI within it were delineated. The reference mean gray values
and the background minimum value were extracted for
normalization and offset correction of the calcium traces,
respectively.

2.2.2 Cell Identification and Cell Fate Detection
Single neuron identification was based on the thresholded nuclear
nls-dTomato signal using a custom written ImageJ macro in Fiji.
In detail, neurons were included for further analysis when their
nuclei at DIV 9 had an area of at least 50 μm2 and a circularity of
0.5. Somatic areas were delimited fitting an ellipse to nuclear ROIs
and enlarging them by a scaling factor of 1.5. Somatic ROIs were

carefully evaluated across all time points to remove artifacts. After
definition of ROIs, the following properties were extracted: area,
centroid, and area fraction. Over the following time points (DIV
12 and 15), a neuron was considered as dead when the area
fraction was ≤15%. Conversely, cells that displayed an area
fraction >25% were considered alive. Additionally mean gray
value from nls-dTomato raw images were extracted.

2.2.3 Calcium Imaging Analysis
Raw calcium traces based on the somatic GCaMP6s signal were
extracted from FITC time-lapse videos by computing the mean
gray values of each neuron for every frame using the Multi
Measure tool in Fiji. Raw calcium traces were then imported
into Matlab 9.8 (The MathWorks Inc., Natick, Massachusetts,
United States), normalized according to the reference trace, and
the background intensity was subtracted. ΔF/F0 was computed
using an open source toolbox (Romano et al., 2017) with
detection of active periods (calcium transients) above a
dynamic threshold (95% confidence interval). An additional
static threshold (3× the standard deviation of the baseline
noise σ) was applied. Finally, all traces were visually inspected
to remove artifacts. Calcium peaks within identified calcium
transients were detected using findpeaks function (Signal
Processing Toolbox™, Matlab) using MinPeakProminence as
name and σ as value argument. Neurons were defined as
active when they displayed significant calcium elevations for at
least 1 s per 5 min.

2.2.4 Spike Sorting and Assignment to Optically
Identified Neurons
Spikes were sorted with Offline Sorter (Plexon Inc., Dallas, Texas,
United States) using two highly robust methods, K-means Scan
(KMS) and Valley Seeking Scan (VSS) (Sukiban et al., 2019) with
the following tunable parameters: for KMS a unit range of 1–7,
whereas for VSS a parzen multiplier range of 0.5–1.5 with steps of
0.2. Sorted single units were assigned to optically identified
neurons using a custom written GUI in Matlab. Each neuron
was first assigned to its closest electrode tip within a maximum
radius of 60 µm. For every active channel and close-by active
neurons, sorted units and calcium traces were displayed. Sorted
units were compared to unsorted spikes to confirm or merge
over-sorted units into a single spike train. Finally, spike trains
were assigned to neurons, after visual inspection of the presence
of a peak in the cross-correlogram calculated between the calcium
trace and spike timestamps binned in intervals of 0.5 s.

2.2.5 Reconstruction of Spike Trains
Reconstructed spike timestamps were inferred from calcium
signals using the MLspike toolbox (Deneux et al., 2016).
MLspike algorithm relies on a physiological model that
considers mainly three parameters: the unitary calcium
response (amplitude), the decay time (tau) and the decay
kinetic of the sensor (supra-linearity). The optimal parameters
were chosen through a brute-force approach in which a
parameter grid was tested on a subset of 45 neurons, which
showed a clear match between calcium imaging and
electrophysiological signals. For the amplitude, a range of
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10 values expressed as a fraction between 0.05 and 0.5 of the max
ΔF/F0 was used. Values below the standard deviation of the
baseline noise σ were discarded. For tau, the selected values
ranged between 0.5 and 2 s. For supra-linearity, polynomial
fitting was chosen and values ranging from 0.1 to 0.9 were
considered for p2 coefficient, while a constant value of
0.05 was used for p3 coefficient. Performance of each run was
evaluated by estimating the error rate (ER) through the provided
code between the recorded and the reconstructed spike trains.
Best candidates for each cell were selected upon a grid search with
the lowest 10% ER value as a performance metric. This procedure
yielded for each parameter 90 candidates, among which the
median was taken. Finally, the median of best parameters
across all cells was taken, leading to the following values: 0.1 ×
max ΔF/F0 (amplitude), 0.7 s (tau), and 0.45 (p2).

2.2.6 Firing Properties
For the characterization of single cell firing properties, we computed
Ca2+ transient rate as the number of calcium transients per minute,
Ca2+ peak rate as the number of calcium peaks perminute, spike rate
as the number of spikes per second, on time as the total active period
in minutes. Max spike frequency was calculated as the maximum
number of reconstructed spikes per sampling interval 0.5 s or was set
to 1 when the maximum inter-spike interval was ≥1 s. Bursts were
detected using theMax Interval algorithm (Cotterill et al., 2016) with
the following parameters: themaximum initial inter-spike interval to
start the burst (0.1 s), the maximum inter-spike interval to define the
burst end (0.6 s), the minimum interval between bursts (1.1 s), the
minimum burst duration (0.5 s), and the minimum number of
spikes in the burst (3). The following burst metrics were computed:
burst rate as themean number of burst per minute, spikes in burst as
the number of spikes within bursts divided by the total number of
spikes (%). Network firing parameters were computed as average
values across all active neurons.

2.2.7 Spatial Organization
Morphological clusters were identified using DBSCAN algorithm
(Ester et al., 1996) over the neurons coordinates with the
maximum distance between two points Eps set to 50 µm and
minimum number of points MinPts of 1. Aggregation index was
computed as:

Aggregation � 1 − (Clusters/Cells)
(Cells − 1)/Clusters

where Clusters is the number of unique clusters found and Cells is
the total number of cells in the network. The aggregation index
can take any value between 0, when every cell is isolated, and 1,
when all cells are counted within a single cluster. For each cell
belonging to a cluster with size >1, respective neighbors were
identified and the average and maximal values of their firing
properties were computed.

2.2.8 Functional Connectivity
Pairwise statistical dependence between reconstructed spike
trains was estimated with the spike time tiling coefficient
(STTC, Cutts and Eglen, 2014). The STTC method

estimates the synchrony of two spike trains through the
following formula:

STTC � 1
2
( PA − TB

1 − PA TB
+ PB − TA

1 − PB TA
)

where PA is the proportion of spikes in channel A that occur
within ± Δt of a spike from channel B and TB is the fraction of the
total recording time that falls within ± Δt of a spike from channel
B. PB and TA are calculated similarly. A time window of 0.5 s was
chosen. By means of the STTC method, we computed
connectivity matrices, in which pairwise correlations were
comprised between +1 and −1, where +1 indicated
autocorrelation and negative values anticorrelation.

Functional connectivity parameters were computed using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) in
MATLAB 9.8 (The MathWorks Inc.). First, undirected
connectivity networks were assembled by linking each pair of
nodes where a positive correlation existed. The presence of silent
cells led to the introduction of disconnected nodes and the
generation of fragmented networks. Therefore, to measure
topological properties of distance and path length, values of
distance matrix were set to the total number of nodes and the
harmonic mean of the shortest path length was used to compute
the characteristic path length (for review, see Fornito et al., 2016).
The following nodes parameters were extracted: node degree,
mean shortest path length, betweenness centrality, clustering
coefficient, local efficiency, and hubness. Hubness score was
defined based on the definition by Van den Heuvel et al.
(2009). At network level, the following parameters were
extracted: connection density, characteristic path length,
betweenness centrality, clustering coefficient, global efficiency,
modularity and small-worldness. Small-worldness was based on
the definition by Humphries and Gurney (2008).

2.2.9 Machine Learning
Supervised classification of neurons according to cell fate
(surviving or dying) was performed in Python 3.7. Measures
from 1874 cells at DIV 9 describing firing properties, spatial
organization and functional connectivity at single cell and
network level were pooled and z-scored. Class labels were
created based on the fate of the cell at the subsequent
experimental session, i.e., DIV 12 (surviving or dying). To deal
with the asymmetric distribution of surviving vs. dying cells in the
dataset, we selected the Random Undersampling Boosting
(RUSBoost) classifier and Balanced Random Forest Classifier
from the imbalanced-learn python package (Lemaître et al.,
2017). As a control, we trained the Dummy classifier from the
scikit-learn library (Pedregosa et al., 2011), using the class priors.
Feature selection was performed after hierarchical clustering,
using Spearman’s rank correlation coefficient as a distance
measure, and manually selecting representative variables from
each group of parameters identified using a cut-off value of
0.5 based on the shortest Euclidean distance. The predictors
included are summed up in Supplementary Figure S7.

In order to select the most suitable parameters, nested cross-
validation was employed, using 10 inner folds and 10 outer folds,
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using stratification. The following parameter grid was considered:
for the RUSBoost classifier, n_estimators = [100, 1000, 2000] and
learning_rate = [0.05, 0.5, 1], and for the Random Forest
classifier, n_estimators = [1000, 2000], max_features = [2, 5],
max_depth = [50, 100, 150] and min_samples_leaf = [3, 4, 8].

The use of a Random Forest classifier provides the benefit of a
simple way to evaluate how relevant is each variable for the
performed prediction. Random Forest classifiers are composed by
a collection of decision trees. Each tree is trained to find the best
split of the dataset, and in each node of the tree, a feature is
selected such that it maximizes the decrease in impurity. The
feature importance values correspond to the normalized measure
of how strong is, on average, the decrease in impurity for each
feature. The removal of highly correlated variables allows a better
interpretability of the Random Forest feature importance scores,
because such correlation can lead to over/underestimation of
individual variables in terms of contribution to the decision
(Nicodemus et al., 2010). Feature importance was collected
using an additional cross-validation round (10-folds).

In order to obtain a descriptive activity profile of cells that
would be classified as dying or surviving, we selected all the cells
that were more confidently predicted by the classifier in each class
(i.e., >80% probability of assignment to a class, calculated using
the predict_proba method) and calculated the median value for
each feature.

2.2.10 Statistics
All statistical tests were performed using GraphPad Prism 9.3
(GraphPad, La Jolla, California, United States). Normality of
sample distributions was tested with Shapiro-Wilk test. Direct
comparisons between two groups were performed with Student
unpaired t-test for normally distributed data or nonparametric
Mann-Whitney test when the samples were not following a
Gaussian distribution. Two-samples Kolmogorov-Smirnov test
was used to compare cumulative frequency distributions.
Multiple groups were compared using either one-way ANOVA
followed by Tukey’s multiple comparison post-hoc test, or
Kruskal-Wallis test followed by Dunn’s or Dunnett’s multiple
comparison post-hoc test, depending on whether the normality
test was passed. Two-way ANOVA followed by Šidák’s multiple
comparison was used to quantify the interaction between
different factors. Linear dependency between two variables was
evaluated with an F test. Chi-square test was used for testing
independence of categorical variables and post-hoc pairwise
comparisons were performed with Bonferroni correction to
control for familywise error rate. Significance was considered
at p values < 0.05. Data in bar charts are shown as mean ±
standard deviation (SD), whereas box plots representing median
and interquartile range (IQR) are shown with min–max whiskers.

3 RESULTS

3.1 Network Activity Restricts Single
Neuron Probability of Cell Death
Developing cortical networks are affected by higher rates of
apoptosis when lower levels of activity are present

(Ikonomidou et al., 1999; Heck et al., 2008; for review, see
Blanquie et al., 2017b). It is however unclear whether the large
proportion of silent neurons in early development encompasses
the fraction of neurons with an apoptotic fate, and what
relationship exists between neuronal activity and cell fate of
individual neurons. For the spatiotemporal characterization of
activity and apoptosis during network development, we used
cortical cultures grown on microelectrode arrays (MEAs). To
investigate if distinct activity features characterize surviving or
dying neurons at a single cell level, neurons were transduced with
a recombinant adeno-associated virus endowing them with two
fluorescent reporters: the orange fluorescent nuclear tag nls-
dTomato and the green fluorescent calcium indicator
GCaMP6s (Figure 1A and Supplementary Figure S1A). With
this strategy, about 80% of neurons in culture were targeted with a
preferential tropism for glutamatergic neurons (Supplementary
Figure S1B). Already after 9 days in vitro (DIVs), a cell fraction
above 50% showed a marked expression of the transgenes
(Supplementary Figure S1C). From this point onwards, we
performed longitudinal experiments combining extracellular
electrophysiological MEA recordings with live-cell imaging at
3-days intervals until DIV 15 (Figure 1B and Supplementary
Videos S1–S3). The nuclear tag nls-dTomato allowed the
identification and follow-up of neurons on the MEA
throughout the experimental time course (Figure 1C), whereas
the co-expression of GCaMP6s enabled to distinguish between
active, i.e. displaying calcium transients, and silent neurons
(Figure 1D). Importantly, cell death could be promptly
detected by loss of the nls-dTomato signal upon nuclear
membrane disruption triggered by the apoptotic program
execution (Figure 1E). As a positive control, we confirmed
that neuronal apoptosis, induced by the protein kinase
inhibitor staurosporine (Koh et al., 1995), led to the loss of
nuclear nls-dTomato signal within the expected time frame of
about 3 h (Supplementary Figure S1D).

Cortical neurons in culture self-organize into neuronal networks,
in which wiring and pruning are accompanied by the progressive
emergence and refinement of neuronal activity over the second week
in vitro (Wagenaar et al., 2006; Sun et al., 2010). Consistently, a
developmental increase in neuronal firing was captured between
DIV 9 and 15 by both electrical and calcium activity measurements
as shown by the increment in the number of active channel
(Figure 2A, from 9 ± 12.8 to 26.7 ± 18.8, p < 0.001, Dunn’s
multiple comparisons test) and in the relative proportion of
active neurons within the network (Figure 2B, from 36.1 ±
32.9 to 97.3 ± 10.5, p < 0.0001, Dunn’s multiple comparisons
test). In parallel, network firing rates steeply increased between
DIV 9 and 12, as the mean spike rate shifted from 11.9 ± 18.6 to
26.4 ± 36.7 Hz (Figure 2D, p < 0.05, Dunn’s multiple comparisons
test) and the average number of calcium transients per minute
increased from 0.58 ± 0.68 to 1.33 ± 0.88 (Figure 2E, p <
0.001, Dunn’s multiple comparisons test). From DIV 12 to 15,
mean rate of both spikes and calcium transients settled to 22.7 ±
28.1 Hz (Figure 2D, p> 0.99, Dunn’smultiple comparisons test) and
0.99 ± 0.49 transients per minute (Figure 2E, p = 0.92, Dunn’s
multiple comparisons test), respectively. Between DIV 9 and 12,
when neuronal network activity was still low and emerging, on
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average 18.6% ± 13.8 of neurons per culture underwent
programmed cell death, whereas a significantly smaller fraction of
5.4% ± 9.2 died between DIV 12 and 15 (Figure 2C, p < 0.0001,
Mann-Whitney test). In line with the higher rate of programmed cell
death at early stage, activation of caspases, the main down-stream

effectors in the intrinsic apoptotic cascade (Yuan and Yankner,
2000), was higher at DIV 10 compared to DIV 13 (Figure 2F, 1 ±
0.11 vs. 0.88 ± 0.12, p < 0.01, Student unpaired t-test).

Based on these findings, we focused our attention on the 3-days
interval from DIV 9 to DIV 12 and correlated network activity

FIGURE 1 | Spatiotemporal investigation of neuronal activity and apoptosis in developing cortical cultures. (A) Schematic overview of the experimental design. (B)
Longitudinal electrophysiological MEA recordings over the second week in vitro. Spike raster plots (top panels) of active channels across development are shown
together with corresponding spike count histograms (bottom panels). (C) Live-cell imaging of nuclear tag nls-dTomato (yellow) and maximal projection of calcium
indicator GCaMP6s signal (green) in cortical neurons cultured on a MEA. Merge (yellow-green) image with the bright field channel highlights dark electrode tips.
Post-hoc staining with calcein-AM dye (magenta) confirmed viability of identified neurons throughout the experiment. (D)Representativemerge images and fluorescence
traces of active (top) and silent neurons (bottom). Detected calcium transients are overlaid in green. (E) Longitudinal imaging of nuclear nls-dTomato signal allowed
unbiased identification of neurons and reliable cell fate monitoring throughout the experimental time course. Surviving neurons are indicated by white arrowheads,
whereas neurons with an apoptotic cell fate are marked by unfilled arrowheads. Scale bars represent 100 µm in overview images (C) and 20 µm in cropped images of
100 × 100 µm (C–E).
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FIGURE 2 | Neuronal activity decreases the probability of programmed cell death. (A–C) The number of active channels and the relative proportion of active
neurons increased with development (Kruskal-Wallis test), whereas the percentage of cell death detected through longitudinal nls-dTomato imaging decreased from DIV
9–12 to DIV 12–15 (Mann-Whitney test). (D,E) The mean spike rate per culture recorded with MEA and the average rate of detected calcium transients increased from
DIV 9 to DIV 12 and then stabilized (Kruskal-Wallis test). (F) In line with the observed rates of cell death, caspase activity in cultures was higher at DIV 10 compared to
DIV 13 (Student unpaired t-test). (G) The proportion of active neurons in cultures at DIV 9 negatively correlated with the subsequent cell death rate at DIV 12 (F test). (H)
Viability of culture at DIV 12 was reduced by combined application of tetrodotoxin (TTX) and isradipine (Isr) (Kruskal-Wallis test, followed by Dunnett’s multiple
comparisons test, p < 0.0001), whereas application of TTX only led to a slight and non-significant reduction in viability. (I) The relative proportion of neurons with a survival
cell fate was higher among active neurons as compared to the silent population. (J) On the single neuron level, the probability of cell death was higher in neurons, which
were silent at DIV 9 as compared to active neurons (Chi-square test). Bar charts with mean ± SD or scatter plots with line indicating simple linear regression are shown.
*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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features at DIV 9 with the subsequent rates of cell death at DIV 12.
We observed a negative correlation between the proportion of active
neurons at DIV 9 and cell death rates at DIV 12 across cultures
(Figure 2G, F(1, 25) = 14.19, p < 0.001). A similar linear dependency
was present when plotting cell death rate as a function of the average
calcium transient rate (Supplementary Figure S2A). Interestingly,
this negative association between activity and cell death rate in
cultures was not statistically significant when electrophysiological
parameter such as number of active channels (Supplementary
Figure S2B) and mean spike rate (Supplementary Figure S2C)
were considered. The lack of correlation between electrical network
parameters with cell death rates might reflect the fact that neuronal
activity and cell survival were assessed in overlapping but not
identical neuronal subpopulations or could point to a particular
role of calcium signaling for the regulation of activity-dependent cell
death (Turner et al., 2007). The latter hypothesis is supported by the
observation that only combined blockade of voltage-gated Na+ and
Ca2+ channels by tetrodotoxin (TTX, 1 µM) and isradipine (Isr,
10 µM) at DIV 9 resulted in a strong and significant decrease of
neuronal survival at DIV 12 compared to control cultures
(Figure 2H, 77.5 ± 13.6% vs. 100.1 ± 10.2%, p < 0.0001,
Dunnett’s multiple comparisons test), while solely blocking action
potentials with TTX only slightly and non-significantly reduced
viability of neurons (Figure 2H, 89.9 ± 18% vs. 100.1 ± 10.2%, p =
0.12, Dunnett’s multiple comparisons test).

To investigate if also on a single neuron level the early activity
profile was associated with subsequent survival or cell death, we
pooled data from 1874 neurons imaged in 27 independent cultures,
classified them according to the presence of calcium events at DIV 9
(active or silent) and correlated this with the respective cell fate
observed at DIV 12 (surviving or dying) (Figure 2I). This analysis
showed that the proportion of neurons with an apoptotic fate was
greater among the silent subpopulation than the active one
(Figure 2J, 26.7% vs. 7.6%, χ2 = 104.1, df = 1, p < 0.0001). Thus,
the largest portion of apoptotic neurons was constituted by silent
neurons albeit a minority of the active population also died.

In conclusion, the combination of longitudinal MEA
recordings with optical imaging allowed to recapitulate the
typical electrophysiological development of cortical networks
in vitro, while enabling a detailed characterization of activity-
dependent apoptosis of single neurons. The results suggest that
the presence of activity at an immature developmental stage
decreases the probability of death at the single neuron level.

3.2 Individual High Firing Rates Promote
Neuron Survival
Cortical neurons during early development exhibit low-
amplitude and sparse action potentials (Weir et al., 2015;
for review, see Moody and Bosma, 2005), which can

FIGURE 3 | Optimization of spike inference based on coupling of extracellular voltage signals to intracellular calcium transients. (A) Representative example of
coupling of the calcium trace (top-right) of a single neuron close to an electrode (top-left) and the corresponding electrophysiological signals. Superimposed waveforms
and their mean (solid line) are shown on the bottom-left, whereas on the bottom-right the respective spike count histogram with bin size of 0.5 s is shown. Image scale
bar represents 20 µm. (B) Comparison between electrically recorded spikes and GCaMP6s fluorescence, indicated as ratio to the max ΔF/F0 (Kruskal-Wallis test).
Median and IQR are shown. (C)Correlation between mean spike rates recorded with MEA and inferred through MLspike algorithm with fitted parameters (F test). Values
are log-transformed and axis show anti-log scale. Line indicates simple linear regression. ****p < 0.0001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org August 2022 | Volume 10 | Article 9377619

Warm et al. Activity Patterns Predict Neuronal Apoptosis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


attenuate sensitivity of extracellular recordings and lower the
performance of spike sorting (for review, see Buzsáki, 2004;
Pedreira et al., 2012). To determine firing properties of all
optically identified neurons, we applied spike inference on
calcium traces using the MLspike toolbox (Deneux et al.,
2016). The latter derives discrete spike timestamps from
continuous fluorescence signals and was shown to have a
good overall performance compared to other methods
(Berens et al., 2018). The outcome of MLspike was
benchmarked taking advantage of a subset of neurons in the
close proximity of an electrode, to which both calcium traces
and electrical signals could be clearly assigned (Figure 3A). To
account for potential differences in transgene expression level
(Supplementary Figure S3A), individual calcium responses
were considered as ratios of the max ΔF/F0. This conversion
enabled to infer a consistent correlation between the number
of spikes recorded in 0.5 s bins and the respective calcium
elevations in a large number of neurons (Figure 3B, p < 0.0001,
Kruskal-Wallis test). The MLspike algorithm is based on a
biophysical model that takes into account the unitary calcium
response (amplitude) and kinetic properties of the calcium
indicator (decay time and supra-linearity). To optimize the
model parameters, we thus performed a grid search across
different values and selected the best candidates based on the
least error rates estimated between the recorded and
reconstructed timestamps (Supplementary Figure S3B).
Median values across each cell’s best reconstruction were
taken for spike reconstruction (Supplementary Figure
S3C–E). Resulting average rates of reconstructed spike
timestamps were in good agreement with MEA-recorded
firing rates up to 1 Hz (Figure 3C, F(1, 36) = 120.3, p < 0.0001).

To characterize activity features of active cells that would
subsequently undergo apoptosis or survive, calcium peaks were
extracted from the displayed calcium transients, and
reconstructed spike timestamps were analyzed to determine
firing rates and bursting behavior (Figure 4A). The results
showed that neurons, which were still viable at the next
recording session at DIV 12, displayed higher calcium
transient rates at DIV 9 (Figure 4B, 0.8, 0.4–1.7 vs. 0.4,
0.2–0.9, p < 0.0001, Mann-Whitney test) and a higher number
of calcium peaks per minute compared to neurons that
subsequently died (Figure 4C, 1.5, 0.5–3.7 vs. 0.5, 0.2–1.9, p <
0.0001, Mann-Whitney test). Coherently, the relative time in
which surviving neurons displayed activity during the recording
period was longer compared to neurons that died until DIV 12
(Supplementary Figure S4A). Importantly, not only the
frequency but also the normalized amplitude of calcium events
was larger in surviving neurons as indicated by the comparison of
max ΔF/F0 (Figure 4D, 0.42, 0.27–0.62 vs. 0.23, 0.14–0.37, p <
0.0001, Mann-Whitney test). This difference was not due to
variability in expression levels (Supplementary Figure S4B) or
in the baseline calcium fluorescence (F0) across groups
(Supplementary Figure S4C). Classification of active vs.
inactive neurons based on reconstructed spikes almost
completely confirmed the prior identification of activity in
neurons (n = 711 based on reconstructed spiking vs. n =
726 neurons based on the calcium signals, i.e., 98% overlap).
The systematic comparison of reconstructed firing parameters
between active neurons with a prospective survival or dying cell
fate showed that mean spike rates were significantly higher in
surviving neurons (Figure 4E, 5.3 × 10−2, 2.3 × 10−2–1.3 × 10−1 vs.
2.2 × 10−2, 1 × 10−2–5.8 × 10−2, p < 0.0001, Mann-Whitney test).

FIGURE 4 | High frequency firing patterns promote neuronal survival. (A) Schematic overview of single neuron firing properties. (B–D) Rate of calcium transients
and peaks as well as the maximum ΔF/F0 at DIV 9 were higher in neurons with a prospective survival fate (Mann-Whitney test). (E,F) Reconstructed spike rate and
maximum spike frequency were higher in active neurons, which survived (Mann-Whitney test). (G) Bursts were almost exclusively detected in surviving neurons. (H)
Probability of cell death was negatively correlated with spike rate of individual neurons (Chi-square test). Box plots with median and IQR and min–max whiskers are
shown. **** p < 0.0001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org August 2022 | Volume 10 | Article 93776110

Warm et al. Activity Patterns Predict Neuronal Apoptosis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Also, the maximum frequency of spikes calculated as the
instantaneous rate (i.e., number of spikes/sampling interval)
was higher in surviving neurons (Figure 4F, 2, 2–4 vs. 1, 1–2,
p < 0.0001, Mann-Whitney test). Interestingly, bursting behavior
was an almost exclusive characteristic of surviving neurons
(Figure 4G), which in median displayed 0.2 bursts per minute
(Supplementary Figure S4D), and 25% of their spikes belonged
to bursts (Supplementary Figure S4E). Of note, consistency
between calcium and spike parameters was also maintained at
network level (Supplementary Figure S4F–J). Classification of
neurons according to their firing rate, outlined a higher
probability of cell death for silent (Figure 4H, 26.5%, χ2 =
106.3, df = 2, p < 0.0001) or sparsely firing (9.3%) neurons
compared to neurons showing at least 0.1 spikes per
second (3.2%).

In conclusion, by fitting model parameters of an established
spike inference method, we could reconstruct firing properties of
all individual neurons. The comparative analysis of intrinsic
activity features suggests that large amplitude of calcium

responses, high frequency firing and the presence of bursting
activity are beneficial for survival of neurons during early
development in neuronal networks.

3.3 Neighbors’Activity is a Protective Factor
Against Cell Death
Over the first days in culture, neurons relocate from randomly
seeded positions into dense clusters of cells (Robert et al., 2012)
before they start to form diffused synaptic connections and
display spontaneous electrical activity (Shein Idelson et al.,
2010). In order to assess whether the physical arrangement of
neurons within local assemblies had any effect on neuronal
survival or death, we analyzed the spatial organization of
neuronal networks and the relative position of single neurons
within these assemblies. For this purpose, we identified clusters by
using the DBSCAN algorithm (Ester et al., 1996) with a radius of
50 µm (Figure 5A). In line with previous results (Robert et al.,
2012), we found that cells display a tendency to form physical

FIGURE 5 | Activity of neighbors in neuronal clusters exerts a pro-survival effect. (A) Identification of neuronal clusters based on nls-dTomato signal in a
representative field of view (left). Neurons are depicted based on their physical positions with respective cluster number (right). Image scale bar represents 50 µm. (B)Cell
death rates at DIV 12 were not correlated with respective aggregation indices of cultures at DIV 9 (F test). Line indicates simple linear regression. (C,D) No significant
difference in the number of nls-dTomato-positive neurons in physical proximity (i.e., neighbors <50 µm) was present between surviving and dying neurons, neither
in the relative distributions (Kolmogorov-Smirnov test) nor in the median values (Mann-Whitney test). (E–G) The number of identified active neighbors, the average and
maximum spike rates of neighbors were higher in neurons, which survived (Mann-Whitney test). (H) The relative percentage of active neighbors, which displayed bursting
patterns, was higher for surviving neurons as compared to neurons with a prospective cell death fate (Chi-square test). (I) For silent and active neurons, the presence of
active neighbors in their vicinity decreased their probability of cell death (Chi-square test). Box plots with median and IQR and min–max whiskers are shown and **p <
0.01, ***p < 0.001 and ****p < 0.0001.
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clusters, as they distributed preferentially within a 50 µm distance
from their neighbors (Supplementary Figure S5A). At first, we
investigated whether the sparseness of the network influenced
overall survival or cell death rates. Therefore, we correlated
densities and levels of aggregation with cell death rates of
cultures. Neither the degree of aggregation (Figure 5B, F(1,
25) = 0.56, p = 0.46) nor the mere density (Supplementary
Figure S5B) of a culture was associated with significant
changes in cell death rates. Next, we quantified, for each
neuron, the number of neighbors and compared their
distribution among the populations of surviving and dying
neurons. The results showed, that regardless of their
prospective cell fate (Figure 5C, p > 0.99, Kolmogorov-
Smirnov test) most neurons had at least one neighbor (in total
73.2%) and in median every neuron had 2 neighbors (Figure 5D,
0–5 vs. 0–6, p = 0.98, Mann-Whitney test). Thus, the spatial
organization of cortical networks did not correlate with neuronal
death rates and the physical location of dying and surviving
neurons within the network did not substantially differ.

We then investigated the activity profiles of neighbors.
Interestingly, surviving neurons were surrounded by a higher
number of active neighbors compared to dying neurons
(Figure 5E, 1, 0–2 vs. 0, 0–1, p < 0.0001, Mann-Whitney test).
Moreover, the proportion of active neighbors close to surviving
cells was significantly higher than in the vicinity of dying neurons
(Supplementary Figure S5C). Average spike rates across
neighbors of surviving neurons were also significantly higher
than those of neurons in the vicinity of dying neurons (Figure 5F,
4.6 × 10−2, 2 × 10−2–1.1 × 10−1 vs. 2.9 × 10−2, 1.2 × 10−2–7.5 ×
10−2, p < 0.01, Mann-Whitney test). Furthermore, the maximal
spike frequency among neighbors was higher for surviving
neurons as compared to prospective dying neurons
(Figure 5G, 2, 2–4, vs. 2,1–2, p < 0.001, Mann-Whitney test).
Accordingly, bursting behavior was more often detected in
neighbors surrounding surviving than dying neurons
(Figure 5H, 34.9% vs. 18.3%, χ2 = 11.33, df = 1, p < 0.001),
although its descriptive metrics, failed to capture any statistical
significant difference (Supplementary Figures S5D,E,I,J).
Similarly, neighbors’ average and maximum calcium
parameters, describing frequency of transients (Supplementary
Figure S5F,K), peaks (Supplementary Figure S5G,L) and
activity period length (Supplementary Figure S5H,M) were
higher around surviving vs. dying neurons. When combining
observations on single cell and cluster level, by quantifying the
probability of cell death given the firing state of the cell itself and
its neighbors (Figure 5I, χ2 = 90.11, df = 3, p < 0.0001), the results
showed that silent neurons with silent neighbors were more likely
to die (29.5%), whereas active neurons with active neighbors had
the best chance to survive (94.4%, i.e., 5.6% chance of cell death).
Moreover, the survival rates both among silent neurons (70.5%
with silent neighbors vs. 77.5% with active neighbors, χ2 = 5.17,
df = 1, p < 0.025, post hoc comparison with Bonferroni corrected
significance threshold) and active neurons (84.7 with silent
neighbors vs. 94.4% with active neighbors, χ2 = 9.99, df = 1,
p < 0.005, post hoc comparison with Bonferroni corrected
significance threshold) were higher in the presence of active
neighbors.

In conclusion, we show that the number of neighboring
neurons is not associated with a preferred cell fate, but instead
high frequency activity of neurons in close vicinity appears to be a
protective factor against cell death. Active neighbors supported
survival of silent and active neurons in immature networks, where
connectivity still evolves even within clusters.

3.4 Modular Topology Forsters Survival
Rates
The structural organization of cultured neurons in dense clusters
sustains the formation of a stereotypical functional connectivity,
which is fundamental for the generation of synchronous burst
events across the network (Okujeni et al., 2017). To estimate the
functional connectivity between neurons and ascertain its
influence on neuronal survival, we calculated the pairwise
synchrony between the reconstructed spike trains, by means of
the spike time tiling coefficient (STTC). This measure is
particularly suited to evaluate correlation between neuronal
spikes in immature neurons, as it is not influenced by firing
rates and common silent periods (Cutts and Eglen, 2014). By
considering only positive correlations in the connectivity
matrices, we built graphs in which neurons are linked by
undirected connections and are organized in interconnected
modules (Figure 6A). This division in strongly interconnected
modules can be measured by an ad hoc index (Blondel et al.,
2008), whose calculation revealed that networks with high
modularity at an early developmental stage had lower cell
death rates (Figure 6B, F(1, 25) = 4.82, p < 0.05). In graph
theory, networks with a modular configuration are
topologically characterized by a high clustering coefficient and
a low characteristic path length (for review, see Meunier et al.,
2010), and have been shown to maximize information transfer.
Accordingly, highly efficient networks, which favor
communication between neurons (Achard and Bullmore,
2007), showed decreased rates of cell death (Figure 6C, F(1,
25) = 10.46, p < 0.01) and the metrics descriptive of the
underlying topology, clustering coefficient and characteristic
path length, negatively correlated with cell death at DIV 12
(Supplementary Figure S6A,B). Within the framework of
functional connectivity, an efficient information transfer across
the network underlies co-activation between neurons, whereas
silent cells are by definition disconnected from the network. We
therefore compared functional properties of only the active cells
based on their respective fate. At a single cell level, surviving
neurons had an overall higher synchrony (Figure 6D, 8.7 × 10−2,
3.4 × 10−2–2.4 × 10−1 vs. 4.5 × 10−2, 1.9 × 10−2–1.6 × 10−1, p <
0.001, Mann-Whitney test) and a higher number of connections,
as shown by the analysis of the node degree (Figure 6E, 0.49,
0.29–0.83 vs. 0.2, 0.07–0.54, p < 0.0001, Mann-Whitney test).
Moreover, a shorter mean path length (Figure 6F, 0.25,
0.05–0.39 vs. 0.69, 0.05–0.91, p < 0.0001, Mann-Whitney test)
in surviving neurons suggested a higher level of integration within
the network, whereas the higher values of betweenness
(Figure 6G, 7.9 × 10−4, 3.3 × 10−4–3.2 × 10−3 vs. 3.4 × 10−4,
0–2.4 × 10−3, p < 0.001, Mann-Whitney test) indicated a stronger
ability to influence or being influenced by other network
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components. Despite these observations, we did not find
indications of a higher number of hub neurons among the
surviving subpopulation (Supplementary Figure S6C) and, in
line with other studies (Schroeter et al., 2015), the small-
worldness failed to capture significant differences across
cultures (Supplementary Figure S6D). This suggests that
specific measure of graph theory might have lower
discriminative power at an early developmental stage or a
lower correlation with programmed cell death. Similarly,
clustering coefficient and local efficiency at single cell level and
average betweenness at network level, did not show a significant
correlation with cell death (Supplementary Figure S6E–G). To
evaluate the influence of connectivity on neuronal survival, we
next calculated the probability of cell death based on node degree.
The results showed that neurons with lower connectivity display
higher rates of cell death (Figure 6H, node degree 0, 26.6%, node
degree ≤0.5, 9.9%, node degree >0.5, 4.6%, χ2 = 107.2, df = 2, p <

0.0001) and networks with higher connection density had lower
cell death rates (Supplementary Figure S6H).

In conclusion, the analysis of functional connectivity revealed
that the integration of neurons into strongly interconnected
modules and highly efficient networks fosters neuronal
survival. Furthermore, high synchrony and number of
connections are beneficial for survival of individual neurons.

3.5 Activity Profiles are Predictive of
Neuronal Survival
The analysis of properties, at a single neuron, cluster and network
level allowed us to gain insight on the conditions that promote
neuronal survival in culture and characterize features of surviving
and dying neurons. We next aimed at analyzing if the
combination of these properties could provide a more in-
depth description of activity profiles predictive of cell death or

FIGURE 6 | Functional connectivity fosters neuronal survival in culture. (A) Representative connectivity matrix (left) and network graph (right) of 93 neurons at DIV 9.
Active (green) and silent neurons (gray) are shown in their physical positions with respective module numbers and representative functional connections (cyan-blue) are
drawn between active neurons. (B,C)Modularity and efficiency of the network at DIV 9 were negatively correlated with subsequent cell death rates at DIV 12 (F test). (D)
Surviving neurons showed a higher synchrony (mean STTC) with activity of other neurons in culture (Mann-Whitney test). (E) The number of connections (node
degree) was higher in surviving neurons compared to neurons with a prospective dying fate (Mann-Whitney test). (F) Average path length at DIV 9was longer for neurons,
which died until DIV 12 (Mann-Whitney test). (G) Surviving neurons had a more central position (betweenness) within connections of others pairs of neurons (Mann-
Whitney test). (H) The probability of cell death was lower in neurons with a higher node degree (Chi-square test). Box plots with median and IQR andmin–maxwhiskers or
scatter plots with line indicating simple linear regression are shown. *p < 0.05, ***p < 0.001 and ****p < 0.0001.
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survival. For this purpose, we applied machine learning, which is
a consolidated approach in neuroscience (for review, see Vu et al.,
2018) and allows to identify nonlinear dependencies in
multidimensional neurophysiological datasets (for review, see
Cunningham and Yu, 2014). Moreover, this approach has
been successfully used for prediction of spontaneous activity
during early development on MEAs (Cabrera-Garcia et al.,
2021). For each of the 1874 neurons, we included all
parameters measured at DIV 9 describing neuronal firing,
cluster spatial organization and network functional
connectivity, and assigned a label according to its cell fate at

DIV 12. By means of supervised learning, we classified the cells in
the two different classes (surviving vs. dying) and computed the
probability of survival or cell death (Figure 7A). The collected
dataset amounted to a total of 46 variables, which as expectable
displayed a strong degree of cross-correlation (Supplementary
Figure S7A). To reduce the dimensionality of the dataset,
10 representative descriptors were retained from the groups of
correlated variables (Supplementary Figure S7B). Label
distribution was strongly biased towards the surviving
population (1,513 vs. 361). Therefore, we selected two
supervised classifiers, which typically have good performance

FIGURE 7 | Survival of developing cortical neurons is predictable based on early activity profiles. (A) Schematic representation of workflow applied for machine
learning approach. (B) Accuracy of Random Forest and RUSBoost algorithms exceeded Dummy prediction. AUROC curves (solid lines) indicate mean and envelope
(semi-transparent area) SD of 10 fold cross-validation. (C) Relative informative weight of parameters used for the Random Forest classification. Bar chart represents
mean values ± SD. (D) Radar chart shows comparison of activity profiles in surviving and dying neurons with an estimation accuracy of their cell fate greater than
80%. Modularity, network ASR, max ΔF/F0 and spike rate showed the greatest difference in Z-scores (Mann-Whitney test). Lines connect the median z-score value of
each parameter. ASR, average spike rate; ABR, average burst rate.
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on imbalanced datasets: the balanced Random Forest and the
Random Undersampling Boosting (RUSBoost) classifiers
(Lemaître et al., 2017). Both methods showed a good
performance on the dataset, indicated by the area under the
receiver operating characteristics curve (AUROC) values of
0.77 and 0.69, respectively (Figure 7B). As a comparative
baseline, a Dummy classifier (Pedregosa et al., 2011) was used,
which yielded an AUROC value of 0.51. In addition to the good
performance in our dataset, the Random Forest classifier enabled
to evaluate the relevance of each variable for the model. The
resultant feature importance scores (Figure 7C) highlight that
max ΔF/F0 carried the highest relative informative weight (about
40% of the total) and that a subset of 7 variables (max ΔF/F0,
network average spike rate, spike rate, modularity, network
average burst rate, active neighbors, small-worldness)
accounted for more than 95% of the relative feature importance.

Next, in order to obtain a characterization of activity profiles
distinguishing surviving from dying neurons, we selected all the
neurons that were confidently predicted by the Random Forest
classifier in each class (i.e., more than 80% probability of
assignment to a class). For these 499 neurons with correctly
predicted dying or surviving cell fate median z-scored values of
the model variables were calculated (Figure 7D). Interestingly,
the parameters showing the largest differences between surviving
and dying cells were max ΔF/F0 (0.74, 0.05–1.75,
vs. −0.72, −0.89–0.87 p < 0.0001, Mann-Whitney test),
modularity (1.39, −0.04–1.49, vs. −0.98, −1.04 to −0.7, p <
0.0001, Mann-Whitney test) and network average spike rate
(1.08, −0.25–1.82, vs. −0.66, −0.71 to −0.64, p < 0.0001,
Mann-Whitney test). In agreement with the analysis of
individual variables, this suggests that large somatic calcium
increases in neurons, integration into highly interconnected
neuronal modules, and high network firing rates are predictive
of cell survival.

In conclusion, our results suggest that a subset of features at
single cell and network level can be sufficient for identifying cell
fate with a good confidence. In particular, parameters describing
calcium dynamics, single neuron and network firing rates, and
functional connectivity are a suitable and sufficient subset of
activity features to predict survival of immature neurons.

4 DISCUSSION

Spontaneous activity in the cortex regulates many
neurodevelopmental processes, such as migration,
integration into cortical circuits and programmed cell death
of neurons (for review, see Luhmann et al., 2016; Martini et al.,
2021; Warm et al., 2022). However, it remained unclear
whether spontaneous activity patterns from network down
to single neurons directly encode for survival of individual
cortical neurons. Here, we investigated how intrinsic, local and
network factors that contribute to the emergence of
spontaneous activity during early development, affect
survival of developing cortical neurons. The main results of
our study can be summarized as follows: 1) The individual
display of spontaneous calcium transients during early

development strongly reduced the probability of cell death
of cortical neurons; 2) Cortical neurons with high spontaneous
firing rates were unlikely to undergo apoptosis and spike bursts
were almost exclusively observed in surviving neurons; 3)
Activity of close neighbors within neuronal clusters exerted
a pro-survival effect; 4) A network functional topology
characterized by high modularity at an early developmental
stage fostered neuronal survival; 5) Large somatic calcium
increases in neurons, integration into strongly
interconnected neuronal modules, and high network firing
rates were predictive of survival of developing cortical
neurons. We conclude that survival of cortical neurons in
developing neuronal networks is predictable based on
spontaneous activity patterns.

Cortical neurons in vitro spontaneously exhibit activity, whose
evolution recorded with microelectrode arrays resembles the
perinatal progression of activity in the in vivo rodent cortex
from decorrelated action potentials to synchronized network
oscillations (Yang et al., 2009; Sun et al., 2010; for review, see
Kilb et al., 2011). At the same time, primary cortical cultures
provide the advantage of direct manipulation and observation of
developing cortical neurons (for review, see Potter, 2001). In the
present study, cortical neurons were genetically manipulated to
simultaneously express the calcium indicator GCaMP6s and the
nuclear tag nls-dTomato. This strategy allowed to longitudinally
follow activity and apoptosis from network down to the single
neuron level and to include in the analysis silent neurons, which
are often underrepresented in electrophysiological studies (for
review, see Shoham et al., 2006). The spontaneous display of
calcium transients at an immature developmental stage, when
network activity is dominated by sparse decorrelated action
potentials strongly reduced the probability of death of
individual cortical neurons. The absence of activity, instead,
lowered the likelihood of neuronal survival. Conversely, a
general decrease in cell death rates was observed in the late
phase of the second week in vitro, when neuronal activity
transitions to synchronous burst activity, driving almost all
neurons in the field of view to display calcium transients.
During initial phases of development in culture, surviving
neurons not only displayed higher rates, but also higher
amplitudes of calcium transients. Intracellular calcium has
been long known to support neuronal survival (for review, see
Franklin and Johnson, 1992; Ghosh and Greenberg, 1995) and for
sustained calcium elevations to occur, voltage-gated Ca2+

channels (VGCC) exert a primary role (for review, see Moody
and Bosma, 2005). Especially in immature neurons, calcium
currents contribute to the generation of slow action potentials
(Luhmann et al., 2000) and uncorrelated TTX-resistant calcium
transients have been observed (Corlew et al., 2004). In line with
these evidences, we found that the mere application of TTX only
marginally affected neuronal survival, whereas combined
application with the VGCC blocker isradipine resulted in full
blockade of calcium transients and strongly reduced neuronal
viability at an early stage in network development.

In the rodent cortex, early network activity during
postnatal development is characterized by high frequency
oscillations in the beta and gamma range (Yang et al.,
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2009; Colonnese et al., 2010; Minlebaev et al., 2011) and
analogous patterns are also described in cortical in vitro
models (Dupont et al., 2005; Gireesh and Plenz, 2008). On
the population level, higher spectral power in this range has
been associated with higher survival rates (Blanquie et al.,
2017a) and disruption of early activity patterns leads to
abnormal cell death rates in the cortex (Duan et al., 2020;
Bitzenhofer et al., 2021). In the present study, the
simultaneous measurement of neuronal activity with
electrophysiology and calcium imaging enabled the
parameter tuning of a spike inference algorithm and the
accurate reconstruction of spiking activity in a large
population of developing cortical neurons. Although slow
decay kinetic and nonlinearity of the calcium indicator
GCaMP6s imposes a low-pass filter on neuronal activity
(Wei Z et al., 2020) and thus limited the maximal
frequency range of the inferred spikes, we show that higher
spike rates and burst behavior were almost exclusive
properties of surviving neurons. Thus, our findings
underline how high frequency firing determines lower
probability of cell death also at a single cell level and
corroborates high firing rate and bursting behavior as
hallmark features of surviving neurons, previously observed
on a population level (Golbs et al., 2011).

During early development, calcium transients and burst
activity contribute to the proper shaping of cortical circuits
(Golbs et al., 2011; Murase et al., 2011; for review, see Kirkby
et al., 2013). In this regard, neurons in culture self-organize in
clusters (Robert et al., 2012), and their aggregation during the
first days in vitro is influenced by activity (Jeong et al., 2009;
Shein Idelson et al., 2010). Concurrently with the formation of
these clusters, neurons start forming synaptic connections,
which progressively engage more neurons in synchronous
firing (Opitz et al., 2002; Soriano et al., 2008). Within this
context, we observed that both silent and active surviving
neurons were surrounded by a higher number of active
neighbors and by neighbors with a higher firing frequency.
This suggests that cortical neurons surrounded by highly
active neurons are more likely to be integrated into local
assemblies and to participate into emerging correlated
synchronous activity that ultimately support their survival.
Along this line, tonic or high frequency firing neurons might
attract nearby neurons into local clusters (Feinerman et al.,
2007) and concomitantly test their aptness to integrate into
forming circuits. In line with the higher probability of death
among the silent subpopulation, neurons that fail to respond
within a short developmental window might be more likely to
activate or sustain preset apoptotic programs.

On the network level, the clustered conformation of
neuronal cultures reflect the emergence of a modular
functional topology that is evident at different scales in the
brain and has evolved to maximize efficiency of information
transfer (for review, see Bullmore and Sporns, 2009). This
functional organization makes neuronal networks more robust
against loss of individual nodes (Achard et al., 2006) and
ensures the segregation of different functional cortical areas,
while allowing the generation of coherent perceptual and

cognitive states across the brain (for review, see Sporns
et al., 2000). Here, we show that an early achievement of a
modular topology reduced apoptotic rates in culture. Such
network configuration is highly efficient for information
transfer and promotes the emergence of synchronous
activity (Okujeni et al., 2017). Accordingly, our results show
that networks with high efficiency displayed lower rates of cell
death and surviving neurons showed an overall higher
synchrony than dying ones. In this view, synchronous
oscillations efficiently transmitted across the network might
reinforce connectivity (Mohajerani et al., 2007). Indeed
surviving neurons had an overall higher node degree and
shorter path length. Since neither the density, nor the
spatial distribution of neurons in culture were correlated
with cell death rates, variability in functional topology
across network at the early stages of development might
reflect the heterogeneity of cortical neuronal populations
(Voigt et al., 2001) or a certain degree of randomness in
their wiring.

Our data provide an extensive characterization of factors
influencing neuronal survival from different scales of
spontaneous activity. Many of the analyzed activity
parameters showed large variability and partially
overlapping distributions between surviving and dying
neurons. This likely reflects differences in neuronal subtypes
or maturational stages across individual neurons and indicates
the multiplicity of factors regulating cell death. To identify
these and reveal predictive features of survival or cell death of
individual neurons, we applied machine learning, which use as
diagnostic and prognostic tool is recently emerging to assess
brain development based on EEG recordings of preterm
infants (Wei L et al., 2020; for review, see Tataranno et al.,
2021) and for early prediction of spontaneous activity in
cortical networks in vitro (Cabrera-Garcia et al., 2021). The
overall good performance of the applied classifiers
demonstrated how the survival fate of immature neurons is
predictable based on activity features from single neuron,
cluster and network level. The use of the standard
algorithm Random Forest (for review, see Chicco, 2017)
enabled a direct interpretation of the relevance of the
features and indicated that even a subset of seven
descriptors is sufficient for correct estimation of cell fate.
Moreover, the comparison of activity profiles between
neurons accurately predicted to survive or to die
demonstrated the importance of calcium dynamics, network
modular organization and firing rates for neuronal survival.

In conclusion, our results suggest that high frequency
spiking, whose information load is efficiently propagated in
networks with a high modular topology (for review, see
Meunier et al., 2010), translates into sustained calcium rises
in single neurons and finally constrains their apoptotic loss.
This implies that survival of individual neurons within
developing cortical networks is supported by the
engagement into synchronous high frequency firing, but
also denotes that through the activity-dependent
downregulation of cell death rates, cortical circuits reach a
structural stability that is beneficial for information processing
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in mature networks (for review, see Robinson et al., 2009). In
this way, spontaneous activity provides a regulatory
mechanism that, interacting with predefined genetic
programs and environmental cues, can control cellular
composition and refine local circuitry across different
cortical regions and developmental time points in vivo (for
review, see Spitzer, 2006).

Despite its reduced complexity, the cortical culture model
recapitulated fundamental structural and functional hallmarks of
neuronal network development, which allowed us to
systematically assess the relevance of activity features from the
single neuron to the network level for the survival of developing
cortical neurons. We show that in individual neurons
spontaneous activity is a strong positive prognostic factor for
their survival and that the combination of few parameters from
the network down to the single neuron level is sufficient to predict
cell fate during development. This study can thus form the basis
of interventional experiments and our findings could prompt
future investigation on how specific activity patterns translate in
pro-survival programs.
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