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A balanced skeletal remodeling process is paramount to staying healthy. The remodeling
process can be studied by analyzing osteoclasts differentiated in vitro from mononuclear
cells isolated from peripheral blood or from buffy coats. Osteoclasts are highly specialized,
multinucleated cells that break down bone tissue. Identifying and correctly quantifying
osteoclasts in culture are usually done by trained personnel using light microscopy, which
is time-consuming and susceptible to operator biases. Using machine learning with 307
different well images from seven human PBMC donors containing a total of 94,974marked
osteoclasts, we present an efficient and reliable method to quantify human osteoclasts
from microscopic images. An open-source, deep learning-based object detection
framework called Darknet (YOLOv4) was used to train and test several models to
analyze the applicability and generalizability of the proposed method. The trained
model achieved a mean average precision of 85.26% with a correlation coefficient of
0.99 with human annotators on an independent test set and counted on average 2.1%
more osteoclasts per culture than the humans. Additionally, the trained models agreed
more than two independent human annotators, supporting a more reliable and less biased
approach to quantifying osteoclasts while saving time and resources. We invite interested
researchers to test their datasets on our models to further strengthen and validate the
results.
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1 INTRODUCTION

In order to be healthy, the skeleton is constantly undergoing a balanced remodeling process
where bone is removed by osteoclasts (OCs) before osteoblasts are recruited to build new bone
(Charles and Aliprantis, 2014; Marino et al., 2014). Overactivation of osteoclasts may lead to
unbalanced bone remodeling and excessive loss of bone. This is seen in diseases such as
rheumatoid arthritis, multiple myeloma and cancers metastasizing to bone (Yahara et al.,
2022).

Osteoclasts are highly specialized, multinucleated cells originating from cells of the monocyte-
macrophage lineage. Two key cytokines, macrophage colony-stimulating factor (M-CSF) and
receptor activator of NFkB ligand (RANKL), are essential for osteoclast formation. M-CSF is
important for survival and proliferation of osteoclast precursors and leads to the expression of RANK
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(Marino et al., 2014). Signaling through RANK by RANKL is
required for fusion of the osteoclast precursors and
differentiation into mature osteoclasts (Marino et al., 2014;
Pereira et al., 2018).

Human osteoclasts can be differentiated in vitro from
mononuclear cells isolated from peripheral blood or from
buffy coat (Marino et al., 2014). Typically, monocytes are
isolated from peripheral blood mononuclear cells (PBMCs) by
adhesion to plastic or by anti-CD14 coated beads. The cells are
subsequently cultured in the presence of M-CSF and RANKL for
about 14–16 days until multinucleated cells appear (Sørensen
et al., 2007; Marino et al., 2014). Osteoclasts are defined as cells
containing three or more nuclei and are tartrate-resistant acid
phosphatase (TRAP) positive (Marino et al., 2014). TRAP is an
acid phosphatase secreted by osteoclasts during bone resorption
(Hayman, 2008). As the name indicates, TRAP is resistant to
tartrate inhibition, which makes it distinguishable from other
acid phosphatases, a property exploited during TRAP-staining
(Burstone, 1959; Filgueira, 2004; Hayman, 2008). TRAP-staining
is one of the most common methods to characterize osteoclasts
in vitro cell cultures (Filgueira, 2004; Hayman, 2008; Marino
et al., 2014).

While the definition of osteoclasts may be straightforward,
identifying and correctly quantifying the number of osteoclasts in
culture is a challenge. The number and size of osteoclasts are
usually evaluated under a light microscope, which requires
trained personnel. It is time-consuming and subjective. To
avoid operator bias, each sample must be counted blind by at
least two individuals. Osteoclast number and size may also be
evaluated after imaging of the cultures. The nuclei in each cell can
be difficult to see using the traditional TRAP-staining protocol,
but this challenge can be overcome by adding nuclear stains such
as Hoechst 33,342. Using combined fluorescence and transmitted
light imaging systems, digital brightfield images and fluorescence
images can be merged. Still, counting osteoclasts based on such
images is difficult and the same challenges with time
consumption and operator bias exist. Thus, there is a great
need for a more unbiased, efficient, and reliable method to
quantify osteoclasts in culture.

A few previous studies have attempted to quantify OCs from
microscopic images of animal cells automatically. Cohen-Karlik
et al. (2021) used machine learning (ML) to train an object
detection model for measuring the number and area of OCs in
cell cultures of mice. Their approach achieved a high correlation
with trained human annotators for detecting subclasses of OCs
with different numbers of nuclei. However, they do not mention
the model performance (accuracy, precision, etc.). The
“OC_Finder” system by Wang et al. (2021) also detects
osteoclasts from mice. It uses an automated cell segmentation
approach before applying deep learning to classify the cells as
OCs or non-OCs. Their system achieved 98.1% accuracy and
correlated well with a human examiner. Emmanuel et al. (2021)
used an artificial intelligence-assisted method through
proprietary software to identify and count OC from Wistar
rats, with no significant difference in accuracy compared to
manual methods while saving time. To our knowledge, OCs
from humans have not been analyzed using ML. Our images

also contain more variation than the other methods’ datasets.
Therefore, we have developed a method to quantify human
osteoclast from a variety of experiments using ML-based
object detection.

Object detection combines computer vision and ML
techniques to locate and classify objects in images. Using
samples of images with labeled objects, we can train an object
detection model to detect the objects in new images
automatically. The model consists of several parts, where a
convolutional neural network (backbone) can learn and extract
features from images, which is connected to a predictor (head) for
estimating object location (bounding box) and class probabilities.
We use an open-source object detection (deep learning)
framework called Darknet (Alexey et al., 2021). Darknet has
achieved state-of-the-art results with its recent YOLOv4 model
(Bochkovskiy et al., 2020) and is known for its training and
prediction speed on a single graphics processing unit (GPU).
Darknet and versions of the YOLO models have been used in
multiple fields, including medicine and diagnosis (Elgendi et al.,
2020; Yao et al., 2022), agriculture (Zheng et al., 2021),
construction and industry (Nath and Behzadan, 2020; Kohtala
and Steinert, 2021), and autonomous vehicles (Cai et al., 2021) to
name a few.

We trained, validated, and tested multiple object detection
models using osteoclasts generated from seven human PBMC
donors, resulting in 307 different wells. Each well was marked
using Fiji (Schindelin et al., 2012), with 94,974 OCs in total, and
automatically converted to training and test datasets. The models
are thoroughly evaluated using various training scenarios to
analyze their performance compared to human annotators and
to discuss their potential for replacing the labor-intensive process
of manually counting OCs.

2 METHODS

2.1 In Vitro Methods
2.1.1 Differentiation of Osteoclasts From CD14+

Cells—Dataset I
Human buffy coats were provided by the Blood bank at St. Olavs
Hospital (REK #2009/2245). PBMCs were isolated using a
Lymphoprep density gradient (Alere), and CD14+ cells were
isolated from these using CD14 microbeads (#130-050-201,
Miltenyi Biotech). 13,000 CD14+ cells per well were seeded
out in transparent plastic 96-well plates (#3599, Corning). The
cells were cultured in α-minimum essential medium without
phenol red (αMEM, #41061-029, Gibco) with 10% heat-
inactivated pooled human serum supplemented with M-CSF
(30 ng/ml, R&D Systems), RANKL (10 ng/ml, R&D Systems)
and transforming growth factor-β (TGF β, 1 ng/ml, R&D
Systems). The number of days used to differentiate the cells
varied from donor to donor. Pre-osteoclasts were observed after
5–9 days. At this point, the cells were stimulated with various
stimulants as part of an experiment. Mature osteoclasts were
observed after about 12–16 days and the cells were TRAP stained.
Six PBMC donors were used for dataset I, one per experiment
presented in Figure 1.
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2.1.2 Differentiation of Osteoclasts From
Macrophages—Dataset II
PBMCs were isolated as described above. The CD16+ patrolling
monocytes (pMos) and CD16−CD14+ inflammatory monocytes
(iMos) were isolated from one PBMC donor using CD16+

monocytes isolation kit (#130-091-765, Miltenyi Biotec) and
CD14 microbeads in sequence. The purified cells were seeded out
at 30,000 cells per well in black 96-well plates with glass bottom
(#P96-1.5H-N, Cellvis). The cells were cultured in α-MEMmedium
with 10% heat-inactivated pooled human serum andM-CSF (10 ng/
ml) for 7 days to form macrophages. At this point, the cells were
stimulated with various stimulants as part of an experiment. Media
was also changed to pre-osteoclastogenic differentiation medium
containing M-CSF (30 ng/ml), RANKL (10 ng/ml) and TGF-β
(1 ng/ml) before seven additional days of culture. The media
supplements were then adjusted to M-CSF (10 ng/ml) and
RANKL (50 ng/ml) and cells cultured three more days before
TRAP staining. One PBMC donor was used for dataset II, the
same donor for both experiments 7 and 8 presented in Figure 1.
Experiment 7 represents pMos differentiated osteoclasts and
experiment 8 represents iMos differentiated osteoclasts.

2.1.3 Differentiation of Osteoclasts From Human
Osteoclast Precursor Cells—Retraining Dataset
Human osteoclast precursor cells (#2T-110, Lonza) were plated at
10,000 cells per well in a transparent plastic 96-well plate and
cultured according to the manufacturer’s instructions in OCP

medium (#PT-8021, Lonza) in the presence of M-CSF (33 ng/ml)
and RANKL (66 ng/ml). The cells were stimulated with various
stimulants as part of an experiment during culture. When mature
osteoclasts were present, the cells were TRAP stained. Two wells
from this experiment were used for a small retraining of the
model, described in Section 3.4.

2.1.4 Staining
Mature osteoclasts were stained for TRAP using the Acid
Phosphatase, Leukocyte (TRAP) Kit (#387A, Sigma-Aldrich)
following the manufacturer’s instructions, with the following
exceptions: osteoclasts were fixed with 4% paraformaldehyde
(#43368, Alfa Aesar) in phosphate-buffered saline (PBS) for
15 min and appropriate TRAP staining was observed after
incubation for up to 1.5 h. Cells were then washed twice with
deionized H2O, before nuclei were stained with Hoechst 33,342
(#H3570, Life Technologies) 1:5,000 in PBS. Cells were kept in
this solution during imaging.

2.1.5 Imaging
Images were acquired with an EVOS FL Auto 2 Microscope
(Invitrogen by Thermo Fisher Scientific) using a ×10 objective.
TRAP staining was imaged using transmission microscopy,
capturing a brightfield image of the well with a color camera.
The EVOS light cube tagBFP was used for fluorescent detection of
Hoechst. The microscope captured several smaller images of
different regions of the well, which could later be arranged

FIGURE 1 | Distribution of the number of OCs per well with an example well image from each experiment in Dataset I and II.
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next to each other resulting in one larger image of the whole well,
this process is called tiling. For dataset I and the Retraining
dataset, tiling of the images was done in the EVOS software
(Invitrogen EVOS FL Auto 2 Imaging System), creating two
images per well, one TRAP image and one Hoechst image. For
dataset II, tiling of the already merged images was done using a
custom script in Fiji. TRAP and Hoechst images were merged
using either the EVOS software or Fiji for all datasets, generating
one image of the whole well. The edges of the wells were not
imaged completely in dataset II, which resulted in these images
being smaller than the images from dataset I. All images were
saved as TIF files. The datasets I and II contain a total of 307 well
images from eight different experiments, with their OC
distribution and sample images shown in Figure 1. The
Retraining dataset contain two wells from one experiment.

2.1.6 Manual Osteoclast Counting
The merged images from EVOS were used for the human
counting. Prior to counting, the images from an experiment
were given random names using a Fiji script to make the
counting unbiased. Fiji was used to count the osteoclasts by
manually marking each osteoclast using the multi-point tool.
When clicking on osteoclasts in an image, the multi-point tool
leaves a mark and keeps track of the number of total markings in
the image. When all wells of an experiment had been counted, the
images could be decoded, revealing the results of the experiment.

2.2 Datasets and Training Procedures
2.2.1 Data Preparation
The two datasets (I and II) were initially intended for different
research topics and purposes. This provided us the opportunity to
test our approach on various OCs in a large number of images,
and thus improve and thoroughly evaluate the algorithm. The
well images were marked prior to this study, and their placements
relative to the OCs are therefore not optimized for training an
object detection model. We have not edited the marks due to the
large number of samples (94,974 marked OCs) and the time
required to correct each label manually. Therefore, several scripts
were made to automatically create and prepare the data before

training a model for detecting OCs. Each image of a well was
processed, as illustrated in Figure 2.

First, a Fiji script converted the TIF images into PNG and
exported every marked OC’s pixel coordinate to a CSV file. The
PNG format removed the metadata (markings) and reduced file
size for further processing. Because the object detection
framework can only process small images, each image of a
well was further split into segments of 416 × 416 pixels with
50% overlap, resulting in 2,200 segments for each image (10,248 ×
9,122 pixels) in dataset I and 1,520 segments for each image
(8,320 × 7,760 pixels) in dataset II. An overlap of 50% was used to
ensure that each cell could be viewed entirely at least once while
increasing the number and variation of training data. Object
detection also requires a bounding box that covers the region of
interest for detection. Based on observations, most cells would fit
inside a box that is approximately 0.9756% of the width of the
whole well image, which we used to automatically create
bounding boxes covering roughly 100 pixels in height and
width for dataset I and 81 pixels for dataset II. The bounding
box coordinates around each marked OC were then saved to a
text file corresponding to each image segment, described by its
center, width, and height relative to the segment. Bounding boxes
extending the perimeter of an image segment were reduced to fit
within the segment. The two additional wells in the Retraining
dataset with large variation in cell sizes were manually labeled
with bounding boxes using LabelImg (Tzutalin, 2022) to ensure
that each OC was covered entirely.

2.2.2 Training Procedure
Transfer learning was used by training the OC detection
models using an existing weights file for the convolutional
layers [yolov4. conv.137 from Alexey et al. (2021)], which is
pre-trained on the MS COCO (common objects in context)
dataset (Lin et al., 2014). The pre-trained weights have learned
to recognize many useful features from images to increase the
training speed for detecting new objects. Training and
prediction were performed locally on a laptop with an Intel
i9-8950HK 2.9 GHz CPU connected to an external NVIDIA
GeForce RTX 2080 Ti GPU.

FIGURE 2 | Sample image with processing steps, where each well image is split into overlapping segments that are saved as separate images, with each mark
converted to a bounding box stored in a text file.
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We applied the same configuration file provided for the
YOLOv4 model, with batch size 64, input width and height set
to 416 pixels, and a learning rate of 0.001 for the first 80% training
iterations, which is reduced by a factor of 10 for each remaining
10% of training iterations. Darknet also provides methods for
using data augmentation during training, which will randomly
alter the input images to increase the variability of the data and
improve generalization. For data augmentation, we used random
hue, saturation, exposure, cropping, aspect ratio, and mosaic data
augmentation (randomly mixing four training images).

2.2.3 Training Scenarios
Four separate training scenarios were analyzed. In the first
scenario, a single model (M1) was trained and optimized for
the entire dataset, where the well images from each experiment
(see Figure 1) were split into a training (~60%), validation
(~20%), and test (~20%) set, with the total number of samples
in the final datasets shown in Table 1. We trained the model for
11,073 iterations, i.e., two epochs when using a batch size of 64,
and evaluated the validation set every 500 iterations for selecting
the best model after training is complete. Finally, using the test set
with M1, we can assess how closely the trained model can match
the annotators (ground truth) for OC detection and counting.
The 60/20/20 data split is the most common approach used to
train (fit the model), validate (tune and select the best model), and
test (unbiased measure of performance) ML models, and
represents how the method would usually be applied in
practice. Thus, our goal is to evaluate the applicability of using
an open-source object detection framework to detect human OCs
from microscopic images. By comparing the validation and test
accuracies, we can also assess the model’s degree of bias
(underfitting) and variance (overfitting).

In many cases of ML, the available data does not represent the
variation found in the wild (unseen samples), and it is uncertain
how the chosen method generalizes to this new, unforeseen
variation. However, with a large dataset from different
experiments, it is possible to simulate this scenario by only
training and validating the model on a subset of the available
data and then testing it against “unseen” subsets. Thus, to assess
the ability of our approach to generalize across different
experiments (different donors and image appearance), we
randomly picked 20 well images from experiments 1, 2, 4, and
8 for the second training scenario. A model was then trained (16
wells) and validated (2 wells) for each experiment (denoted by
M2_exp1, M2_exp2, M2_exp4, and M2_exp8) and then tested
against each other’s remaining two test wells. Each model was
trained for 2500 iterations, i.e., 6.5 epochs for M2_exp8 and 4.5

epochs for the other models. This training scenario was
performed to test how a model trained on only one
experiment generalizes to other ‘unseen’ experiments or if the
models tend to overfit if not introduced to more variation.

In the third scenario, we analyzed eight wells from experiment
4 that were marked independently by two annotators (P1 and P2).
Two models were trained for each annotated dataset, where
models M3_P1 and M3_P2 are trained on P1 and P2’s labels,
respectively. We used 4-fold cross-validation (CV), using four
training wells and two validation and test wells, to analyze each
well without being part of the training and thus reduce bias. The
models were trained for 3,000 iterations for each CV step
(roughly 20 epochs). We can then directly compare both
human-human and model-human agreements to assess if the
proposed object detection method for automatic OC counting
can replace humans and further evaluate the proposed method’s
applicability and generalizability.

A fourth scenario was included to test if model M1 can be
retrained to work on different-sized cells with larger variation.
We labeled two wells from the Retraining dataset with large and
small OCs containing at least three and up tomore than 20 nuclei.
The labels (bounding boxes used as ground truth) had to be made
manually using a labeling tool since the auto-generated labels
used for training the other models would not fit these cells. The
cells ranged from 40 to 1,600 pixels in width and height, with an
average of 260 pixels. The image segments were increased to 650
pixels in width and height to ensure that at least 95% of the
labeled cells would fit inside. One of the wells was used to retrain
and validate the model, while the other well was used to test the
accuracy.

2.3 Evaluation
Since the human-labeled marks from Fiji were not perfectly
centered on the cells, and the bounding boxes were given a
fixed size around the marks, we used a relatively low
Intersection over Union (IoU) threshold of 0.1 for considering
a detection a true positive. The mean average precision (mAP) is
then calculated through Darknet, which employs the average
precision (AP) calculation procedure provided by the PASCAL
VOC2010 challenge (Everingham et al., 2015). Here, AP is the
area under the monotonically decreasing precision-recall curve
ranked by detection confidence. Subsequent detections of the
same ground truth label are counted as false positives in the
calculation. The mAP is the mean of the APs for all classes, and
since we only consider one class, AP is equal to mAP. The mAP
with an IoU threshold of 0.1 is referred to as mAP@0.1, which we
calculate for the validation set during training to select the best

TABLE 1 | Number of samples used for each model.

Models Train Validation Test Sum

Wells Segments Wells Segments Wells Segments Wells Segments

M1 183 354,320 64 124,480 60 115,680 307 594,480
M2_exp1, 2, 4 16 35,200 2 4,400 2 4,400 80 162,400
M2_exp8 16 24,320 2 3,040 2 3,040
M3_P1, M3_P2 4 8,800 2 4,400 2 4,400 8 17,600

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 9415425

Kohtala et al. Automated Osteoclast Detection

mailto:mAP@0.1
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


model and then for the test set to report model performance. We
also report mAP@0.5 results since an IoU threshold of 0.5 is
commonly used for object detection models. An illustrative
example of how mAP@0.1 is calculated for one sample image
is shown in Figure 3A, where the same approach is used when
multiple images are analyzed.

With the mAP metric considering every detection confidence
and representing how accurately the trained model can locate,
classify, and recall the marked OCs, we need to find a detection
threshold for detecting OCs in new images. Therefore, we also
calculate precision and recall values for the validation set to find
the detection threshold that achieves the highest F1-score
(harmonic mean of the precision and recall). We can then use
this threshold value to detect and count the total number of OCs
for each well in the test set by evaluating all corresponding image
segments. Since the training images (segments) are overlapping,
we compare the detection accuracy with and without overlapping
segments to determine which approach is better suited. The
number of segments in Table 1 is thus reduced by 75% in the
case of only using non-overlapping segments. We created a
simple algorithm using OpenCV (Bradski, 2000) to prevent
multiple detections of the same OC when using overlapping
segments. The algorithm first fills an ellipse-shaped region
within the detected bounding boxes reduced by 20% in height
and width to differentiate compact OCs with overlapping
detections. The connected ellipses are then fused to reduce
multiple detections of the same OC to one, finally creating

bounding boxes around the merged ellipse shapes. The
procedure is illustrated in Figure 3B.

After analyzing each whole well, we can compare the total
number of OCs detected by the model and annotators and
measure their agreement by calculating the root-mean-squared
error (RMSE). Python (version 3.7.9) with the Scipy library
(version 1.7.1) was used for calculating Pearson correlation
coefficients between the models and annotators and perform
normality tests.

3 RESULTS

3.1 Scenario 1: Model Performance Using
the Entire Datasets
The first model (M1) was trained for approximately 2 days and
14 h, including validation-set evaluations every 500 iterations
taking roughly 2 h each time. Although the total training duration
can be substantially reduced by excluding the validation set,
selecting the best model based on training loss may cause
overfitting. Since the validation set is not used to fit the
model, it will reduce bias and better indicate model
performance and generalization. Figure 4 shows the training
loss and validation accuracy for the entire training duration. The
best models were selected based on the highest validation
accuracies and then evaluated on the test set, with results
presented in Table 2. The mAP values were acquired on

FIGURE 3 | An illustrative example for how (A) average precision (mAP@0.1) is calculated and how (B) the total number of detected OCs are counted and
segmented for each well with overlapping image segments.
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overlapping and non-overlapping validation and test images,
with a mean absolute difference of only 0.2% between the
approaches. Thus, the effect of the segmentation method does
not significantly affect the mAP values. Furthermore, the similar
and high validation and test accuracies indicate that the trained
model has both low variance and bias, respectively, thus having
generalized properly. The mAP@0.5 values are consistently lower
than the mAP@0.1 values, which is expected due to the stricter
evaluation criteria.

The precision, recall, and F1 scores were calculated for every
detection threshold incremented by 0.05, with the results shown

in Figure 5 for the validation set using the best model (highest
mAP@0.1 score). The highest F1 score was achieved with a
detection threshold of 0.25.

Using the best model based on mAP@0.1 and a detection
threshold of 0.25, the number of OCs was detected and
counted for each validation well. The process shown in
Figure 3B, applied to overlapping segments, resulted in a
combined RMSE of 51.87 while detecting directly on non-
overlapping segments resulted in a combined RMSE of 32.37.
Therefore, the approach of using overlapping segments for
detection was disregarded, as it deviates more from the

FIGURE 4 | Training loss and validation accuracies during training.

TABLE 2 | Validation and test results for the best models.

IoU threshold Validation Test

mAP [%] P R F1 DT mAP [%] P R F1

0.1 84.22 0.79 0.81 0.80 0.25 85.26 0.80 0.82 0.81
0.5 75.32 0.75 0.75 0.75 0.26 75.92 0.76 0.74 0.75

P, precision; R, recall; F1, F1 score; DT, detection threshold.

FIGURE 5 | Precision, recall, and F1-score for the validation set using the model that achieved the highest mAP@0.1 score.
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annotators than using non-overlapping segments without the
extra step of combining detections. Figure 6 shows the number
of OCs counted by the model compared to the annotators for
each test well, with RMSE calculated for every experiment. The
combined RMSE of all test wells is 37.29, with a Pearson
correlation coefficient of 0.99 (p < 0.001, from scipy.
stats.pearsonr) between M1 and annotators. These results
support the applicability of using object detection to match
human-level accuracy for counting OCs.

Although the correlation between the trained model and
human annotators is high and positive, it does not necessarily
imply a good agreement on the total number of counted OCs. To
further analyze the applicability of the proposed method, a Bland
and Altman plot is shown in Figure 7 with confidence interval
(CI) calculations based on Giavarina (2015). The plot shows the
difference (in the percentage of the mean) betweenmeasurements
for the test wells, for which the residuals are normally distributed
(p > 0.18, from scipy. stats.normaltest). The limits of agreement

FIGURE 6 |Comparison of the total number of detected OCs by the trained model and annotators for each test well, with each experiment separated by color. The
dashed diagonal line represents the line of perfect agreement.

FIGURE 7 | Bland and Altman plot showing the difference between M1 and annotators for each counted test well, with the limits of agreement shown as red,
dashed lines, mean (bias) shown as a black dashed line, and CIs shaded in grey.
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(mean difference ±1.96 SD) are 23.8% and −19.6%, which contain
95% of the differences. The bias of 2.1% is not significant since the
line of equality (representing perfect agreement) is within its CI,
indicating that the model consistently counts the number of OCs
close to the human annotators without a systematic difference.
However, the agreement interval is relatively wide, with the most
considerable deviations found for the wells containing the fewest
OCs. One outlier having a mean of three (one annotated and five
detected OCs) and a difference of 133.3% was removed from the
analysis.

3.2 Scenario 2: Generalization Across
Experiments
Four models were trained, each using 16 samples from only one
experiment (1, 2, 4, and 8 in Figure 1), and then evaluated against
test wells from each experiment. The resulting mAP@0.1 values are
shown in Figure 8. It is expected that a model trained, validated, and
tested on the same experiment will achieve higher test accuracy
compared to the other experiments since the training and test data
are more related. However, this is not the case for model M2_exp2,
which scored higher on experiments 4 and 8.

Additionally, each model achieves high accuracies on the test
wells from experiment 8. In contrast, the model trained with
images from experiment 8 has the lowest accuracies when tested
on the other experiments. The dark appearance of the images in
experiment 8 reduced the effectiveness of data augmentation
(random hue, saturation, and exposure) when training M2_exp8,
resulting in the model not being able to generalize properly. At
the same time, the other experiments are not affected on the same
level and were, therefore, able to generalize sufficiently to detect
OCs from experiment 8 with reasonable accuracy. These results
show that the method can produce models able to detect OCs
from different experiments that were not part of the training and
validation, thus showing generalizable tendencies of the trained
models.

3.3 Scenario 3: Cross-Validation With Two
Human Annotators
Two models were trained with a 4-fold CV using eight wells from
experiment 4, marked independently by two annotators. The
trained models, M3_P1 and M3_P2, had an average test accuracy
(mAP@0.1) of 85.5 and 77.78%, respectively. The total numbers
of OCs counted by the annotators and models are shown in
Figure 9, with RMSE and correlation coefficients between each
OC counter shown in Table 3. As seen in Table 3, the models
agree more with the person marking the dataset, and the models
agree more than the two annotators.

3.4 Scenario 4: Retraining and Detection of
Varying OC Sizes
Model M1 applied directly to the two wells of the Retraining
dataset with large variation in osteoclast size resulted in 66.27%
mAP@0.1, an F1-score of 0.66, and counted 16% fewer OCs than
the annotator. M1 was then retrained using one of the wells for
50 min, where the highest validation accuracy (88.77%) was
found at the 25 min mark. This resulted in a new test
accuracy of 91.71% mAP@0.1, an F1-score of 0.85, and
counted 11% more OCs than the annotator. These promising
results support the applicability of the proposed method for
detecting OCs with various shapes and sizes. A few sample
detections from the test well are shown in Figure 10, with
OCs ranging from 626 pixels to 64 pixels in width.

4 DISCUSSION

4.1 Automatic OC Counting Accuracy
Our approach can automatically detect and count human OCs
from microscopic images with good accuracy. The Pearson
correlation coefficient of 0.99 indicates that the trained model

FIGURE 8 | Test accuracies for models trained and validated on one experiment each.
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can reliably count the number of OCs compared to human
annotators, which is essential when comparing the amount of
OCs between experiments. Furthermore, the trained model can
locate and classify OCs in various images with a mAP@0.1
accuracy of 85.26% and count the number of OCs with a bias
of only 2.1%. However, the limits of agreement found in Figure 7
ranges from −19.6 to 23.8%, and their acceptability must be based

on the study being conducted. These results are auspicious when
considering the suboptimal labels used for training, suggesting
that the model can be improved further by optimizing the labels.
The model can also be retrained to account for various cell sizes,
as shown in scenario four. However, due to the few samples used,
more manually labeled data is needed to further improve
detection of various OC sizes.

FIGURE 9 | The number of OCs counted by two annotators (P1 and P2) and the two models M3_P1 and M3_P2 for each test well from experiment 4.

TABLE 3 | Agreement between each OC counter, ranked by lowest RMSE.

RMSE Mean difference ±SD Pearson
correlation coefficient

P1 vs. M3_P1 73.27 25.00 ± 73.63 0.81
P2 vs. M3_P2 92.67 −1.25 ± 99.06 0.76
P2 vs. M3_P1 161.36 −145.38 ± 74.86 0.84
M3_P1 vs. M3_P2 163.01 144.13 ± 81.43 0.83
P1 vs. M3_P2 178.78 169.13 ± 61.97 0.92
P1 vs. P2 190.42 170.38 ± 90.90 0.76

FIGURE 10 | OCs of various sizes detected (true positives) by the retrained model.
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One well image (550 segments without overlap) takes about
49 s to analyze, including 28s for splitting the image and saving
each segment to a folder and 21s to perform detection (~26
frames per second) and count the total number of OCs. Manual
counting takes 15–40 min depending on the number of cells,
whereas our approach takes around 6 min on the CPU. Even
without GPU acceleration, our approach can save a lot of time
and manual labor, especially when analyzing multiple wells.

By training several models using only one experiment each, we
showed in scenario two that the method will still produce models
able to detect OCs on different experiments and images with
reasonable accuracy. Therefore, we expect that the model (M1)
trained on all our experiments will work well on completely new
experiments that may look slightly different. It is, however,
essential to validate the model and tune the detection
threshold on new images before relying on the reported
accuracy. We also found that the darker images produced the
least accurate models due to the reduced effect of data
augmentation, which should be considered when capturing
new data and training new models for cell analysis.

A trained model will naturally agree more with the person
annotating the dataset, as seen in Figure 9 and Table 3. However,
the trained models agreed more than the two annotators,
indicating that the models have consistency at least as good as
the human annotators and were able to learn the essential features
for detecting OCs without overfitting on erroneous or missing
labels. This further supports the use of trained object detection
models to replace the manual process without losing accuracy.

4.2 Limitations and Typical Errors
A few samples of typical errors are shown in Figure 11. Since the
object detection models can only process small images, thus
having to divide each well image into smaller segments, some
of the training images will contain incomplete OCs that remain
marked. The model has thus learned to recognize such
incomplete OCs, resulting in detection errors, as shown in
Figure 11A. A segmentation algorithm that considers the
labeled OCs so that none of the segments contain incomplete
OCs could be developed, which would remove such erroneous
samples from the training data.

FIGURE 11 | Typical errors, including (A) classifying parts of a cell as an OC, (B) OCs regarded as false positives during evaluation due to the annotators missing
some OCs during manual counting, (C) OCs differing in shape and appearance from most OCs in our dataset that were found by the annotators but not by the model,
and (D) cell location affecting detection confidence. Red bounding boxes represent detections made bymodel M1, with green representing the annotated labels (ground
truth).
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Figures 11B,C shows some false positives and false negatives
with respect to the human-marked OCs. After going through
some of the automatically analyzed wells, we found several false
positive detections by the trained model that should be
considered true positives, resulting from the annotators not
detecting each OC during manual counting. Although this is
not a limitation of the trained model, it shows that human error
can affect the evaluation of the model. To further improve the
detection accuracy, a manual evaluation of the model’s and
human’s detections can be performed to correct erroneous and
missing labels in the training data and then retrain the model.
Many false negatives, i.e., human-labeled OCs that the model did
not detect, had different shapes and appearances than most of the
OCs in our dataset. In addition, a few faulty labels were caused by
accidental clicks using the Fiji marking tool.

A small translation was applied to the first three image segments
shown in Figure 11D, with the fourth segment being rotated, which
resulted in different detection confidences for the same cells. Since a
detection threshold is required to filter out erroneous detections and
improve accuracy, the well images’ segmentation approach can affect
the results. For example, the method of detecting OCs using
overlapping image segments, as shown in Figure 2 and
Figure 3B, resulted in more detections (a significant, 12.5% bias)
compared to using non-overlapping segments (2.1% bias).
Therefore, it is important to validate the model and segmentation
approach to tune the detection threshold.

It is required that the cells are approximately the same size
relative to the image segments when using our trained model.
Darknet models can be trained with image sizes between 320 and
608 pixels in width and height, where we used 416 pixels. Using
images with different sizes is also possible, as demonstrated in
scenario four, which will be resized accordingly when processed
through Darknet. Therefore, the image segmentation strategy
must be adjusted based on cell size and the size of the whole well
image. If detection of larger cells or the number of nuclei per cell
is required, our model can be retrained with new labeled data to
increase accuracy. The approach can also be used on completely
different cell types by training new models and can be used in
real-time systems with a prediction time of roughly 26 images per
second, depending on hardware.

5 CONCLUSION

An approach for automatically detecting and counting osteoclasts
in microscopic images has been developed and evaluated. Several

object detection (deep learning) models were trained, validated,
and tested using 307 different wells from seven human PBMC
donors, containing a total of 94,974 marked OCs. The first model
was optimized for the OC counting task by utilizing a train,
validation, and test split on all the available data, resulting in a test
accuracy of 85.26% mAP@0.1. The model counted on average
2.1% more OCs per well than the human annotators, with limits
of agreement between 23.8% and -19.6%, an RMSE of 37.29, and a
correlation coefficient of 0.99. The approach can generalize across
different experiments with effective data augmentation,
supporting the potential adaptation of the model in different
studies. Furthermore, two independent annotators agreed less
than the trained models on the same dataset. A substantial
amount of labor and time can thus be saved by automatically
detecting OCs with (at least) human-level accuracy and reliability
while reducing operator bias. Additionally, the trained model can
be continuously improved by introducing new data from different
experiments.
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