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Craniofacial (CF) tendons are often affected by traumatic injuries and painful

disorders that can severely compromise critical jaw functions, such as

mastication and talking. Unfortunately, tendons lack the ability to regenerate,

and there are no solutions to restore their native properties or function. An

understanding of jaw tendon development could inform tendon regeneration

strategies to restore jaw function, however CF tendon development has been

relatively unexplored. Using the chick embryo, we identified the jaw-closing

Tendon of the musculus Adductor Mandibulae Externus (TmAM) and the jaw-

opening Tendon of the musculus Depressor Mandibulae (TmDM) that have

similar functions to the masticatory tendons in humans. Using histological and

immunohistochemical (IHC) analyses, we characterized the TmAM and TmDM

on the basis of cell and extracellular matrix (ECM) morphology and

spatiotemporal protein distribution from early to late embryonic

development. The TmAM and TmDM were detectable as early as embryonic

day (d) 9 based on histological staining and tenascin-C (TNC) protein

distribution. Collagen content increased and became more organized, cell

density decreased, and cell nuclei elongated over time during development

in both the TmAM and TmDM. The TmAM and TmDM exhibited similar

spatiotemporal patterns for collagen type III (COL3), but differential

spatiotemporal patterns for TNC, lysyl oxidase (LOX), and matrix

metalloproteinases (MMPs). Our results demonstrate markers that play a role

in limb tendon formation are also present in jaw tendons during embryonic

development, implicate COL3, TNC, LOX, MMP2, and MMP9 in jaw tendon

development, and suggest TmAM and TmDM possess different developmental

programs. Taken together, our study suggests the chick embryomay be used as

a model with which to study CF tendon extracellular matrix development, the

results of which could ultimately inform therapeutic approaches for CF tendon

injuries and disorders.
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1 Introduction

Craniofacial (CF) tendons transfer muscle-generated forces

to bones, thus enabling critical jaw movements such as

mastication, talking, swallowing, and yawning. Over 3 million

CF traumas occur each year in the U.S., involving injuries to the

soft tissues and bones of the face and skull, caused by vehicle and

sports accidents, assaults, and combat (Miura et al., 2006; Rocchi

et al., 2007; Twigg and Wilkie, 2015; Luo et al., 2019; Su et al.,

2021). Traumatic CF soft tissue injuries account for nearly 10% of

all emergency department visits and up to $200 billion in medical

costs (Kretlow et al., 2010; Su et al., 2021). Even though these

injuries affect multiple CF tissues, including tendons, current

treatment approaches to restore jaw function neglect tendons,

and instead focus only on reconstructing bone despite failing to

fully restore jaw function (Warren et al., 2003; Zhang and Yelick,

2018). CF tendons also experience painful disorders for which

there are no effective treatments. Temporal tendinitis

(tendinopathy) is a disorder or disease of the temporalis

tendon that has been characterized by both inflammation and

degeneration but is under-treated due to the anatomical

complexity and incomplete understanding of temporal

tendons (Dupont and Brown, 2012; Bressler et al., 2020).

Taken together, there is a critical need to understand normal

CF tendon formation in order to inform and develop treatment

strategies to restore CF tendons and jaw function.

While a small number of studies have investigated CF tendon

cell morphogenesis in zebrafish embryos (Chen and Galloway,

2014; McGurk et al., 2017; Subramanian et al., 2018), little is

known about CF tendon development. Furthermore, animal

models other than zebrafish have not been established for

study of CF tendons. In contrast, limb tendon development

has been studied in various animal models. We and others

have used the chick embryo model to extensively to study

limb tendon formation as it closely parallels that in mammals,

making it an excellent model to study tendon formation with

relevance to human (Fleischmajer et al., 1990; Ros et al., 1995;

Birk et al., 1997; Birk and Mayne, 1997; Schweitzer et al., 2001;

Edom-Vovard and Duprez, 2004; Canty et al., 2006; Banos et al.,

2008; Kuo et al., 2008; Marturano et al., 2013; Marturano et al.,

2014; Schiele et al., 2015; Havis et al., 2016; Marturano et al.,

2016; Nguyen et al., 2018; Pan et al., 2018; Nguyen et al., 2021;

Peterson et al., 2021). Furthermore, the chick embryo has

previously been used to study embryonic craniofacial bone,

muscle, and cartilage development (reviewed in Abramyan

and Richman, 2018). Here, we propose the chick embryo as a

model with which to study craniofacial tendon development.

In this study we focused on tendons that have similar jaw-

opening and jaw-closing functions as the masticatory tendons in

human. It has previously been described in pigeons, parakeets,

finches, and tailor birds that the musculus Adductor Mandibulae

Externus (mAME) is the principal jaw adductor that enables

closing of the lower jaw, and that the musculus Depressor

Mandibulae (mDM) is the principal jaw depressor that

enables opening and sidewards rotation of the lower jaw

(Bhattacharyya, 2013; Carril et al., 2015; Jones et al., 2019; To

et al., 2021). We therefore focused on identifying and

characterizing the tendons that attach the mAME and the

mDM to the lower jaw, which we termed the TmAM (tendon

attaching to the mAME) and TmDM (tendon attaching to the

mDM). The jaw-closing TmAM and jaw-opening TmDM exhibit

similar structure and function as tendons of the human jaw-

closing muscles (masseter, temporalis, medial pterygoid) and

jaw-opening muscles (lateral pterygoid), respectively (Van Eijden

et al., 1997).

During embryonic development, limb tendons undergo

drastic changes in cell density and extracellular (ECM)

morphology (Kuo et al., 2008; Marturano et al., 2013; Schiele

et al., 2015). The ECM of adult tendon is primarily composed of

hierarchically organized collagen (Kastelic et al., 1978;

Marturano et al., 2013). As the embryonic limb tendon

develops, collagen content and organization continue to

increase gradually until a functional tendon has formed

(Kastelic et al., 1978; Marturano et al., 2013). Collagen type

III (COL3) is present at various stages of limb tendon

development, and has been implicated in regulating

fibrillogenesis of collagen type I as well as fibril growth and

assembly during embryonic limb tendon development

(Fleischmajer et al., 1988; Fleischmajer et al., 1990; Ros et al.,

1995; Birk and Mayne, 1997; Liu et al., 1997; Kuo et al., 2008).

Another critical regulator of limb tendon development is lysyl

oxidase (LOX), an enzyme that covalently crosslinks collagen to

impart mechanical properties to the developing tendon

(Marturano et al., 2013; Marturano et al., 2014). LOX mRNA,

protein, and LOX-mediated collagen crosslink density increase

over time during embryonic limb tendon development

(Marturano et al., 2014; Pan et al., 2018). While its function

during limb tendon development has been minimally studied,

matrix metalloproteinase (MMP)-2 has been detected in chick

embryo limb tendons and suggested to play a role in ECM

remodeling during development (Jung et al., 2009). Tenascin-

C (TNC), a matricellular protein that labels both tendon

primordia and differentiated tendons, has been previously

used as a marker to label limb tendons during development

(Chiquet and Fambrough, 1984; Kardon, 1998; Edom-Vovard

et al., 2002). It would be interesting to examine if these regulators

and markers of limb tendon development are also present during

CF tendon development.
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The goal of this study was to characterize the chick embryo as a

model with which to study jaw tendon development, with a particular

focus on the TmAM and TmDM. We identified the TmAM and

TmDM via a combination of functional, anatomical, and

morphological features. Using histological and

immunohistochemical (IHC) analyses, we characterized the

TmAM and TmDM on the basis of cell and ECM morphology

and spatiotemporal protein distribution from early to late embryonic

development. We focused on ECM molecules implicated in

embryonic limb tendon development, and also compared TmAM

and TmDMwith each other. Our data support the chick embryo as a

model to study CF tendon ECM development, and presents

morphological and protein characterizations that can serve as a

foundation for future studies of CF tendon development.

2 Materials and methods

For all experiments chick embryos between developmental

day (d) 9 through d19 were used, corresponding to Hamburger

and Hamilton (Hamburger and Hamilton, 1951) stages (HH)

35 throughHH45, respectively (Table 1). In this study, we refer to

the different embryonic stages by developmental days (d). Image

analyses of tendon cell density and cell morphology were

performed by 3 reviewers in a blinded fashion.

2.1 Gross identification of CF tendon
location

Freshly harvested chick embryo heads were used for

dissection. After skin and superficial fat were removed,

tendons were identified by gently pulling on tendons with

forceps to show opening and closing of the beak.

2.2 Tissue harvest and processing

Fertilized White Leghorn chicken eggs (CBT Farms,

Chestertown, MD) were incubated at 37°C in a humidified

rocking incubator. On incubation d9 through d19, chick

embryos were sacrificed by decapitation, staged, and heads

were fixed in 10% neutral buffered formalin (Sigma-Aldrich,

HT501128-4L, MO, United States) overnight at 4°C. After

decalcification in Immunocal (StatLab Medical Products, TX,

United States) heads were skinned and cut in half along the

sagittal plane. Tissue specimens were dehydrated through

serially graded ethanol washes, and then processed and

embedded in paraffin, as previously described (Kuo et al.,

2008; Brown et al., 2012; Navarro et al., 2022). Heads were

oriented to section TmAM and TmDM longitudinally at 6 μm

thickness. To orient paraffin blocks to obtain longitudinal

sections of the TmAM, location and orientation of the eye, ear,

and fossa temporalis of the squamosal bone were used as

references. To orient paraffin blocks to obtain longitudinal

sections of the TmDM, location and orientation of the lower

mandible was used as a reference. Tissue sections were

subsequently used for histological and

immunohistochemical staining.

2.3 Histological identification of CF
tendons

To identify CF tendons relative to muscle and bone, and

visualize tendon morphology, tissue sections were stained with

Mallory’s trichrome, as previously described (Kuo et al., 2008;

Kuo and Tuan, 2008; Marturano et al., 2013; Navarro et al.,

2022), and brightfield images were acquired with a ZEISS

Axioscan.Z1 slide scanning microscope with a 20x objective

(Zeiss, Oberkochen, Germany).

2.4 Characterization of cell density and
cell morphology

To assess tendon cell density and morphology, tissue

sections were stained with hematoxylin and eosin (H&E),

as previously described (Kuo et al., 2008; Kuo and Tuan,

2008; Brown et al., 2012; Marturano et al., 2013; Navarro

et al., 2022), and brightfield images were acquired with a

ZEISS Axioscan.Z1 slide scanner with a 40x objective. Three

non-overlapping same-size (60 × 60 μm) regions of interest

(ROIs), equally distributed along the mid-portion of the

TmAM and TmDM and avoiding the myotendinous

junction and enthesis, were selected for analysis.

Brightfield images were deconvoluted into hematoxylin

and eosin signals using the H&E macro in Fiji (Schindelin

et al., 2012). Cell density was quantified by manually

counting nuclei per unit area (mm2). Aspect ratio (AR)

and circularity of cell nuclei were characterized via image

analysis using Fiji. Specifically, nuclei in hematoxylin images

were manually selected using the wand tool, after which Fiji

TABLE 1 Developmental days (d) and corresponding Hamburger
Hamilton stages (HH) of chick embryos used in this study.

Developmental day (d) Hamburger
Hamilton (HH) stage

d9 HH35

d11 HH37

d13 HH39

d15 HH41

d17 HH43

d19 HH45
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would automatically outline the nuclei. Measurements for

AR and circularity were then performed automatically by Fiji.

Nuclear AR was determined as the ratio of major axis to

minor axis. Nuclear circularity was determined as 4 π x (area/

perimeter2).

2.5 Characterization of collagen content,
organization, and fiber maturity

To assess collagen content, organization, and maturity,

tissue sections were stained with picrosirius red (PSR) and

imaged under brightfield and polarized light (POL), as

previously described (Kuo and Tuan, 2008), using a ZEISS

Axioscan.Z1 slide scanning microscope with a 20x objective.

Three non-overlapping same-size (60 × 60 μm) regions of

interest (ROIs) were selected equally distributed along the

mid-portion of the TmAM and TmDM, avoiding the

myotendinous junction and enthesis. Collagen content and

organization were analyzed using Fiji. Collagen content was

characterized by quantifying PSR-stained area in brightfield

images. Specifically, images were converted into 8-bit binary

images and thresholded to isolate PSR staining from

background staining. Percentage area fraction of

thresholded PSR staining was calculated. The same

threshold was used for all technical and biological replicates

for all embryonic stages. Collagen organization was

characterized by quantifying birefringence signal of POL

images, as higher birefringence signal is associated with

more organized collagen (Kuo and Tuan, 2008). Specifically,

POL images were converted into 8-bit binary images and

thresholded to isolate birefringence signal from background.

Percentage area fraction of thresholded birefringence signal

was calculated. The same threshold was used for all technical

and biological replicates for all embryonic stages. Collagen

maturity was analyzed in POL images of PSR-stained sections

using a custom MATLAB routine (version 2019b, Mathworks,

Natick, MA). To identify collagen-rich regions of interest, a

net intensity threshold was applied to all images as follows: IR
+ IG + IB ≥ 140, where IR, IG, and IB represent the red, green,

and blue intensity values of individual pixels, respectively.

Within the thresholded region, individual pixels were

classified as 1) red if IR/IG ≥ 1.8; 2) green if IR/IG ≤ 1.1;

and 3) yellow if 1.1 < IR/IG < 1.8. The classification limits were

determined by calculating the IR/IG intensity ratio of

individual pixels for green, yellow, and red. At least

10 pixels were analyzed per embryonic stage for

determination of classification limits of each color. Using

this classification strategy, area fractions occupied by green,

yellow, and red fibers within each ROI were quantified.

Relative content of green, yellow, and red regions were

interpreted as areas of immature, intermediate, and mature

collagen fibers, respectively (Dayan et al., 1989).

2.6 Immunohistochemical staining

Immunohistochemical staining was performed to detect

TNC, COL3, LOX, MMP2 (gelatinase A), and MMP9

(gelatinase B), based on our previous protocols (Kuo et al.,

2008; Brown et al., 2012) and with the following

modifications. Briefly, antigen unmasking solution,

BLOXALL® endogenous peroxidase blocking solution, normal

horse serum (2.5%), ImmPRESS® HRP IgG polymers, and

ImmPACT® DAB substrate (Peroxidase, HRP) were purchased

from Vector Laboratories (CA, United States). Tissue sections

were subjected to a citrate-based heat-mediated antigen retrieval,

endogenous peroxidases were blocked for 10 min, and unspecific

binding sites were blocked with 2.5% normal horse serum for 1 h.

Sections were incubated over night with primary antibodies

against TNC (M1-B4, Developmental Studies Hybridoma

Bank (DSHB), Iowa, United States, 1:100), COL3 (3B2, DSHB,

Iowa, United States, 1:100), LOX (ab31238, Abcam, 1:100),

MMP2 (ab97779, Abcam, 1:100), and MMP9 (ab38898,

Abcam, 1:100), or with normal horse serum as negative

control. Hybridoma Product M1-B4 developed by Fambrough,

D.M. and Hybridoma Product 3B2 developed by Mayne, R. were

obtained from the DSHB, created by the NICHD of the NIH and

maintained at the University of Iowa. After primary antibody

incubation, slides were incubated for 1 h with either horse anti-

mouse or horse anti-mouse IgG polymer. Subsequently, slides

were developed with DAB substrate and counterstained with

hematoxylin solution for 30 s (Gill No.1, Sigma, United States).

Brightfield images were acquired with a ZEISS Axioscan. Z1 slide

scanner with a 40x objective. Using ZEN lite software, three non-

overlapping same-size (60 × 60 μm) regions of interest (ROIs)

were selected equally distributed along the mid-portion of the

TmAM and TmDM, avoiding the attachment zones to the

muscle and the bone. Brightfield images were deconvoluted

into DAB and hematoxylin signal using the H-DAB macro in

Fiji. DAB-images were converted into 8-bit binary images and

thresholded to isolate DAB-signal from background. Percentage

area fraction of thresholded DAB signal was calculated. For each

protein, the same threshold was used for all technical and

biological replicates for all embryonic stages.

2.7 Statistical analysis

For all image analyses, a minimum of 3 biological replicates

(N) were analyzed per embryonic stage. Per biological replicate

(N), three ROIs, representing technical replicates (n = 3), were

analyzed. Statistical analyses were performed using GraphPad

Prism v.8.0.2 (La Jolla, CA, United States). Numerical data is

presented as mean ± standard deviation. Each datapoint

represents one biological replicate (N), which was determined

by average values of 3 technical replicates (n) for that N. For

comparison of cell density, cell morphology, collagen content,
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birefringence, collagen fiber maturity, and IHC-stained area

fraction between d9 through d19 jaw tendons, one-way

analysis of variance (ANOVA) for multiple comparisons was

used followed by a Tukey’s Post hoc test, after confirming normal

distribution of the data (D’Agostino and Pearson omnibus

normality test). When the above assumption was violated,

non-parametric statistics and Kruskal–Wallis test for multiple

comparisons was utilized. Statistical significance was set at

α = 0.05.

3 Results

3.1 Gross characterization of jaw-closing
TmAM and jaw-opening TmDM

We grossly detected the TmAM as an intramuscular tendon

that originates at the fossa temporalis of the squamosal bone and

connects the mAME, a principal jaw adductor muscle, to the

lower jaw (mandible) (Figure 1A). The TmAM is involved in

rotating as well as lifting the lower jaw upwards and thus is a jaw-

closing tendon (Figure 1B). We confirmed the TmAM by using

forceps to gently pull on the tendon and showed a closing of the

lower jaw (Figure 1B). The TmAM is a pennate tendon with

muscle (mAME) attaching along the length of the TmAM on

both sides and attachments at the squamosal bone and mandible

(Figure 1C). We detected the TmDM as a prominent tendon that

connects the mDM, a lower jaw rotator muscle, with the

mandible at the posterior end of its medial surface

(Figure 1D). The TmDM is involved in rotating the lower jaw

as well as protracting the upper jaw (maxilla) and is thus a jaw-

opening tendon (Figure 1E). We confirmed the TmDM by using

forceps to gently pull on the tendon and demonstrated an

opening of the lower jaw (Figure 1E). The TmDM is attached

to muscle (mDM) on one end and to bone (mandible) on the

other end (Figure 1F).

3.2 Histological characterization of jaw-
closing TmAM and jaw-opening TmDM

TmAM and TmDMwere first detected by embryonic d9 with

histological stains. Tendon structures could not be identified

histologically at d8 or earlier (not shown). In trichrome-stained

sections, the TmAM was first detected at d9 via blue staining for

collagen as well as via attachments to mAME which stained red

FIGURE 1
Identification of jaw-closing TmAM and jaw-opening TmDM in a d19 chick embryo. (A)Macroscopic view showing location of the jaw-closing
TmAM with beak open. (B) Pulling the TmAMwith a forceps induced closing of the jaw. (C)Mallory’s trichrome staining of tissue regions highlighted
by yellow rectangle in Figure 1A shows origin of TmAM (blue) at fossa temporalis of squamosal bone (dark blue) and attachment of mAME (red) along
both sides of the TmAM. (D) Macroscopic view showing location of the jaw-opening TmDM with beak open. (E) Pulling the TmDM with a
forceps induced opening of the jaw. (F)Mallory’s trichrome staining of tissue regions highlighted by yellow rectangle in Figure 1D shows attachments
at each end of the TmDM (blue) to mDM (red) and mandible (dark blue).
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(Figure 2A). TmAM collagen content appeared to increase and

become more organized between d9 and d19 (Figure 2A). Muscle

fibers connecting to the TmAM were first detected at d11

(Figure 2A, yellow arrowheads). Similarly, the TmDM was

first detected at d9 and distinguishable from surrounding

tissue as a denser, more compact microstructure, unlike the

surrounding loose connective tissue (Figure 2B). The

collagenous matrix of the TmDM stained blue and the

attached mDM stained red (Figure 2B). TmDM collagen

content appeared to increase and become more organized

between d9 and d19 (Figure 2B).

3.3 Characterization of tendon cell density
and morphology

Quantitative image analysis of H&E-stained sections of the

TmAM (Figure 3A) revealed a significant increase in cell density

between d9 and d13 (Figure 3B). Cell density peaked at d13 in the

TmAM and subsequently decreased significantly between

d13 and d19 (Figure 3B). Nuclear aspect ratio increased

significantly over time during development in the TmAM

(Figure 3C). Nuclear circularity remained relatively constant

between d9 and d13, decreased significantly after d13, and

remained relatively constant between d15 and d19 in the

TmAM (Figure 3D). Image analysis of H&E-stained sections

of the TmDM (Figure 3A) showed cell density remained

relatively constant between d9 and d17, and decreased

significantly between d13 and d19 (Figure 3E). Nuclear aspect

ratio increased significantly over time during development in the

TmDM (Figure 3F). Nuclear circularity decreased significantly

between d9 and d13 in the TmDM, and subsequently remained

constant between d13 and d19 (Figure 3G). Based on these

analyses, tendon cells in both the TmAM and the TmDM

changed from a rounded to an elongated shape over time

during development.

3.4 Characterization of collagen content,
organization, and fiber maturity

TmAM collagen content, organization, and fiber maturity

were analyzed in PSR-stained sections (Figure 4A). Image

analysis revealed collagen content significantly increased from

stage to stage between d9 and d13 in the TmAM and reached a

plateau after d13 (Figure 4B). Analysis of collagen

birefringence signal, a surrogate for collagen organization,

revealed significant increases in the TmAM between d9 and

d13 (Figure 4C). After d13, collagen birefringence signal

reached a plateau in the TmAM (Figure 4C). Based on

FIGURE 2
Collagen content appeared to increase and become more organized in jaw-closing TmAM and jaw-opening TmDM between d9 and d19. (A)
Low and highmagnification brightfield images of Mallory’s trichrome staining of TmAM show collagen content (blue) increasing and becomingmore
organized between d9 and d19. Yellow arrows highlight muscles attaching along length of TmAM. (B) Low and high magnification brightfield images
of Mallory’s trichrome staining of TmDM show collagen content (blue) increasing and becoming more organized between d9 and d19. Tendon
(t), muscle (m), cartilage (c), loose connective tissue (ct).
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these data, collagen content increased throughout

development in the TmAM, and became more organized

during early and intermediate developmental stages.

Quantitative analysis of collagen fiber maturity in the

TmAM revealed that the percentage of immature (green)

fibers decreased significantly between d9 and d13 and

remained consistently low after d11 (Figure 4D).

Percentage of intermediate (yellow) fibers increased

significantly in the TmAM between d9 and d13, peaked at

d13, and decreased significantly between d13 and d19

(Figure 4E). Mature (red) fibers were first detected in the

TmAM at d11 and percentage of mature fibers increased

significantly between d11 and d19 (Figure 4F). Based on

these data, collagen fibers in the TmAM progressed from

mainly immature during early stages, to intermediate, and

finally to mature during late stages of development.

TmDM collagen content, organization, and fiber maturity were

also analyzed in PSR-stained sections (Figure 5A). Image analysis

revealed collagen content in the TmDM increased significantly from

stage to stage between d9 and d15 and reached a plateau after d15

FIGURE 3
Cell density decreased and nuclei became more elongated in jaw-closing TmAM and jaw-opening TmDM between d9 and d19. (A)
Representative brightfield images of H&E stained TmAM and TmDM. (B) Cell density increased significantly until d13 and subsequently decreased
significantly until d19 in TmAM. (C) Nuclear aspect ratio increased significantly between d9 and d19 in TmAM. (D) Circularity decreased significantly
between d9 and d19 in TmAM. (E) Cell density decreased significantly between d13 and d19 in TmDM. (F) Nuclear aspect ratio increased
significantly between d9 and d19 in TmDM. (G) Circularity decreased significantly between d9 and d13 in TmDM.
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FIGURE 4
Collagen content increased, collagen became more aligned, and fiber maturity increased in jaw-closing TmAM between d9 and d19. (A)
Representative brightfield and polarization (POL) images of PSR-stained TmAM. (B)Collagen content increased significantly over time and plateaued
after d13 in TmAM. (C) In the TmAM, collagen birefringence signal increased significantly over time and reached a plateau after d13. (D–F) Collagen
fibers progressed frommainly immature (D) during early stages, to intermediate (E), and finally to mature (F) during late stages of development
in TmAM.
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(Figure 5B). Analysis of collagen birefringence signal revealed

significant increases between d9 and d17 and then a plateau after

d17 (Figure 5C). Based on this data, collagen content continued to

increase in the TmDM throughout development, and became more

organized during early and intermediate developmental stages. In

the TmDM, percentage of immature (green) fibers decreased

FIGURE 5
Collagen content increased, collagen became more aligned, and fiber maturity increased in jaw-opening TmDM between d9 and d19. (A)
Representative brightfield and polarization images of PSR-stained TmDM. (B) Collagen content increased significantly over time and plateaued after
d15 in TmDM. (C) In the TmDM, collagen birefringence increased significantly over time and reached a plateau after d17. (D–F) Collagen fibers in
TmDMprogressed frommainly immature (D) during early stages, to intermediate (E), and finally tomature (F) during late stages of development.
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significantly between d9 and d11 (Figure 5D). Percentage of

intermediate (yellow) fibers increased significantly in the TmDM

between d9 and d13, peaked at d13, and subsequently decreased

significantly between d13 and d19 (Figure 5E). Mature (red) fibers

were first detected in the TmDM at d11 and increased significantly

between d11 and d19 (Figure 5F). Based on these data, collagen

fibers in the TmDMprogressed frommainly immature during early

stages, to intermediate, and finally to mature during late stages of

development.

3.5 Spatiotemporal protein distribution of
collagen type III (COL3)

Quantitative analysis of COL3 presence in the TmAM

(Figure 6A) revealed that COL3 increased significantly

between d9 and d13 (Figure 6B). COL3 peaked at d13 in

the TmAM, decreased significantly after d13, and remained

low until d19 (Figure 6B). Quantitative analysis of

COL3 presence in the TmDM (Figure 6A) revealed that

COL3 also increased significantly between d9 and d13

(Figure 6C). COL3 peaked at d13 in the TmDM, decreased

significantly between d13 and d15, and remained low during

later stages (Figure 6C).

3.6 Spatiotemporal protein distribution of
tenascin-C (TNC)

Quantitative analysis of TNC presence in the TmAM

(Figure 7A) revealed that TNC remained relatively high

between d9 and d13, decreased significantly after d13, and

remained low during later stages (Figure 7B). In contrast,

quantitative analysis of TNC presence in the TmDM

(Figure 7A) revealed that TNC was relatively low at d9 and

d11, increased significantly between d9 and d13, and remained

relatively constant between d13 and d19 (Figure 7C).

3.7 Spatiotemporal protein distribution of
lysyl oxidase (LOX)

Quantitative analysis of LOX presence in the TmAM

(Figure 8A) revealed that LOX was relatively constant during

early and intermediate stages, and decreased significantly

between d11 and d19 (Figure 8B). Quantitative analysis of

LOX presence in the TmDM (Figure 8A) revealed that LOX

levels were relatively constant between early and intermediate

stages, decreased significantly between d11 and d17, and stayed

constantly low until d19 (Figure 8C).

FIGURE 6
COL3 decreased after d13 in both jaw-closing TmAM and jaw-opening TmDM. (A) Representative brightfield images of COL3 IHC of TmAM and
TmDM. (B) In TmAM, percentage area fraction positive for COL3 increased significantly until d13, and then decreased significantly in TmAM. (C) In
TmDM, percentage area fraction positive for COL3 increased significantly until d13, and then decreased significantly after d13.
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FIGURE 7
TNC showed different temporal patterns in jaw-closing TmAM and jaw-opening TmDM. (A) Representative brightfield images of TNC IHC of
TmAM and TmDM. (B) In TmAM, percentage area fraction positive for TNC decreased significantly after d13. (C) In TmDM, percentage area fraction
positive for TNC increased significantly until d13 and then plateaued.

FIGURE 8
LOX decreased during late developmental stages in jaw-closing TmAM and jaw-opening TmDM. (A) Representative brightfield images of LOX
IHC of TmAM and TmDM. (B) In TmAM, percentage area fraction positive for LOX decreased significantly from d15 to d19. (C) In TmDM, percentage
area fraction positive for LOX decreased significantly between d11 and d17 in TmDM.
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3.8 Spatiotemporal protein distribution of
matrix metalloproteinase 2 (MMP2)

Quantitative analysis of MMP2 presence in the TmAM

(Figure 9A) showed that MMP2 was relatively constant in the

TmAM between d9 and d13, decreased significantly between

d13 and d15, and remained constantly low until d19 (Figure 9B).

Quantitative analysis of MMP2 presence in the TmDM

(Figure 9A) showed that MMP2 remained relatively constant

between d9 and d15 (Figure 9C). MMP2 decreased significantly

between d15 and d17 and remained low until d19 (Figure 9C).

3.9 Spatiotemporal protein distribution of
matrix metalloproteinase 9 (MMP9)

Quantitative analysis of MMP9 presence in the TmAM

(Figure 10A) showed that MMP9 remained relatively constant

between d9 and d17 and decreased significantly between d17 and

d19 (Figure 10B). Quantitative analysis of MMP9 presence in the

TmDM (Figure 10A) showed that MMP9 remained relatively

constant between d9 and d19 (Figure 10C).

4 Discussion

CF tendon injuries and disorders can severely compromise

jaw movements such as mastication, yet there are currently no

treatments to regenerate and restore jaw function. Designing

treatments for jaw tendon regeneration will require

fundamental knowledge about jaw tendon development,

which has been minimally studied. Here, we

comprehensively characterized spatiotemporal patterns of

cell and ECM morphology and protein distribution at

distinct embryonic stages to provide markers for TmAM

and TmDM development. Our results show markers that

play a role in limb tendon formation are also present in jaw

tendons during embryonic development, implicate COL3,

TNC, LOX, MMP2, and MMP9 in jaw tendon development,

and suggest TmAM and TmDM vary in their developmental

programs. Our study supports the chick embryo as a novel

model with which to study mechanisms of CF tendon

development. This model, and the morphological and

protein characterizations we present here, will enable future

studies that could ultimately inform therapeutic approaches

for CF tendon injuries and disorders.

FIGURE 9
MMP2 decreased duringmid-to-later stages in jaw-closing TmAM and jaw-opening TmDM. (A) Representative brightfield images of MMP2 IHC
of TmAM and TmDM. (B) In TmAM, percentage area fraction positive for MMP2 decreased significantly after d13. (C) In TmDM, percentage area
fraction positive for MMP2 decreased significantly after d15.
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4.1 Chick embryos possess jaw-opening
and jaw-closing tendons analogous to
those in human

The TmAM is a multipennate tendon, as muscle fibers

attach along the length of the tendon. Similar to our

observations in the chick embryo, tendons of human jaw-

closing muscles (masseter, temporalis, medial pterygoid)

frequently exhibit a multipennate structure with muscle

fibers inserting along the tendon length, which allows for

transmission of high forces required for closing of the jaw

(Van Eijden et al., 1997). Based on these findings, the

TmAM could primarily be responsible for transmission

of high forces during jaw-closing. In contrast, the jaw-

opening TmDM is a non-pennate tendon, and attaches to

muscle at the end of the tendon. Similar to our observations

in the chick embryo, tendons of human jaw-opening

muscles (lateral pterygoid, digastric, geniohyoid,

mylohyoid) are also rarely pennate, and transmit forces

to enable excursion and displacement of the jaw during

opening (Van Eijden et al., 1997). Based on these findings,

the TmDM could primarily be responsible for transmission

of forces for excursion and displacement of the lower jaw

during opening. These conclusions were corroborated by

the jaw movements observed when gently pulling on the

tendons (Figure 1).

4.2 Jaw tendons are detectable by d9

Both TmAM and TmDM could be first identified at d9,

based on collagen presence, TNC labeling, and attachments to

muscle and bone or cartilage (Figure 1C,F, Figure 2A,B,

Figure 7A). TNC labels early distal tendon primordia

between d5 and d7 as well as anatomically distinct tendons

arising from these primordia after d7 (Chiquet and Fambrough,

1984; Chiquet-Ehrismann et al., 1986; Hurle et al., 1989; Hurle

et al., 1990; Ros et al., 1995; Kardon, 1998). Previous studies by

us and others have found that collagen matrix is first detectable

via histological staining and second harmonic generation

(SHG) imaging in chick embryo limb tendons at d9 (Ros

et al., 1995; Marturano et al., 2013). Taken together, our

results suggest TmAM and TmDM ECM development begin

approximately at the same time as that of limb tendon during

embryonic development.

4.3 TNC spatiotemporal distribution
differs between TmAM and TmDM

TNC exhibited substantially different temporal patterns in

the two jaw tendons. In particular, TNC protein distribution in

the TmAM was relatively high until d13 and decreased

afterwards, whereas in the TmDM it was relatively low during

FIGURE 10
MMP9 was present in jaw-closing TmAM and jaw-opening TmDM between d9 and d19. (A) Representative brightfield images of MMP9 IHC of
TmAM and TmDM. (B) In TmAM, percentage area fraction positive for MMP9 decreased significantly after d17. (C) In TmDM, percentage area fraction
positive for MMP9 remained relatively constant between d9 and d19.
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early stages and increased after d11 (Figure 7). TNC has been

used as a marker for embryonic limb tendon (Chiquet and

Fambrough, 1984; Hurle et al., 1989; Ros et al., 1995; Kardon,

1998; Edom-Vovard et al., 2002). However, even though TNC

has been implicated in collagen fibrillogenesis during

development of a range of tissues (Mackie, 1994; Riley et al.,

1996; Chiquet-Ehrismann and Tucker, 2004), this role has not

been definitively shown in tendon. To date, specific TNC

functions during embryonic tendon development are largely

unknown, yet our data confirms that jaw tendons possess

TNC as well.

4.4 Jaw tendon cells shift from higher
density and roundedmorphology to lower
density and elongated morphology during
development

Cell density appeared constant in both TmAM and TmDM

during early embryonic stages and decreased after d13 (Figures

3B,E). Our results here are similar to previously reported declines in

tendon cell density during embryonic development based on

quantitative DNA assays (Marturano et al., 2013). TmAM and

TmDM cells became more elongated during development, reflected

by increases in nuclear aspect ratio and decreases in circularity

(Figures 3C,D,F,G). Similarly, limb tendon cells have been reported

to switch from an initially round to a more elongated shape as

embryonic development proceeds (Kannus, 2000). Previous studies

have associated CF tendon cell elongation during embryonic

development with major mechanical stimulatory events like the

onset of muscle contractions in zebrafish (Subramanian et al., 2018).

Interestingly, embryonic jaw movements such as “beak clapping”,

the rapid opening and closing of the beak, has been observed as early

as d9 (Kuo, 1932; Kuo, 1938), and is highest between d14 and d19

(Oppenheim, 1968). Our results on cell elongation in both jaw-

opening and jaw-closing tendons demonstrate significant changes

around these times (Figures 3C,D,F,G), potentially indicating that

alterations in cell shape in the TmAMand TmDM could be possibly

driven by beak clapping-induced mechanical stimulation.

4.5 Collagen content increases and
becomes more organized during
development

TmAM and TmDM both increased in collagen content

(Figure 4B, Figure 5B), birefringence signal (Figure 4C,

Figure 5C), and mature collagen fibers during embryonic

development (Figure 4F, Figure 5F). Interestingly, TmAM and

TmDM exhibited similar temporal patterns in the shift from

predominately immature to intermediate to mature collagen

fibers during development (Figures 4D–F, Figure 5D–F).

Increases in birefringence during development suggested the

ECM of both TmAM and TmDM were increasing in collagen

fiber density, thickness, and alignment. Our observations in jaw

tendons are consistent with our previous reports using SHG and

biochemical analyses, which demonstrated that fibrillar collagen

content, density, and alignment increase in limb tendons over time

during development (Marturano et al., 2013;Marturano et al., 2014).

4.6 COL3 peaks when collagen content
and birefringence start to plateau

COL3 is thought to be a critical regulator of collagen

fibrillogenesis (Fleischmajer et al., 1988; Fleischmajer et al.,

1990; Birk et al., 1997; Liu et al., 1997). COL3 is co-expressed

with COL1 in limb tendon fascicles during chick embryonic

development and appears to regulate the diameter of

COL1 fibrils (Fleischmajer et al., 1988; Fleischmajer et al.,

1990; Birk et al., 1997; Liu et al., 1997). Here, COL3 staining

distribution increased until d13 in both TmAM and TmDM

and decreased during subsequent stages (Figure 6). Similar

temporal COL3 patterns have been reported in chick embryo

limb tendons by us and others (Birk and Mayne, 1997; Kuo

et al., 2008). Before d14, COL3 distribution is detected

throughout limb tendon fascicles and is associated with

smaller diameter collagen fibrils (Birk and Mayne, 1997;

Kuo et al., 2008). After d14, COL3 decreases in limb

tendon fascicles and collagen fibril diameter gradually

increases (Fleischmajer et al., 1990; Birk et al., 1997; Liu

et al., 1997; Kuo et al., 2008). Interestingly,

COL3 continues to be detectable and associated with

smaller diameter collagen fibrils in the regions surrounding

the fascicles (Birk and Mayne, 1997; Kuo et al., 2008). In skin,

COL3 deficient mice show abnormal collagen fibril diameter

distribution (Liu et al., 1997). Taken together, the presence of

COL3 in the TmAM and TmDM may suggest that

COL3 contributes to regulation of collagen fibrillogenesis in

CF tendons.

4.7 Presence of LOX during early and
intermediate stages could imply that
active collagen crosslinking is occurring

LOX staining was detected in both TmAM and TmDM

throughout development and decreased during later stages

(Figure 8). We previously showed that LOX activity and

LOX-mediated crosslinking play critical roles in regulating

the mechanical properties of embryonic limb tendon during

development (Marturano et al., 2013; Pan et al., 2018). In

particular, inhibition of LOX activity prevented increases in

limb tendon elastic modulus by inhibiting the formation of new

collagen crosslinks (Marturano et al., 2013). In another study,

induction of paralysis during development led to lower LOX
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activity levels and elastic modulus in limb tendon as compared

to controls (Pan et al., 2018). On the other hand, increase in

movement frequency led to increases in elastic modulus,

whereas inhibition of LOX activity during enhanced

movement abrogated the increases in modulus (Pan et al.,

2018). Notably, LOX-mediated crosslink density increases

during limb tendon development, and these increases

correlate with increases in proLOX and LOX activity levels

(Marturano et al., 2014; Pan et al., 2018). Based on these data, it

is possible that LOX-mediated crosslinking of collagen occurs

during early and mid-developmental stages of TmAM and

TmDM development. However, because the antibody in this

study detects both proLOX and active LOX, future analyses

would be needed to confirm formation of LOX-mediated

collagen crosslinks.

4.8 MMP2 and MMP9 may be involved in
tendon development

During embryonic development MMPs are involved in ECM

remodeling of various tissues including blood vessels, bone,

cartilage, skeletal muscle, lungs, and skin (Birkedal-Hansen

et al., 1993; Ravanti and Kähäri, 2000; Page-McCaw et al.,

2007; Krane and Inada, 2008), but have been minimally

examined in tendon development. Here, we detected MMP2

(Figure 9) and MMP9 (Figure 10) protein in both TmAM and

TmDM, suggesting roles in ECM remodeling during

development. MMP-2 and MMP-9 show activity against

denatured collagen type I and type III molecules and native

non-fibrillar collagens (Birkedal-Hansen et al., 1993; Aimes and

Quigley, 1995; Allan et al., 1995; Bigg et al., 2007; Baldwin et al.,

2019). Additionally, MMP2 cleaves soluble and reconstituted

fibrillar collagen type I, whereas MMP9 cleaves soluble collagen

types I and III (Aimes and Quigley, 1995; Bigg et al., 2007).

MMP2-deficient mice are smaller at birth, have slower growth

rate, and exhibit distinct phenotypes of limb, trunk, and head

bones, compared to wild-type littermates (Itoh et al., 1997; Inoue

et al., 2006). During chick embryonic limb tendon development,

MMP2 activity is highest prior to and during collagen fibril

growth, implicating a role of MMP2 in fibril growth and matrix

assembly (Jung et al., 2009). Similarly, MMP2 was relatively high

in TmAM and TmDM during early and mid-developmental

stages, and decreased significantly during later stages

(Figure 9). Thus, it is possible that MMP2 is involved in

remodeling the tendon ECM during early and mid-

developmental stages. While little is known about MMP9 in

tendon development, MMP9 is expressed at other sites of active

tissue remodeling in the developing embryo (Reponen et al.,

1994; Alexander et al., 1996), and MMP9 deletion leads to

abnormal bone development (Vu et al., 1998). Here,

MMP9 levels were relatively high until late developmental

stages in TmAM, whereas they remained relatively consistent

throughout development in TmDM (Figure 10). Considering the

remodeling roles of MMP9 in other embryonic skeletal tissues,

presence of MMP9 could indicate stage-specific roles in ECM

remodeling in TmAM and TmDM during embryonic

development.

4.9 TmAM and TmDMmay follow different
developmental programs

Despite many similarities, the developing TmAM and TmDM

also exhibited distinct differences in temporal patterns of specific

markers, potentially reflecting different developmental processes.

The TmAM reaches a maximum collagen content and

birefringence level earlier than TmDM during development,

attributed in part to the slightly slower decrease in immature

collagen fibers in the TmDM (Figures 4, 5). Differences in cell

morphology (Figure 3) could imply differences in developmental

processes between the TmAM and TmDM considering regulation

of cell shape may be important for limb tendon development

(Richardson et al., 2007). In particular, TmAM exhibited greater

decreases in nuclear circularity together with greater increases in

nuclear aspect ratio over time compared to TmDM, suggesting

that TmAM cells elongate to a greater extent compared to TmDM

cells. Pennate tendons accumulate muscle forces from varying

angles arising from muscle attachments along the length of the

tendon. Compared to non-pennate tendons, pennate tendons are

functionally stiffer (Farris et al., 2013; Brukner et al., 2018). Based

on the differences in how they each attach tomuscle, it is likely that

the TmAM and TmDM experience different mechanical stimuli

during embryonic development. Different mechanical

microenvironments experienced by the pennate TmAM and the

non-pennate TmDM could be responsible for different temporal

patterns in TNC, LOX, and MMP protein distribution (Figures

7–10), as TNC, LOX, MMP2, andMMP9 have each been reported

to be regulated by mechanical loading. In particular, TNC

expression levels decreased with limb immobilization but

increased with treadmill running in Achilles tendons of rats

(Järvinen et al., 1999; Järvinen et al., 2003). We have previously

shown that paralysis of embryos reduces LOX activity levels in

limb tendons compared to controls, suggesting LOX is regulated

by mechanical loading of tendon during development (Pan et al.,

2018). During late developmental stages, LOX decreases relatively

earlier in TmDM compared to TmAM (Figure 8), which may

suggest differences in LOX-mediated collagen crosslinking due to

differences in mechanical loading of the two jaw tendons. Both

MMP2 and MMP9 have been reported to be regulated by

mechanical loading in tendon (Koskinen et al., 2004; Huisman

et al., 2016). It would be interesting to investigate if earlier

decreases in MMP2 (Figure 9) and later decreases in MMP9

(Figure 10) in the TmAM compared to the TmDM are

regulated by differences in mechanical loading of the two jaw

tendons. The differences in their muscle attachments could also
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expose TmAM and TmDM differently to muscle-secreted growth

factors (Eloy-Trinquet et al., 2009; Wang et al., 2010; Subramanian

and Schilling, 2015), which could also have contributed to the

differences between TmAM and TmDM outlined above.

Taken together, the effects of muscle-induced loading and

muscle-secreted factors would be interesting to examine in

future studies.

4.10 Limitations and future perspectives

The aim of this study was to characterize the chick embryo as

a model to study CF tendon formation and to provide distinct

morphological and immunohistochemical markers to describe

ECM formation of jaw-opening and jaw-closing tendons. To

further characterize specific roles of LOX and MMPs in CF

tendon development, perturbation of protein and activity levels

would be needed. Future studies could also employ additional

methods to characterize different aspects of collagen matrix

formation in greater detail. The antibodies available for

immunohistochemistry at the time of this study could not

differentiate between pro-form and active-form of the

proteins, and thus future studies should assess LOX and

MMP activity levels as well as protein levels of their respective

pro-forms.

5 Conclusion

This report identified the jaw-closing TmAM and jaw-

opening TmDM in the chick embryo that have similar

functions as masticatory tendons in human and provided a

detailed histological and immunohistochemical

characterization of these tissues from early to late

embryonic development. Our data implicate TNC, COL3,

LOX, MMP2, and MMP9 in CF tendon formation and

demonstrated that the two antagonistic tendons develop at

different rates with respect to ECM formation and

spatiotemporal distribution of tendon-associated and

matrix remodeling molecules. Taken together, our study

supports the chick embryo as a model with which to study

CF tendon ECM development, the results of which could

ultimately inform therapeutic approaches for CF tendon

injuries and disorders.
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