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Differentiation of the bipotential gonadal primordium into ovaries and testes is a

common process among vertebrate species. While vertebrate ovaries

eventually share the same functions of producing oocytes and estrogens,

ovarian differentiation relies on different morphogenetic, cellular, and

molecular cues depending on species. The aim of this review is to highlight

the conserved and divergent features of ovarian differentiation through an

evolutionary perspective. From teleosts to mammals, each clade or species has

a different story to tell. For this purpose, this review focuses on three specific

aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the

role of estrogens on ovarian differentiation and the molecular pathways

involved in granulosa cell determination and maintenance.
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Introduction

In vertebrate species, ovaries arise from the gonadal primordium, a structure that has

the bipotential capacity to differentiate into either ovaries or testes during embryogenesis.

This dual developmental fate relies on the ability of gonadal cells to differentially respond

to genetic or environmental cues that will dictate their fate toward ovarian or testis

identity. Among the gonadal somatic cells, the supporting cells are considered the

orchestrator of gonad differentiation. These supporting cells are usually the first

gonadal cell-type to initiate their male or female fate and become Sertoli or granulosa

cells respectively (Sinclair et al., 1990). For instance, in most mammals, the XY supporting

cells first express the Y-linked sex-determining gene SRY, which activates the Sertoli-cell

differentiation program that drives testis differentiation (Koopman et al., 1991; Albrecht

and Eicher, 2001; Sekido and Lovell-Badge, 2008). In the absence of the Y-chromosome or

of SRY, supporting cells differentiate into granulosa cells, tipping the gonadal fate toward

ovaries. For this reason, ovarian differentiation has been considered a default process.

However, genetic evidence from mice, humans, and other species have revealed that

ovarian differentiation is in fact an active process that involves unique morphogenetic

changes and activation/repression of specific genetic programs. Beyond mammals,
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bipotential gonads of all vertebrate species face this critical fate

decision to differentiate into an ovary or a testis. Gonadal

development and ovarian differentiation vary among

vertebrate species. From different chromosomic systems (XX/

XY vs. ZZ/ZW vs. polygenic), different sex determining triggers

(SRY in mammals, DMRT1/DMY in chicken and medaka,

AMHY in tilapia) (Nagahama et al., 2021), different cell

origins, to divergent ovarian morphology, each clade or

species adapts its unique molecular and cellular mechanisms.

Despite this divergence, there is a large conservation of key

genetic players and cell types involved in ovarian

differentiation throughout vertebrate evolution.

In this review, we intend to generate a comparative view of

ovarian differentiation from three main vertebrate clades: fish,

birds, and mammals. We focus on three aspects of ovarian

differentiation: 1) ovarian morphogenesis and origins of

granulosa cells; 2) the evolutionary role of estrogens in

ovarian differentiation; and 3) the genetic pathways that

regulate granulosa cell/ovarian differentiation.

Ovary morphogenesis and origins of
granulosa cells

In vertebrates, the ovary develops from the gonadal

primordium that eventually form a structure composed of

follicles, the functional units of the ovary. Follicles are

composed of three key cell populations: an oocyte, surrounded

by supporting granulosa cells, themselves surrounded by

steroidogenic theca cells. Precursors of these cell populations

are suspected to be present in the gonadal primordium. The

primordium arises from the convergence of primordial germ

cells, along with coordinated events of epithelial-mesenchymal

transition (EMT) from the coelomic epithelium/lateral plate

mesoderm and cell migration from the mesonephric/

pronephric region. Morphogenesis of the ovary has been

studied in various species and the origin of ovarian granulosa

cells has been a long ongoing debate. It was already speculated in

the 1960s/70s that mammalian granulosa cells could arise from

either two waves of recruitment from the ovarian surface

epithelium to form medullary and cortical cords; or from the

mesenchyme; or even from cells of mesonephric origin, the “rete

ovarii” (for review, see Byskov, 1986). While vertebrate ovaries

eventually share the same functions of producing oocytes and

reproductive hormones, the ovarian morphogenesis varies from

species to species.

Fish

Teleosts are the largest infraclass of the Actinopterygii, the

ray-finned fishes. They present a variety of sex determination

strategies that range from gonochorism, when the bipotential

gonads directly differentiate into either an ovary or a testis, to

sequential hermaphroditism, when a species switches sex later in

life. Such diversity is caused by the capacity of the gonad to follow

various genetic and/or environmental cues in a species-specific

manner. Consequently, the timing and process of ovarian

morphogenesis differ greatly from one fish species to another.

The medaka (Oryzias latipes) is one of the most-studied

fish species regarding sex-determination and differentiation.

It is a gonochoristic species, and the bipotential gonads

differentiate into an ovary or a testis based on the

presence of XX or XY sex chromosomes with the Y-linked

sex determining gene dmy/dmrt1by (Matsuda et al., 2002;

Nanda et al., 2002). Gonadal ridges form between the

hindgut and nephric ducts around 3 days post-fertilization

(dpf) (Figure 1A). Two somatic cell gonadal precursors

originate from the lateral plate mesoderm: cells expressing

ftz-f1, ortholog of Nr5a1, located laterally to the hindgut, and

cells expressing sox9b, located more dorsally between the

hindgut and nephric duct (Nakamura et al., 2006). The

migrating primordial germ cells (PGCs), sox9b+ cells and

ftz-f1+ cells meet dorsally around stage 33 (around 4.4 dpf)

to form a single gonadal primordium (Figure 1A). The

sox9b+ cells correspond to supporting cell progenitors

that surround germ cells to form bipotential “units”

common to both male and female gonads (Nakamura

et al., 2008; Nishimura et al., 2016). As sox9b+ cells

surround PGCs, they start expressing ftz-f1 (Nishimura

and Tanaka, 2014). These sox9b+ bipotential supporting

cells form interwoven threadlike cords that surround nests

of germline stem cells to form germinal cradles. These

cradles, along with epithelial cells, constitute the

multilayered germinal epithelium that contribute to egg

production throughout adult life (Nakamura et al., 2010).

The first sexually dimorphic difference is the presence of

more germ cells in female gonads than the male gonads 1 day

before hatching at stage 38 (Satoh and Egami, 1972),

followed by meiosis initiation 1-day post-hatching (dph)

(Nakamura et al., 2006). After initiation of ovarian

differentiation at hatching, diplotene oocytes individually

surrounded by sox9b+ supporting cells exit the cradles for

the stroma. These supporting cells further differentiate into

granulosa cells by downregulating sox9b expression and

activating foxl2 (Nakamoto et al., 2006). Meanwhile,

around 5 dph, cyp19a1a becomes expressed in stroma cells

located in the ventral region of the differentiating ovary

(Figure 1A) (Nakamura et al., 2009). Once in the stroma

compartment, granulosa cells recruit two types of

steroidogenic stroma cells, cyp19a1a+ cells and cyp17a1+

cells, to form the outer theca layer of the follicles (Nakamura

et al., 2009). As the gonad differentiates into an ovary, it is

composed of three main structures: 1) the stroma, located in

the ventral side where follicles will grow; 2) the germinal

epithelium containing the germinal cradles; and 3) the
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ovarian cavity, formed around 30 dph, into which mature

oocytes are ovulated (Figure 1A).

On the other hand, the zebrafish (Danio rerio) has a different

strategy of sex determination and gonad differentiation from the

medaka. While the zebrafish is widely used as a model organism

to study developmental processes, sex determination and gonadal

differentiation are still poorly understood and varies between

wild (ZZ/ZW system) vs laboratory (lack sex chromosomes)

strains (for review, see Kossack and Draper, 2019). Zebrafish

presents a juvenile hermaphroditism, as males and females first

FIGURE 1
Comparative ovarian morphogenesis in medaka, chicken, and rabbit. (A) In medaka, the gonadal primordium is composed of three cell
populations: primordial germ cells (PGCs), ftz-f1+ cells, and sox9b+ supporting cell precursors. Sex determination is initiated just before hatching, at
stage 38. sox9b+ cells surround PGCs to give rise to the germinal cradles that later form amultilayered germinal epithelium alongwith epithelial cells.
At hatching, a basement membrane is formed at the ventral side. Meiosis is initiated 1-day post-hatching (dph), and foxl2 becomes expressed in
supporting cells surrounding diplotene oocytes that exit cradles. Around 5 dph, cyp19a1+ becomes expressed in stroma cells in the ventral region. As
follicles grow in the stroma, foxl2+ granulosa cells recruit cyp19a1a+ cells and cyp17a1+ theca cells. Ovarian cavity is formed around 30 dph. Adult
ovaries still contain a germinal epithelium (inset) composed of undifferentiated sox9+ supporting cells, and germline stem cells that synchronously
divide, enter meiosis and either die or exit the cradle to form follicles in the stroma. (B) In chickens, the gonadal primordium consists of two main
compartments, the coelomic epithelium and the underlying mesenchyme. In the left ovary, the coelomic epithelium gives rise to the cortex and
interstitial cells. FOXL2+/CYP19A1+ pre-granulosa cells and CYP17A1+ steroidogenic cells derive from a PAX2+ mesenchymal population. Germ cells
thatmigrate into the gonad from the bloodstream accumulate in the cortical region of the left ovary. The right ovary does not form a cortex and germ
cells remain in the medulla. (C) In rabbits, ovarian cell differentiation starts at 18 dpc and is associated with an upregulation of FOXL2, WNT4 and
RSPO1 in somatic cells. At this stage, proliferating cells in the coelomic epithelium start to express CYP19A1. At 30 dpc, somatic cells expressing
FOXL2,WNT4 and RSPO1 surroundOCT4/STRA8 positive germ cells and form ovigerous cords. The expression of STRA8 signals meiosis initiation. At
14 dpp, the formation of the first primordial follicles is initiated. Then, growing follicles are composed of FOXL2+ granulosa cells enclosing VASA+
oocytes.
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develop transient juvenile ovaries containing oocytes during

larval life (~13–25 dpf) (Takahashi, 1977). Gonadal

development starts with the appearance of an elongated

gonadal primordium around 5 dpf (Braat et al., 1999).

Around 8–10 dpf, at least two populations of gonadal somatic

cells co-exist: an outer layer of epithelial fgf24+ cells that become

located to the dorsal edge of the gonad; and an inner layer of

fgf24-/etv4+ cells in closer contact with germ cells and whose

development appears to rely on the outer fgf24+ cell population

(Leerberg et al., 2017). A subset of germ cells become oogonia and

initiate meiosis in all gonads (Tong et al., 2010). At 12 dpf, the

fgf24- cells start to separate into three distinct sub-populations:

etv4+ cells, cyp19+ cells likely representing steroidogenic cell

precursors (Dranow et al., 2016) and amh+ cells likely

representing supporting cell precursors (Rodríguez-Marí et al.,

2005). A few cells expressing gsdf, a marker specific of supporting

cell lineage (Gautier et al., 2011; Yan et al., 2017), are detected as

early as 8 dpf and appear to originate from the dorsal epithelium

to eventually surrounds germ cells (Song et al., 2021). Gonadal

differentiation is initiated around 20–25 dpf. The first clear

morphological change between sexes is the degeneration of

meiotic oocytes in presumptive males (Uchida et al., 2002).

During this period (20–25 dpf), expression of the granulosa

cell marker wnt4a is maintained in supporting cells of the

presumptive ovary whereas it is lost in the presumptive testis

(Kossack et al., 2019). On the other hand, the Sertoli-cell marker

sox9a is lost in the presumptive ovary but maintained in the

presumptive testis (Rodríguez-Marí et al., 2005). cyp19a1a only

becomes expressed in granulosa cells later, when granulosa cells

surround oocytes that are past mid-Stage II (Dranow et al., 2016).

Similar tomedaka and other fish species, zebrafish ovary contains

a germinal epithelium at the surface of the ovary, composed of

germline stem cell (GSC) surrounded by bipotential supporting

cells (Beer and Draper, 2013), that contribute to continuous

production of follicles throughout life, ovary regeneration and

gonad plasticity (Cao et al., 2019).

Avians

In birds, the gonadal primordium first appears in the

ventromedial surface of the mesonephros around embryonic

day 4.5 (E4.5) (Figure 1B) (Rodemer et al., 1986). Lineage

tracing experiments in the chicken embryo evidenced that the

coelomic epithelium contributes to the gonadal epithelial and

interstitial cells, but not to the supporting cells, as opposed to

mammals (Sekido and Lovell-Badge, 2007; Estermann et al.,

2020). Instead, the supporting cell population derives from the

mesonephric mesoderm, which itself is of intermediate

mesodermal origin. More specifically, these supporting cells

derive from a PAX2/DMRT1/WNT4/OSR1 positive

mesenchymal population (Figure 1B) (Estermann et al., 2020).

It is worth noting that both OSR1 and PAX2 are some of the

earliest intermediate mesoderm markers (James et al., 2006),

supporting the intermediate mesoderm origin of avian

supporting cells. Moreover, PAX2-positive progenitor cells

were identified in the mesenchymal region of undifferentiated

quail (Galloanserae), zebrafinch (Neoaves) and emu

(Palaeognathe) gonads (Estermann et al., 2021b). This

suggests that the mesenchymal origin of supporting cells is

conserved among all bird clades.

Undifferentiated avian gonads exhibit a left/right asymmetry,

impacting later ovarian development. This asymmetry is the

result of increased proliferation in the left gonadal epithelium,

rather than an increase in epithelial apoptosis in the right gonad

(Ishimaru et al., 2008). RALDH2, the enzyme responsible for

retinoic acid synthesis, is expressed asymmetrically in the right

epithelium of the undifferentiated chicken gonads at E5-5.5.

Retinoic acid suppresses ERα and NR5A1 expression, resulting

in the downregulation of cyclin D1, one of the main proliferation

regulators. In the left gonad, the expression of PITX2 inhibits

RALDH2 expression, upregulating NR5A1, ERα, cyclin D1 and

consequently stimulating cell proliferation (Guioli and Lovell-

Badge, 2007; Ishimaru et al., 2008; Rodríguez-León et al., 2008).

Ovarian sex determination occurs at E6.5-E7. During ovarian

differentiation, the left ovary eventually becomes enlarged and a

thick multi-layered cortex forms, surrounding the underlying

medulla (Figure 1B) (Guioli and Lovell-Badge, 2007). This

becomes morphologically evident at E8.5. Estrogens,

synthesized in the ovarian medulla, play a crucial role in the

cortical formation through ERα signaling (Lambeth et al., 2013;

Guioli et al., 2020). On the contrary, the epithelium of the right

ovary does not form a cortex and regresses over time (Figure 1B).

Despite lacking a cortex, the right gonad remains as a

steroidogenic organ, being able to produce estrogens during

embryonic development (Guioli et al., 2020). Most

proliferating primordial germ cells (PGCs) in the developing

left ovary are located in the cortical region (Figure 1B). Around

E10.5, RALDH2 starts expressing in the ovarian left cortex,

whereas CYP26B1 expression is restricted to the juxtacortical

medulla (Smith et al., 2008a). This results in higher retinoic acid

levels in the left cortex. Around E15.5, these germ cells enter

meiosis and later arrest at prophase I. In the right gonad, the

PGCs undergo some proliferation but do not enter meiosis and

later die (Ukeshima, 1996). Development of the functional left

ovary is completed after hatching with the formation of follicles

in the cortex, harboring the oocytes.

The medullary region of the fetal ovary comprises three

main cell populations: the FOXL2+/CYP19A1+ pre-

granulosa cells, the steroidogenic theca cells, and the

interstitial/stromal cells (Figure 1B) (Estermann et al.,

2020). Between the cortex and the medulla of the left

ovary, an accumulation of interstitial cells forms a

compact structure called the juxtacortical medulla

(Estermann et al., 2021a). This structure derives from the

gonadal epithelium by EMT. The functional significance of
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this structure remains unclear, but it is the site of expression

of the retinoic acid degrading enzyme CYP26B1 later in

development and might be implicated in meiosis (Smith

et al., 2008a).

After sex determination, pre-granulosa cells and germ cells

are located into two distinctive compartments in the ovary. Germ

cells are in the cortical and/or juxtacortical medulla (JCM)

region, whereas the pre-granulosa cells are in the medulla.

Granulosa and germ cells must associate to form the ovarian

follicles. In E14.5 chicken ovaries, FOXL2+/ERα- cells

accumulate in the cortical or juxtacortical medulla region of

the ovary (Major et al., 2019). The origin of these cells is currently

unknown. One of the possibilities is that the medullary pre-

granulosa cells migrate into the JCM/cortical region, guided by

epithelial or oocyte-secreted factors. On the other hand, these

FOXL2+ cells could derive from cortical cells through EMT,

downregulate ERα and upregulate FOXL2 along the process. If

that is the case, the medullary pre-granulosa cells could function

as a source of steroids due to the presence of androgenic theca

cells and estrogenic pre-granulosa cells. It is unclear if CYP19A1

is expressed in these cortical/juxtacortical FOXL2+ cells.

Mammals

Mouse
The development of the mouse ovary starts during the first

half of fetal development at E9.5-11. Similar to other mammal

species, bipotential gonad emerges from the thickening of the

coelomic epithelium of the intermediate mesoderm (Moritz and

Wintour, 1999; Bunce et al., 2021). The bipotential gonad is

composed of primordial germ cells and somatic precursor cells,

including supporting cells and interstitial cells that can follow

either a testis or an ovary fate (Stevant et al., 2019). In the XX

gonad, supporting cells are responsible for the initiation of

ovarian determination by differentiating into pre-granulosa

cells. Pre-granulosa cells arise from two timely waves of

differentiation (Mork et al., 2012; Zheng et al., 2014; Niu and

Spradling, 2020). The first wave of pre-granulosa cells arises from

the Runx1+ bipotential supporting cells. As sex determination is

initiated, Runx1 expression is maintained in XX gonads whereas

repressed in XY gonads (Nicol et al., 2019; Stevant et al., 2019).

These Runx1+ supporting cells start expressing Foxl2 around

E12 and give rise to medullary pre-granulosa cells. Starting

around E12.5, a second wave of pre-granulosa cell population

arises from Lgr5+ cells of the ovarian surface epithelium that

ingress into the ovary (Gustin et al., 2016; Niu and Spradling,

2020; Fukuda et al., 2021). These cells give rise to cortical pre-

granulosa cells, which eventually lose Lgr5 expression and

upregulate Foxl2 shortly after birth (Rastetter et al., 2014;

Feng et al., 2016; Stevant et al., 2019; Cai et al., 2020; Niu and

Spradling, 2020). The medullary granulosa cells are responsible

for the first wave of folliculogenesis after puberty, whereas the

cortical granulosa cells are involved in the second wave of

folliculogenesis during the adult life (Mork et al., 2012; Zheng

et al., 2014; Niu and Spradling, 2020). Primordial germ cells

(PGCs) reach the gonad between E10 and 11.5 days, when sex

determination of the somatic cells is initiated. The commitment

of PGCs into male or female gametes depends on their somatic

environment. The female germ cells proliferate until they initiate

meiosis. Meiosis begins at E12.5 in a few cysts in the antero-

medial region and radiates outward (Soygur et al., 2021),

followed by an anterior to posterior initiation wave at E13.5

(Menke et al., 2003). At this stage, female PGCs are surrounded

by a layer of pre-granulosa cells to form ovigerous cords. Around

birth, granulosa cells break down the ovigerous cords by

enclosing single oocytes, leading to the formation of

primordial follicles. Finally, theca cells are recruited

postnatally from both the ovarian stroma and the

mesonephros to surround developing follicles (Liu et al., 2015).

Rabbit
In rabbits, the gestation lasts 31 days and sex determination

happens at 16 dpc. The bipotential gonads appear around 14 dpc

(Mario et al., 2018) (Figure 1C). The first event of somatic cell

differentiation starts at 16 dpc (Mario et al., 2018) and is

associated with a regression of the mesonephros between

16 dpc to 25 dpc (Bernier and Beaumont, 1964). Ovarian

commitment is initiated at 18 dpc with the expression of

FOXL2, RSPO1 and WNT4 (Daniel-Carlier et al., 2013). At

23 dpc, the gonadal and mesonephric tissues are separated by

connective tissue that is supposed to prevent the migration of

cells and other substances (Hayashi et al., 2000). At 30 dpc, the

ovigerous cords and the surrounding stromal tissue are

compactly arranged in the ovarian cortex, whereas in the

medullary region, the stromal tissue is loosely arranged, and

the ovigerous cords are easily discerned and maintain continuity

with the surface epithelium (Diaz-Hernandez et al., 2019). In

parallel, the germ cells express the pre-meiotic marker

STRA8 and enter a pre-meiotic phase from 24 to 28 dpc.

Then, meiosis occurs asynchronously during the 15 days

following birth and germ cells remain arrested in prophase I

of meiosis. At this stage, the rupture of the ovigerous nests

followed by the formation of the first primordial follicles is

initiated at the interface between the cortex and medulla of

the ovary.

Ruminants
In farm animal species, ovaries can be identified at 20–23 dpc

in sheep, 25 dpc in goat and 32 dpc in cow (Mauleon, 1976;

McNatty et al., 1995; Pailhoux et al., 2002). Before sex

determination, cells from the mesonephros migrate and

populate the gonadal primordium (Zamboni et al., 1979;

Pailhoux et al., 2002; Kenngott et al., 2013). In cows, cells

from the surface epithelium, named gonadal ridge epithelial-

like cells (GREL) give rise to pre-granulosa cells (Hummitzsch
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et al., 2013). A similar cell population is suspected to exist in the

sheep ovary (Juengel et al., 2002). Primordial germ cells are

observed at the genital ridge at 25 dpc in goat (Pailhoux et al.,

2002) from 21 dpc in sheep (Ledda et al., 2010) and 31 dpc in cow

(Wrobel and Suss, 1998). Ovarian morphological differentiation

and cortical development is first apparent at 29 dpc in sheep,

34–36 dpc in goat and 42 dpc in cow. Proliferating germ cells and

pre-granulosa form cord-like structures named ovigerous nests

(Juengel et al., 2002; Pannetier et al., 2012; Hummitzsch et al.,

2013). Around 55 dpc in goat and sheep and 75 dpc in cow,

female germ cells enter meiosis while mesonephric-derived

somatic cells colonize the genital ridge. Contrary to mice,

primordial follicles form during gestation, around 75 dpc in

sheep, 90 dpc in goat and 130 dpc in cow (Erickson, 1966;

Pailhoux et al., 2002; Sawyer et al., 2002).

Human
The human gonadal primordium first becomes discernible

around 4 weeks post-conception (wpc), and PGCs reach the

genital ridges between 4 and 6 wpc. The gonadal primordium is

composed of a proliferating coelomic epithelium and an

underlying compartment containing mesenchymal cells, blood

vessels and mesonephric cells (Byskov, 1986). Sex determination

is initiated just before 6 wpc, when XY gonads start expressing

SRY in the supporting cell precursors (Mamsen et al., 2017). In

the ovary, the cortex further develops, and poorly defined ovarian

cords start to form around 8 wpc with connections to the ovarian

surface epithelium. These cords are composed of germ cell

clusters surrounded by a single layer of flattened supporting

cells. Human granulosa cells are suspected to arise, at least in

part, from the surface epithelium, similar to findings from the

mouse, cow, and sheep. Indeed, electron microscopy revealed

that the extension of human ovarian cords correlates with

ingrowths of proliferating surface epithelium (Motta and

Makabe, 1982). Around 11 wpc, some germ cells initiate

meiosis (Gondos et al., 1986). Following meiosis entry, waves

of germ cell apoptosis occur throughout the rest of gestation.

Germ cell cyst breakdown starts at mid-gestation, around 20 wpc

in the human ovary.

Evolutionary perspectives

From fish to human, ovaries share the same purpose of

producing oocytes and reproductive hormones. However,

some differences during their morphogenesis leads to species-

specific properties. A major difference during vertebrate

evolution is the retention of germline stem cell (GSC)

surrounded by bipotential supporting cells in fish. This

germinal epithelium has the capacity to produce unlimited

oocytes throughout life and to regenerate the ovary. It is also

likely responsible for gonadal plasticity leading to fully functional

sex reversal in adult fish upon various genetic or environmental

cues. Birds andmammals have lost this capacity to regenerate the

ovary. Instead of a germinal epithelium, they form an ovarian

cortex containing the stock of follicles that will be used later

in life.

Ovarian morphogenesis is conserved among mammals, with

the formation of ovigerous cords that eventually break down to

form follicles. A key difference among mammals is the timing of

meiosis initiation and follicle formation. Meiosis is only initiated

after birth in rabbit, contrary to mice and other mammals.

Similarly, follicle formation happens postnatally in mouse and

rabbit and during gestation in larger mammals. The evolutionary

and functional meaning of these differences may be related to the

extension of gestation period in larger mammals.

In all clades, ovaries are composed of three main cell

populations: germ cells, supporting cells and mesenchymal/

steroidogenic cells. It has become clear that in mammals,

granulosa cells arise at least in part from the ovarian surface

epithelium. On the other hand, in chicken, granulosa cells derive

from mesonephric mesoderm. Lineage tracing experiments

helped tackling the question of origins of somatic cell

populations. Unfortunately, it remains difficult to compare

these findings between species as genes used for cell lineage

tracing, such as fgf24 or gsdf, were lost during vertebrate

evolution (Jovelin et al., 2010; Hsu and Chung, 2021). With

more scRNA-seq datasets becoming available for differentiating

ovaries from various species, it would provide the opportunity to

not only compare the cell populations identified, but an

evolutionary analysis of gonadal cell lineages. Such

comparisons will help decipher convergent and divergent

origins of ovarian cell populations among vertebrates.

Finally, most birds present an intriguing feature during

ovarian morphogenesis: they only keep one functional ovary.

In chickens, despite developing both left and right gonads during

early embryogenesis, only the left one remains as a fully

functional ovary whereas the right ovary regresses. It is still

unknown what the evolutionary mechanism is for developing

one main ovary. Fossilized remains of birds from the early

Cretaceous period suggest this trait was acquired early in

birds’ evolution (Zheng et al., 2013).

Role of estrogens in ovarian
differentiation

The role of estrogens in ovarian differentiation has been

studied for many decades in various vertebrate species.

Estrogens represent the main hormones produced by the

ovary. They are produced through the conversion of

androgens by the enzyme CYP19A1, also known as

aromatase. By binding to their receptors (ERα and β),
estrogens regulate gene expression and thus ovarian

differentiation and/or development. The use of aromatase

inhibitors, exogenous estrogens and transgenic models were
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key to elucidate the role of estrogens in ovarian differentiation

in a wide range of organisms.

Fish

In many fish species, manipulations of estrogen signaling

at specific windows of development lead to fully functional

sex-reversal (for review, seeGuiguen et al., 2010; Li et al., 2019)

(Figure 2A). With the teleost-specific whole genome

duplication (Meyer and Van de Peer, 2005), cyp19a1 is

present in two sub-functionalized copies: cyp19a1a is

specifically expressed in the ovary, while cyp19a1b is

expressed in the brain and occasionally in the ovary (Chang

et al., 2005). cyp19a1a is expressed before histological

differentiation of the gonads in various fish species

(Vizziano et al., 2007; Dranow et al., 2016). Teleosts have at

least three estrogen receptors (esr1, esr2a and esr2b) that are

FIGURE 2
Effects of manipulating estrogen signaling on the gonadal fate in fish, chickens, and mammals. (A) In fish: In female tilapia and zebrafish, both
exposure to aromatase inhibitor fadrozole during sex determination and knockout of cyp19a1a cause primary ovary-to-testis sex reversal, while
long-term fadrozole treatment of mature females leads to ovary-to-testis sex reversal. Therefore, cyp19a1a is involved in both primary ovarian
differentiation and maintenance of ovarian identity. In medaka, exposure to fadrozole during sex determination has no effect on ovarian
differentiation, while both cyp19a1a KO and treatment of adult females with aromatase inhibitor exemestane eventually masculinize the ovaries. This
indicates that cyp19a1a is only involved in the maintenance of medaka ovarian identity. (B) In chickens: treatment with aromatase inhibitor fadrozole
in ZW female embryos results in transient testis development. On the other hand, estradiol injection to ZZmale embryos results in ovary or ovotestis
differentiation. Moreover, ovarian development is induced inmale embryos overexpressing CYP19A1. (C,D) In mammals: (C) In marsupials. Effects of
estradiol treatment on XY males varies from species to species. Newborn XY Virginia opossum exposed to estradiol for 30 days post-partum (dpp)
develops ovaries or ovotestes, whereas newborn XY gray short-tailed opossum exposed for 9 dpp develops dysgenetic testes. Newborn XY wallaby
exposed for 50 dpp develops ovaries or gonadal agenesis if born prematurely. (D) In placental mammals: In the mouse, Cyp19a1 knockout or Esr1/
Esr2 double knockout leads to postnatal transdifferentiation of granulosa cells into Sertoli-like cells. This indicates a role in the maintenance of
ovarian identity rather than in primary ovarian differentiation. In the rabbit, CYP19A1 knockout does not impair primary ovarian differentiation but
prevents the proper development of ovaries, resulting in small ovaries and infertility. In humans, mutations in CYP19A1 or ESR1 or ESR2 genes do not
impact primary ovarian differentiation but cause either streak ovaries or polycystic ovaries.
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expressed in both male and female developing gonads,

explaining their sensitivity to the feminizing effects of

estrogens.

In tilapia, treatment of XX larvae with the non-steroidal

aromatase inhibitor fadrozole during sex determination causes

masculinization of the gonads (Kwon et al., 2000). Meanwhile,

long-term treatment of adult females with fadrozole transforms

the ovaries into functional testes (Paul-Prasanth et al., 2013; Sun

et al., 2014). Furthermore, cyp19a1a knockout causes primary

ovary-to-testis sex reversal, with upregulation of Sertoli gene

dmrt1 at the time of sex determination (Zhang et al., 2017). The

transcription factor Dmrt1 binds cyp19a1a promoter and

represses its expression (Wang et al., 2010). These

observations support the role of cyp19a1a and estrogens in

both primary ovarian determination and maintenance of

ovarian identity in adulthood. Loss of either of the three

estrogen receptors does not lead to masculinization,

suggesting some functional redundancy between estrogen

receptors (Yan et al., 2019).

In zebrafish, exposure to fadrozole during sex

determination causes testis differentiation (Fenske and

Segner, 2004). Loss of cyp19a1a also leads to testis

development (Lau et al., 2016; Yin et al., 2017). This sex-

reversal phenotype in the cyp19a1a knockout model is rescued

by additional loss of dmrt1, suggesting that estrogen signaling

controls ovarian differentiation by repressing dmrt1 in

zebrafish (Wu et al., 2020). Long-term treatment of mature

females with fadrozole results in ovary-to-testis sex-reversal,

indicating that cyp19a1a is also required for the maintenance

of ovarian identity (Takatsu et al., 2013). Similar to tilapia,

none of the three estrogen receptors single KO results in

ovary-to-testis sex-reversal (Lu et al., 2017). Nonetheless, in

the absence of all three receptors, ovaries eventually

transdifferentiate into ovo-testes or testes. While the triple

estrogen receptor KO leads to an all-male phenotype, it does

not fully recapitulate the cyp19a1 KO phenotype, which

prevents primary ovarian differentiation. It remains unclear

how estrogens drive early ovarian differentiation

independently of estrogen receptors in zebrafish.

In medaka, brief exposure to estrogens just 1 day post-

fertilization causes functional testis-to-ovary sex reversal,

similar to other fish species (Kobayashi and Iwamatsu,

2005). Yet, intrinsic estrogen production is not critical for

primary ovarian differentiation. Indeed, cyp19a1a expression

only appears in the ovarian interstitium several days after sex

determination is initiated (Suzuki et al., 2004). Exposure to

fadrozole during gonad differentiation after hatching does not

affect ovarian development (Suzuki et al., 2004). Meanwhile,

long-term exposure to the aromatase inhibitor exemestane in

adult females causes functional ovary-to-testis sex reversal

(Paul-Prasanth et al., 2013). Loss of cyp19a1 in medaka does

not impair initial ovarian differentiation, but later leads to

ovary degeneration and partial ovary-to-testis sex reversal

after puberty (Nakamoto et al., 2018). Therefore, in

medaka, endogenous estrogens are only necessary for the

maintenance of ovarian identity. Similar to tilapia and

zebrafish, none of the three estrogen receptors single KO

cause ovary-to-testis sex reversal (Kayo et al., 2019), but

the effects of combined loss remain to be determined.

Avians

In avian species like chicken, endogenous estrogens have a

central role in ovarian development (Smith et al., 1997;

Brunström et al., 2009). Unlike mammals, the estrogen-

synthesizing enzyme CYP19A1 is expressed in female gonads

at the onset of ovarian differentiation (Figure 1B) (Elbrecht and

Smith, 1992; Andrews et al., 1997; Nomura et al., 1999). This

results in elevated ovarian and systemic estrogen levels in females

from the time of sex determination (George and Wilson, 1982;

Tanabe et al., 1986; Elbrecht and Smith, 1992). CYP19A1 is

detected in pre-granulosa cells and in a subset of embryonic theca

cells (Estermann et al., 2020). Steroidogenic theca cells are

responsible for the synthesis of androgens, which then are

converted into estrogens by CYP19A1. Chicken embryonic

ovaries contain more CYP17A1+ steroidogenic cells than

testes (Estermann et al., 2020). This likely reflects the higher

demand of androgens in the ovary to be converted into estrogens.

In chickens, embryonic steroidogenic theca cells were found to

derive from the female supporting cell lineage. A subset of

FOXL2+/CYP19A1+ pre-granulosa cells in the medulla

upregulates the androgen-producing enzyme CYP17A1 and

become transitioning/intermediate cells, expressing both theca

and granulosa cell markers (Estermann et al., 2020). Then, pre-

granulosa cell markers are downregulated whereas other

steroidogenic markers are upregulated, completing the

differentiation towards theca cells (Estermann et al., 2020). It

is still unknown if these embryonic theca cells become the adult

theca cells, or if they have additional origins as in mice (Liu et al.,

2015).

Estrogen is required for ovarian cortex formation and pre-

granulosa differentiation. In the left chicken ovary, the

epithelium becomes multilayered, forming the ovarian cortex

that harbors meiotic germ cells. The chromosomal composition

(ZZ or ZW) does not contribute to cortex formation (Guioli et al.,

2020). Instead, estrogens, synthesized locally by CYP19A1 in the

medulla, are required to induce cortex formation through ERα
signaling. When ERα is knocked down, the cortex fails to form in

the ovary (Elbrecht and Smith, 1992; Guioli et al., 2020).

Treatment with aromatase inhibitors fadrozole or letrozole in

ZW chicken embryos inhibits estrogen synthesis, upregulate

DMRT1, resulting in ovary-to-testis sex reversal at E6.5

(Figure 2B) (Smith et al., 2003; Trukhina et al., 2014). This

sex reversal is not permanent as ZW embryos treated with

fadrozole at E3.5 eventually upregulate CYP19A1 and revert to
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ovotestis, (Figure 2B) (Nishikimi et al., 2000; Vaillant et al., 2001;

Estermann et al., 2021a). Conversely, exposure of genetically

male (ZZ) chicken embryos to exogenous 17β-estradiol results in
ovarian development, that reverses back to testis upon estradiol

decay (Figure 2B) (Bannister et al., 2011; Guioli et al., 2020;

Shioda et al., 2021). Moreover, constitutive CYP19A1 over-

expression in ZZ embryos leads to complete ovary formation

(Figure 2B) (Lambeth et al., 2016). Altogether, these experiments

implicate the formative role of estrogen in inducing the program

for ovary formation.

Mammals

Marsupials
Marsupials constitute a clade of non-placental

mammalians that includes opossums, wallabies, kangaroos,

koalas, wombats, Tasmanian devils, and bandicoots.

Marsupial embryonic development is characterized by a

premature birth. These immature newborns crawl up into

their mothers’ pouch (marsupium), attach themselves to a

teat, and continue their development (Mahadevaiah et al.,

2020; Smith and Keyte, 2020). Gonadal sex determination in

marsupials occurs after birth, while they are growing in the

pouch (Renfree and Short, 1988; Baker et al., 1993; Renfree

et al., 1996). This external development makes them a

remarkable model to study embryonic gonadal

differentiation, compared to the in-utero development of

eutherian mammals.

Although estrogens are not synthesized in early

embryonic ovaries, marsupial sex determination is

sensitive to exogenous estrogens (George et al., 1985;

Renfree et al., 1992) (Figure 2C). This could be attributed

to the expression of both estrogen receptors α and β in

undifferentiated gonads and in differentiated supporting

and germ cells (Calatayud et al., 2010). In vitro and in

vivo analysis in different marsupial species demonstrate

that estrogens have a role in inhibiting testicular

development or inducing ovarian development. In the

Virginia opossum (Didelphis virginiana), exposure of XY

embryos to estradiol dipropionate for 30 days post-partum

(or dpp) leads to formation ovotestes or a complete testis-to-

ovary sex reversal (Figure 2C) (Burns, 1955). In the gray

short-tailed opossum (Monodelphis domestica), estradiol

benzoate treatment to XY embryos from days 1–9 post-

partum result in dysgenetic testes, but not testis-to-ovary

sex reversal (Figure 2C) (Fadem and Tesoriero, 1986). In the

tammar wallaby (Macropus eugenii), estradiol benzoate

treatment to XY embryos at birth for 25 days result in

ovotestis development at day 25 post-partum (Shaw et al.,

1988), followed by complete testis-to-ovary sex reversal at

50 dpp (Coveney et al., 2001) (Figure 2C). In prematurely

born XY embryos, estradiol benzoate treatment caused

gonadal agenesis. In vitro culture of tammar wallaby

gonads was used to study the molecular mechanisms

responsible of estrogen mediated gonadal sex reversal

(Calatayud et al., 2010; Pask et al., 2010). In cultured XY

gonads, estrogens reduce SRY and AMH expression and

induce FOXL2 and WNT4 expression. While SOX9

expression was not downregulated, estrogen treatment

inhibits SOX9 translocation into the nucleus, consequently

preventing activation of the testis differentiation pathway

(Pask et al., 2010).

Mouse
In the mouse, neither estrogen receptors (Esr1/2) nor

Cyp19a1 are expressed in the fetal ovary during sex

determination at E10-11.5. ERα (encoded by Esr1) and ERβ
(encoded by Esr2) become detected in the fetal ovary later on,

around E14.5-E15.5 (Lemmen et al., 1999; Chen et al., 2009). In

the neonatal ovary, ERα is expressed in somatic cells and ERβ is

detected in oocytes (Chen et al., 2009). In the adult ovary, ERα is

mainly expressed in theca cells and ERβ in granulosa cells

(Jefferson et al., 2000). There are some discrepancies

regarding whether Cyp19a1 is expressed in the fetal ovary

after sex determination. Some studies show that Cyp19a1

expression is only detected close to birth (Greco and Payne,

1994) whereas others detect CYP19A1 protein as early as E13.5

(Dutta et al., 2014). Inactivation of Cyp19a1 does not impact

early ovarian differentiation but the females are infertile (Fisher

et al., 1998) (Figure 2D). Further analyses revealed that Cyp19a1

KO mouse ovaries present some testis-like structures with

Sertoli-like cells after postnatal follicle formation, and this

masculinization could be reversed by exposure to estrogens

(Britt et al., 2001; Britt et al., 2002; Britt et al., 2004).

Similarly, while single loss of Esr1 or Esr2 does not impact

ovarian identity, their combined loss causes postnatal

transdifferentiation of granulosa cells into SOX9+ Sertoli-like

cells (Couse et al., 1999). Estrogen receptors cooperate with

FOXL2 to maintain the identity of ovarian granulosa cells

through repression of SOX9 (Uhlenhaut et al., 2009; Georges

et al., 2014). In addition, FOXL2 ChIP-seq revealed that Esr2 is a

direct target of FOXL2 in adult granulosa cells, and that

FOXL2 positively regulates Esr2 (Georges et al., 2014).

Altogether, these results indicate that estrogen signaling is not

necessary for ovarian determination but is required for the

maintenance of granulosa cell identity in mice.

Rabbit
In rabbits, CYP19A1 expression in the ovary and the capacity

of fetal and neonatal granulosa cells to synthesize steroid

hormones has been well described (Gondos, 1969; Erickson

et al., 1974; George and Wilson, 1980; Gondos et al., 1983).

CYP19A1 expression starts at 16 dpc and reaches its peak at

20 dpc. At this stage, CYP19A1, ESR1 and FOXL2 are located in

distinct cell populations. CYP19A1 and ESR1 are expressed in the
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coelomic epithelium and contribute to cortex development

whereas FOXL2 is expressed in the supporting cells located in

the medulla (Jolivet et al., 2022). Concomitantly,

intracytoplasmic lipid droplets, which provide the main source

of cholesterol for steroid synthesis, accumulate in granulosa cells

at 19 dpc (Gondos et al., 1983). Based on these observations, it

has been hypothesized that this estrogen surge plays a role during

rabbit ovary differentiation. However, loss of CYP19A1 in the XX

rabbit embryo has no impact on fetal ovary formation

(Figure 2D), although ovaries are smaller and eventually

contain a reduced follicular reserve (Jolivet et al., 2022). In the

CYP19A1 KO adult ovary, DMRT1 expression is upregulated in

some granulosa cells while SOX9 expression is absent, and no

structural masculinization of the ovary is observed. Estrogens

appear to be dispensable for ovary formation in XX rabbit, but

they play an important role in the establishment of the ovarian

reserve by maintaining granulosa cell and germ cell proliferation.

Human
Transcriptomic analyses of human gonads during sex

determination showed that both ESR1 and ESR2 are

expressed in the gonads (Mamsen et al., 2017; Lecluze

et al., 2020). There are however discrepancies whether their

expression is stronger in the ovary than in the testis (Lecluze

et al., 2020) or not different between sexes (Mamsen et al.,

2017). During the second trimester, CYP19A1 protein is

sporadically detected in the fetal ovary at 12 weeks of

gestation and becomes strongly expressed by 19 weeks.

CYP19A1 is detected in somatic cells surrounding oocyte

nests and in granulosa cells of primordial follicles in the

fetal ovary (Fowler et al., 2011). Patients with mutations in

CYP19A1 gene do not develop ovary-to-testis sex reversal

(Figure 2D), but present ambiguous external genitalia at birth

(Shozu et al., 1991; Mazen et al., 2017; Hathi et al., 2022).

These patients tend to have either streak or polycystic ovaries

(Mazen et al., 2017; Praveen et al., 2020). ESR1 or ESR2

mutations do not cause ovary-to-testis sex reversal or

ambiguous external genitalia at birth, but ovaries present a

polycystic or streak phenotype respectively (Quaynor et al.,

2013; Bernard et al., 2017; Lang-Muritano et al., 2018). Such

difference in ovarian phenotype suggests a more prominent

role for ESR2 than for ESR1 during early ovarian development.

Overall, these studies indicate that endogenous estrogens and

their actions are not required for ovarian determination in

humans, but mis-regulation of estrogen signaling has

dramatic effects on ovarian development/function and

physiology in adulthood.

Evolutionary perspectives

From fish to human, estrogen signaling appears to be less

and less involved in primary ovarian determination but

remains critical for proper ovarian development and

functions. In eutherian mammals, sex determination

became de-coupled from the feminizing effects of

estrogens as found in fish, birds, and other vertebrate

species. This could be an evolutionary response to the

maternal estrogens that pass through the placenta. In

marsupials, gonadal sex determination occurs after birth,

not being influenced by the maternal estrogens. Despite this,

they are susceptible to external estrogens, a potential link to a

more ancestral state that was lost in eutherian mammal

evolution.

Estrogen receptors are expressed in ovarian embryonic

somatic cells of mice, humans, goats, sheep, and marsupials,

indicating that regulation of some elements of the estrogen

signaling machinery remain conserved throughout vertebrate

ovary differentiation. One key difference arises from the

timing and location of CYP19A1 expression. In fish and

chicken, CYP19A1 is not exclusively expressed in

granulosa cells, but is detected in some stromal

steroidogenic cells during early ovarian differentiation.

These non-granulosa CYP19A1+ cells are not found in

mammalian embryonic ovaries. This raises the question

whether this unique population is responsible for estrogens

action in ovarian determination, and the loss of this cell

population contributed to the decoupling of estrogen

involvement in ovarian determination in mammals. In

both chicken and rabbit, estrogen signaling is required for

cortex development in the developing ovary, contributing to

cell proliferation and expansion of the cortex. It would be

interesting to determine if this function is also conserved in

other vertebrate species.

Altogether, these findings provide a potential explanation for

the major shift in vertebrate sex determination mechanisms from

an estrogen dependence on ovarian differentiation to a strictly

genetic regulation.

Genes and pathways controlling
granulosa cell differentiation and
ovarian identity

During sex differentiation, the gonad develops into an

ovary or a testis, depending on the signaling pathways

activated or repressed in the supporting cells. While the

master sex determining gene varies among vertebrate

species, the genes or pathways involved in pre-granulosa

and ovarian differentiation are relatively conserved.

FOXL2 is one of the most conserved pro-ovarian genes in

vertebrates and beyond. Independent of FOXL2, the WNT4/

β-catenin pathway is also important for ovarian development

in vertebrate species. Genome editing technologies such as

CRISPR/Cas9 enabled the generation of knockout models in

more and more non-model vertebrate species. Comparison of
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knockout models for these main pathways in various species

helps determining the evolution of the role of these pathways

during vertebrate ovarian differentiation. In addition, in

recent years, omics technologies led to the identification of

novel candidate genes involved in ovarian differentiation.

The following sections compare and contrast the genes and

pathways that control granulosa cell differentiation and

ovarian identity.

Fish

Compared to tetrapods, teleosts generally have two copies

of each gene due to the teleost-specific whole genome

duplication (Meyer and Van de Peer, 2005). This

potentially results in sub-functionalization or neo-

functionalization of genes and impacts genes associated

with ovarian differentiation.

foxl2 gonadal expression has been analyzed in more than two

dozen fish species, revealing a higher expression in the embryonic

ovaries vs testes in almost all species studied (for review, see

Bertho et al., 2016). In medaka (Figure 3A), foxl2 expression is

initiated after ovarian differentiation has started (Nakamoto

et al., 2006). foxl2 functions in medaka ovarian differentiation

remain to be determined. Foxl2 protein is detected in the nuclei

of granulosa cells, as well as in a subpopulation of Cyp19a1a+

stromal/theca cells (Nakamoto et al., 2006; Herpin et al., 2013).

This expression of foxl2 in some steroidogenic cells has been

FIGURE 3
Genetic regulation of pre-granulosa cell differentiation in fish. (A) In medaka, in the absence of the Y-linked sex determining gene dmy, pro-
ovarian genes (rspo1 and later foxl2) are upregulated. rspo1, which is directly repressed by Dmy, is sufficient to fully drive ovarian differentiation in XY
gonads. The functional role of foxl2 remains to be determined. cyp19a1 is only involved in the maintenance of ovarian differentiation. Loss of germ
cells prevents themaintenance of granulosa cell fate. (B) In tilapia, in the absence of the Y-linked sex determining gene amhy, pro-ovarian genes
are quickly upregulated. Repression of Wnt/β-Catenin pathway through either rspo1 KO or exposure to inhibitors leads to repression of foxl2 and
upregulation of dmrt1, causing Sertoli cell differentiation. Loss of foxl2 results in absence of cyp19a1 expression and upregulation of dmrt1 at time of
sex determination. There is mutual antagonism between pro-testis gene dmrt1 and pro-ovary genes foxl2/cyp19a1. cyp19a1 is also involved in the
maintenance of ovarian identity. (C) In zebrafish, all larvae first develop a bipotential juvenile ovary. Loss of cyp19a1a leads to upregulation of dmrt1
and Sertoli cell differentiation. Repression of theWnt/β-Catenin pathway, through eitherwnt4a KO or overexpression of inhibitor Dkk1 causes Sertoli
cell differentiation. Combined loss of either foxl2a/foxl2b, or the three estrogen receptors impairs the maintenance of granulosa cell identity,
resulting in complete ovary-to-testis sex reversal. Oocytes are required for the maintenance of granulosa cell fate. Loss of genes involved in PGC/
oocyte development, such as igf3, results in ovary-to-testis sex-reversal. Bmp15 is suspected to be the oocyte secreted factor that directly acts on
supporting cells.
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observed in other fish species such as tilapia (Wang et al., 2007)

and gibel carp (Gan et al., 2021). In tilapia (Figure 3B), loss of

foxl2 causes complete ovary-to-testis sex-reversal (Li et al., 2013;

Zhang et al., 2017). The role of the transcription factor Foxl2 in

fish ovarian differentiation seems to rely on its capacity to

directly induce cyp19a1a expression (Wang et al., 2007;

Yamaguchi et al., 2007; Bertho et al., 2018; Gan et al., 2021;

Yan et al., 2021), and/or to repress the pro-Sertoli gene dmrt1

(Fan et al., 2019). Loss of foxl2 in tilapia results in absence of

cyp19a1 expression and upregulation of dmrt1 at time of sex

determination (Zhang et al., 2017). In zebrafish (Figure 3C),

foxl2a and foxl2b are both expressed in granulosa cells, but they

present some sub-functionalization in the ovary (Yang et al.,

2017). Single loss of foxl2a or foxl2b does not impair initial

ovarian differentiation, but respectively leads to premature

ovarian failure or partial sex-reversal in adult females. Their

combined loss causes upregulation of Sertoli genes dmrt1 and

sox9a and complete ovary-to-testis sex reversal weeks after gonad

differentiation. This phenotype suggests a cooperative role of

these two sub-functionalized foxl2 variants in maintaining

ovarian identity in zebrafish, with a predominant role by foxl2b.

The role of the Rspo1/Wnt/β-catenin pathway in ovarian

differentiation has been investigated in various fish species.

R-spondin 1 (Rspo1) is a secreted factor that potentiates the

canonical Wnt/β-catenin pathway. Expression of rspo1 is higher

in the differentiating ovary than in the testis in several fish species

(Zhang et al., 2011; Zhou et al., 2012; Liu et al., 2018). In medaka,

rspo1 is detected at the onset of sex determination, around

hatching, earlier than foxl2. At 10 dph, rspo1 is detected in

ovarian germ cells and surrounding somatic cells (Zhou et al.,

2012). Ectopic expression of rspo1 in XYmedaka causes complete

testis-to-ovary sex reversal and the development of fertile females

(Zhou et al., 2016). Medaka Y-linked sex determining factor

Dmy/Dmrt1bY, and its homolog Dmrt1a, both bind to rspo1

promoter and repress its expression in vitro (Zhou et al., 2016). In

the Nile tilapia (Oreochromis niloticus), a gonochoristic species

with a XX/XY sex determination system (Li et al., 2015), rspo1 is

expressed in germ cells in both sexes and becomes more

expressed in the ovary before meiosis initiation. Reduction of

rspo1 expression causes both defects in ovarian and testis

development in tilapia (Wu et al., 2016). Beside rspo1, other

members of the Wnt/β-catenin pathway are more expressed in

the differentiating ovary. In medaka, both wnt4b and ctnnb1

present a sexually dimorphic expression (Zhou et al., 2016). In

zebrafish, wnt4a becomes specifically expressed in somatic cells

surrounding larger oocytes. Bothwnt4aKO (Kossack et al., 2019)

and Wnt antagonist dkk1 overexpression cause testis

development (Sreenivasan et al., 2014), confirming a key role

of the Wnt/β-catenin pathway in ovarian differentiation in

zebrafish. Different chemical inhibitors of the Wnt/β-catenin
pathway have been used in other fish species, resulting in

downregulation of pro-ovarian genes such as cyp19a1a or

foxl2 in tongue sole (Zhu et al., 2017) and carp (Wu et al.,

2019) or upregulation of pro-testis gene dmrt1 in tilapia (Wu

et al., 2016). This suggests a conservation of the Wnt/β-catenin
pathway functions in ovarian differentiation in teleosts, although

each actor of the pathway may not play the same part, depending

on the species. This also raises the question whether other Wnt

ligands could be involved in ovarian differentiation.

Granulosa cell differentiation or the maintenance of their

identity is also influenced by signals from the germ cells in fish.

Beyond their capacity to intrinsically determine their female fate

through foxl2l (formerly foxl3) (Nishimura et al., 2015; Dai et al.,

2021), fish germ cells have a feminizing effect on the surrounding

somatic environment. While loss of germ cells has no impact on

ovarian differentiation in mice (Maatouk et al., 2012), absence of

germ cells causes gonad masculinization in medaka (Kurokawa

et al., 2007; Tanaka et al., 2008; Nishimura et al., 2018), zebrafish

(Slanchev and Stebler, 2005; Siegfried and Nüsslein-Volhard,

2008) and hermaphroditic rice field eel (Hou et al., 2022). In XX

medaka, in the absence of germ cells, supporting cells initiate

their differentiation into granulosa cells, but they eventually start

expressing Sertoli-specific genes (Kurokawa et al., 2007;

Nishimura et al., 2018). Therefore, germ cells are required for

the maintenance of granulosa cell differentiation rather than

their initial determination. It remains unclear how germ cells

influence their somatic environment. In zebrafish, whose gonads

first form transient juvenile ovaries, it is hypothesized that

oocytes secrete factors that prevent somatic cell

masculinization. Dimorphic proliferation of PGCs is observed

at 14 dpf, a week before gonad differentiation (Tzung et al., 2015).

Reduction in germ cell number, whether it happens at larval or

adult stage, causes ovary-to-testis sex reversal (Dranow et al.,

2013; Dai et al., 2015; Tzung et al., 2015). In zebrafish, multiple

ovary-to-testis sex reversal phenotypes are indirectly caused by

the knockout of genes involved in PGCs migration, such as

adamts9 or prmt5 (Carter et al., 2019; Zhu et al., 2019; Carver

et al., 2021), in oocyte development, such as bmp15 and gdf9

(Dranow et al., 2016; Chen et al., 2017), nobox (Qin et al., 2022),

igf3 (Xie et al., 2021), RNA-binding proteins rbpms2a/b and ddx5

(Kaufman et al., 2018; Sone et al., 2020), or genes from the

Fanconi Anemia/BRCA DNA repair pathway (Rodríguez-Marí

et al., 2010; Ramanagoudr-Bhojappa et al., 2018). Among them,

Bmp15 is suspected to be the oocyte secreted factor that directly

acts on supporting cells through binding to its receptor Bmpr2a/b

at their surface (Dranow et al., 2016). Finally, loss of nr0b1 (or

dax1) leads to a skewed sex-ratio toward male, likely as a result of

a significant decrease in germ cell numbers, although a role

directly on somatic cells cannot be excluded (Chen et al., 2016).

Avians

In chicken gonads, undifferentiated male and female

supporting cells have similar transcriptomes to the

differentiated pre-granulosa cells (Estermann et al., 2020),
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suggesting that progenitors of the supporting cells are primed to a

ovarian (pre-granulosa) fate. Pre-granulosa showed a continuous

differentiation process from the undifferentiated supporting cells

at E4.5 to differentiated pre-granulosa cells at E10.5 (Estermann

et al., 2020). On the contrary, Sertoli cell differentiation is

characterized by a rapid transcriptional change in male,

resulting in a clear lineage separation. A similar phenomenon

was also described in mice (Stevant et al., 2019). As mentioned

before, chicken undifferentiated supporting cells express four key

markers, PAX2, OSR1, WNT4 and DMRT1 (Estermann et al.,

2020) (Figure 4A). PAX2 expression is downregulated at the

onset of sex differentiation in both males and females (E6.5)

(Estermann et al., 2020; Estermann et al., 2021b), a pattern also

identified in other bird species, including emu, quail, and zebra

finch, precisely predicting the onset of sex determination in all

the analyzed avian species (Estermann et al., 2021b).

DMRT1 is the Z-linked testis-determining gene in birds

(Smith et al., 2009; Lambeth et al., 2014; Ioannidis et al., 2021;

Lee et al., 2021). Due to the lack of chromosome dosage

compensation in birds, DMRT1 is expressed twice as high in

males (ZZ) than females (ZW). The higher level of DMRT1

triggers the supporting cell differentiation into Sertoli cells by

upregulating Sertoli markers AMH and SOX9 and

downregulating WNT4 and OSR1 and PAX2 (Lambeth et al.,

2014; Estermann et al., 2020). In females, a single dose ofDMRT1

is not sufficient to trigger Sertoli differentiation (Ioannidis et al.,

2021), which leads to maintenance of pre-granulosa cell genes

such as WNT4 and OSR1, the downregulation of the

undifferentiated marker PAX2, and upregulation of key

granulosa genes FOXL2 and CYP19A1 (Figure 4A) (Major

et al., 2019; Estermann et al., 2020). FOXL2 is the first to be

activated in pre-granulosa cells upon sex determination in

chickens (Loffler et al., 2003; Major et al., 2019). FOXL2

overexpression in male chicken gonads results in

downregulation of DMRT1, SOX9 and AMH (Figure 4B)

(Major et al., 2019). Conversely, FOXL2 knockdown in

females results in upregulation of SOX9. Surprisingly, and

unlike several fish species, CYP19A1 expression is not altered

by FOXL2 knockdown or over-expression in chicken. CYP19A1

overexpression in male chicken embryos induces ovarian

differentiation, inhibiting DMRT1, SOX9 and AMH and

upregulating FOXL2 (Figure 4B) (Lambeth et al., 2013). This

demonstrates the importance of estrogens during ovarian sex

determination. It is still unclear if estrogens synthesized by

CYP19A1 activate FOXL2 gene expression through ERα
signaling or if it’s an indirect effect of the downregulation of

repressive male genes (Figure 4B).

In chickens, WNT4 is expressed in undifferentiated

supporting cells, but is downregulated in males after the onset

of sex determination (Smith et al., 2008b). Both β-catenin and

FIGURE 4
Genetic regulation of pre-granulosa cell differentiation in birds. (A) In chickens, the pre-granulosa cells derive from a PAX2/OSR1/WNT4/DMRT1
positive mesenchymal cell population. During sex differentiation, they downregulate DMRT1 and PAX2 and start upregulating key pre-granulosa cell
genes CYP19A1 and FOXL2. It is still unknown if these medullary pre-granulosa cells give rise to the granulosa cells in the adult ovary follicles. (B)
Although WNT4 and OSR1 were identified as pre-granulosa cell genes, their functions have not been analyzed yet. FOXL2 and CYP19A1
downregulate Sertoli cell genes DMRT1, AMH and SOX9, inhibiting Sertoli cell differentiation and inducing pre-granulosa cell program. CYP19A1 is
also known to regulate FOXL2 expression. Red: pro-ovarian genes/pathways; Blue: pro-testis genes/pathways; Plain arrow: direct effect; Dotted
arrow: indirect effect.
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RSPO1 are expressed in the cortical region of the ovary (Smith

et al., 2008b; Ayers et al., 2013). The role of these genes in the

chicken ovary determination has not been explored but based on

their expression pattern they might play a role in development of

ovarian cortex.

Odd-Skipped Related Transcription Factor 1 (OSR1) was not

previously associated with mammalian sex determination or

supporting cell differentiation. OSR1 is expressed in

differentiated chicken pre-granulosa cells, colocalizing with

FOXL2 (Estermann et al., 2020). OSR1 is also significantly

enriched in Muscovy duck embryonic ovaries (Bai et al.,

2020), and in snapping turtle (Chelydra serpentina) embryonic

gonads at the female-producing temperature (Rhen et al., 2021).

In Xenopus and zebrafish, Osr1 was shown to control kidney

development, but its contribution to gonadal development

remains unexplored (Tena et al., 2007). In mice, lineage

tracing experiments show that all gonadal somatic cells derive

from a Osr1+ intermediate mesoderm/lateral plate mesoderm

population from E8.5 to E9.5 (Sasaki et al., 2021). Most of the

Osr1−/− mice die at early embryonic stages (E11.5-E12.5), and

they lack intermediate mesoderm derivatives such as adrenal

glands, metanephros and gonads (Wang et al., 2005). Therefore,

Osr1 is required for gonad formation in mice, but it remains

unclear whether Osr1 plays a role in ovarian differentiation.

Mammals

Mouse
Advances in transcriptomics technologies enabled the

identification of genetic programs controlling ovarian

differentiation, from microarrays on purified cell populations

(Nef et al., 2005; Bouma et al., 2010; Jameson et al., 2012), to bulk

RNA-seq (Zhao et al., 2018), and now single-cell RNA-seq

(Stevant et al., 2019; Niu and Spradling, 2020). At time of sex

determination, supporting cell precursors are already primed

toward granulosa cell fate (Jameson et al., 2012), similar to

findings in chicken (Estermann et al., 2020). This female bias

was further confirmed by enrichment in open chromatin near

granulosa-promoting genes in both XX and XY E10.5 supporting

progenitors (Garcia-Moreno et al., 2019). As gonads differentiate

into ovaries, a robust female genetic program is established

through timely activation or maintenance of pro-ovarian

genes and repression of pro-testis genes (Nef et al., 2005;

Jameson et al., 2012; Munger et al., 2013). This differentiation

is associated with an increase in active enhancers located near

granulosa-promoting genes. These enhancers are enriched for

TCF and FOX binding motifs, suggesting activity of the WNT/β-
catenin and FOXL2 respectively (Garcia-Moreno et al., 2019).

Before sex determination, Rspo1 and Wnt4 are expressed

similarly in XX and XY supporting cell precursors (Stevant et al.,

2019), and the canonical β-catenin pathway is active in the

coelomic epithelium (Usongo and Farookhi, 2012). Wnt4 and

Rspo1 are required for the proliferation of supporting cell

precursors in both XY and XX gonads (Chassot et al., 2012).

Then, as sex determination is initiated, Wnt4 and Rspo1

expression and cortical β-catenin pathway activity are only

maintained in XX gonads (Vainio et al., 1999; Parma et al.,

2006; Usongo and Farookhi, 2012). Deletion of any of the

RSPO1/WNT/β-catenin pathway factors Wnt4, Rspo1, Ctnnb1,

or RSPO1 putative receptor Lgr4 results in partial ovary-to-testis

sex reversal. These knockout models share similar phenotypes,

with appearance of Sertoli-like cells, ectopic steroidogenic cells,

and testis-specific coelomic vessel (Vainio et al., 1999; Chassot

et al., 2008; Manuylov et al., 2008; Liu et al., 2009; Koizumi et al.,

2015). A mutually antagonistic relationship exists between

RSPO1/WNT/β-catenin pathway and pro-Sertoli genes such as

Sox9 and Fgf9 (Kim et al., 2006; Lavery et al., 2012; Nicol and Yao,

2015; Tang et al., 2020). In absence of Wnt4, granulosa cells exit

mitotic arrest, prematurely differentiate, and eventually

transdifferentiate into Sox9+ Sertoli-like cells in the perinatal

ovary (Maatouk et al., 2013). Stabilization of β-catenin in XX

Rspo1 KO ovary rescues the ovary-to-testis sex reversal (Chassot

et al., 2008), confirming that Rspo1 acts through the WNT/β-
catenin pathway. Overexpression of β-Catenin in XY mice is

sufficient to induce testis-to-ovary sex reversal (Maatouk et al.,

2008). However, this is not the case when Wnt4 or Rspo1 are

overexpressed in XY gonads, suggesting that additional factors

are missing to efficiently stabilize β-Catenin signaling and drive

granulosa cell differentiation in the XY gonads (Jordan et al.,

2003; Buscara et al., 2009).

FOXL2 is a conserved transcription factor expressed in pre-

granulosa cells from E12 to mature granulosa cells in adult

ovaries (Schmidt et al., 2004). In the absence of Foxl2, XX

embryos develop morphologically normal ovaries; then,

granulosa cells gradually transdifferentiate into DMRT1+

Sertoli cells postnatally (Schmidt et al., 2004; Uda et al., 2004;

Ottolenghi et al., 2005; Garcia-Ortiz et al., 2009; Nicol et al.,

2019). In addition, conditional deletion of Foxl2 in adult ovarian

granulosa cells induces a reprogramming into Sertoli-like cells,

appearance of Leydig-like cells and testosterone production

(Uhlenhaut et al., 2009). Therefore, while FOXL2 is not

necessary for the initiation of the pre-granulosa cell program,

it plays an important role in maintaining its identity.

FOXL2 cooperates with Estrogen receptors to maintain

granulosa cell identity in adult ovaries. Indeed, a similar

transdifferentiation phenotype is observed in adult XX mice

lacking both Esr1/Esr2 (Couse et al., 1999), or lacking both

Esr1 and one Foxl2 allele in granulosa cells (Uhlenhaut et al.,

2009). FOXL2 directly controls Esr2 expression and cooperates

with estrogen receptors to repress Sox9 transcription in adult

granulosa cells (Uhlenhaut et al., 2009; Georges et al., 2014). On

the other hand, ectopic expression of Foxl2 in XY somatic cells

causes partial testis-to-ovary sex reversal (Ottolenghi et al., 2007;

Garcia-Ortiz et al., 2009; Nicol et al., 2018). FOXL2 plays

complementary roles with the WNT/β-catenin pathway
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during ovarian differentiation. Indeed, Wnt4/Foxl2 and Rspo1/

Foxl2 compound knockout XXmice develop a more pronounced

ovary-to-testis sex reversal phenotype thanWnt4, Rspo1 or Foxl2

single knockout XX mice (Ottolenghi et al., 2005; Auguste et al.,

2011).

Additional genes are involved in ovarian differentiation, such

as the transcription factors FOG2 and GATA4 (Manuylov et al.,

2008). The identification of RUNX1, a transcription factor

involved in cell-fate determination, further highlights the

complexity of the ovarian pathway. RUNX1 is expressed in

the bipotential supporting cell lineage and then detected in

granulosa cells and ovarian surface epithelium (Nef et al.,

2005; Nicol et al., 2019). RUNX1 plays redundant roles with

FOXL2 during ovarian differentiation. Ablation of Runx1 alone

in somatic cells impacts common sets of genes without affecting

granulosa cell identity in the fetal ovary. Runx1/Foxl2 double

knockout causes masculinization of the supporting cells in the

fetal ovary (Nicol et al., 2019). RUNX1 chromatin occupancy

partially overlaps with FOXL2, suggesting that RUNX1 and

FOXL2 share common direct target genes during ovarian

differentiation.

Overall, these models reveal the multilayered regulations of

ovarian differentiation, with synergistic and complementary

roles between RSPO1/WNT/β-catenin, FOG2/GATA4,

FOXL2 and RUNX1 to drive and maintain granulosa cell

identity.

Rabbit
In the rabbit gonads, expression of FOXL2, RSPO1 and

WNT4marks the commitment toward an ovarian fate (Daniel-

Carlier et al., 2013). WNT4 and RSPO1 are expressed in both

XX and XY undifferentiated gonads. As sex determination is

initiated at 16 dpc, WNT4 and RSPO1 are upregulated in XX

gonads, reaching a peak of expression at 24 dpc and 7 dpp

respectively, to eventually decrease to minimal levels in adult

ovaries. FOXL2 expression is first detected between 16 and

18 dpc and rises gradually to reach a maximum that is

sustained in adults (Daniel-Carlier et al., 2013).

FOXL2 protein is detected in granulosa cells at 18 dpp and

RSPO1 in the germ cell cytoplasm in the cortical zone at

4 dpp. To date, no knockout models are available to study the

role of the WNT4, RSPO1 and FOXL2 in the rabbit ovary. In

the XX CYP19A1 KO fetal ovary, the expression of both

FOXL2 and RSPO1 is decreased at 22 dpc while

FIGURE 5
Genetic regulation of pre-granulosa cell differentiation in
mammals. (A) In the mouse, RSPO1/WNT4/β-catenin pathway and
Foxl2/Runx1 tilt the balance towards the female side by silencing
the expression of Sox9, Dmrt1, and downstream pro-Sertoli
genes. Mutation in RSPO1/WNT4/β-catenin pathway or Foxl2
causes partial ovary-to-testis sex reversal, whereas the combined
loss of Foxl2 with either Runx1 or Wnt4 or Rspo1 leads to a more
severe ovary-to-testis sex reversal. FOXL2 is also essential for the
maintenance of granulosa cell identity in adult ovaries. The joint
action of FOXL2 and estrogens (E2) enables the maintenance of
ovarian identity. Loss of Foxl2 or estrogen receptors Esr1/Esr2
leads to an upregulation of SOX9 and DMRT1, and
transdifferentiation of granulosa into Sertoli-like cells. (B) In the
rabbit, CYP19A1 is not involved in primary sex determination, but
plays a crucial role in early ovarian development. Loss of CYP19A1
reduces the expression of FOXL2 and RSPO1 in fetal ovaries and
upregulates the expression of DMRT1 and AMH in some adult
granulosa cells from large antral follicles, leading to ovarian
defects without any sign of morphological gonad masculinization.
(C) In the goat, FOXL2 is a crucial factor in early ovarian
differentiation. FOXL2 directly controls CYP19A1 FOXL2 loss of
function causes downregulation of the WNT/β-catenin pathway,
upregulation of DMRT1 followed by SOX9, leading to complete
ovary-to-testis sex reversal. (D) In humans, RSPO1 is one of the
earliest sexually dimorphic pro-ovarian genes during gonad
differentiation. Mutations in WNT4 or RSPO1 causes XX
ovotesticular development while duplication of the genomic
region containing both WNT4 and RSPO1 causes XY gonadal
dysgenesis. Duplication of NR0B1 (DAX1) causes XY male-to-
female sex reversal with gonad dysgenesis. Mutations of NR5A1 or
WT1 cause both XX and XY DSDs, likely due to their role in
bipotential gonad formation. Mutation or deletion of a portion of
NR2F2 causes XX testis development. As NR2F2 expression is
detected in interstitium, it is unclear how this gene impacts
granulosa cell identity. It remains unclear whether FOXL2 is
involved in ovarian determination as heterozygous mutations

(Continued )

FIGURE 5 (Continued)
cause folliculogenesis defects rather than gonad
masculinization. Red: pro-ovarian genes/pathways; Blue: pro-
testis genes/pathways; Plain arrow: direct effect; Dotted arrow:
indirect effect.

Frontiers in Cell and Developmental Biology frontiersin.org15

Nicol et al. 10.3389/fcell.2022.944776

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.944776


WNT4 expression is increased, suggesting that WNT/β-
catenin signaling is stimulated in KO ovaries and may

contribute to absence of sex reversal (Figure 5B) (Jolivet

et al., 2022).

Goat
In goats, a naturally occurring deletion 280 kb upstream

of the FOXL2 gene is responsible for the polled intersex

phenotype (PIS), causing ovary-to-testis sex reversal in XX

homozygotes (Pailhoux et al., 2001). The PIS phenotype is

associated with the loss of expression of FOXL2 and three

long non-coding RNAs (Pailhoux et al., 2001; Beysen et al.,

2005). Generation of a goat FOXL2 KO model demonstrated

that loss of FOXL2 expression alone is responsible for PIS and

XX ovary-to-testis sex reversal phenotype (Boulanger et al.,

2014). In both XX PIS mutant and XX FOXL2 KO gonads,

expression of pro-ovarian genes RSPO1, RSPO2, WNT4,

CYP19 and FST is downregulated while the expression of

pro-testis genes SOX9, AMH, DMRT1 and CYP17 is

upregulated (Figure 5C) (Boulanger et al., 2014; Elzaiat

et al., 2014).

During goat ovarian differentiation, granulosa cells in the

ovarian medulla co-express FOXL2 and CYP19A1, while

RSPO1 is expressed in the ovarian cortex (Pannetier et al.,

2006; Kocer et al., 2008). In vitro studies showed that

FOXL2 could regulate CYP19A1 promoter activity. DMRT1

up-regulation in XX PIS mutant gonads precedes SOX9 up-

regulation, suggesting a critical role of DMRT1 for testis

differentiation in goats (Figure 5C) (Elzaiat et al., 2014).

RUNX1 is highly expressed in XX gonads during sex

differentiation, but its function in goat ovary remains to be

determined (Nicol et al., 2019). Hence, ovarian differentiation

in goats is mainly mediated by FOXL2 and partially regulated

by the RSPO1/WNT4 pathway. FOXL2 prevents activation of

the pro-testis program through antagonizing of DMRT1

(Figure 5C).

Human
In humans, the identification of genes involved in

granulosa cell differentiation and ovarian development

derives from analyses of individuals presenting Differences

of Sex Development (DSD) (Figure 5D), combined with

knowledge acquired from genetically modified mouse

models. DSDs are congenital conditions in which the

development of chromosomal, gonadal, or anatomical sex is

atypical. Analyses of SRY-negative cases of XX testicular DSD

and XY feminization or dysgenesis, led to the identification of

key pro-ovarian genes. Duplication of the X-linked gene

NR0B1 (also called DAX1) causes 46, XY male-to-female

sex reversal with gonad dysgenesis (Bardoni et al., 1994;

García-Acero et al., 2019). In the mouse, overexpression of

Nr0b1 in XY gonads inhibits NR5A1 activation of Sox9

enhancer, resulting in ovotestis development (Ludbrook

et al., 2012). Duplication of a genomic region containing

both WNT4 and RSPO1 genes results in XY gonadal

dysgenesis (Jordan et al., 2001). WNT4 missense mutation

causes embryonic lethal SERKAL syndrome with 46, XX (ovo)

testicular DSD (Mandel et al., 2008). Homozygous mutations

for RSPO1 are associated with XX DSD and testicular or

ovotesticular development (Parma et al., 2006; Tomaselli

et al., 2011; Naasse et al., 2017; Tallapaka et al., 2018).

These findings confirm the key role that WNT4 and RSPO1

play in granulosa cell differentiation and early ovarian

differentiation in humans. Further analyses revealed that

RSPO1 is upregulated in the ovary between 6 and 9 wpc,

whereas the expression of WNT4 and CTNNB1 is not

significantly different between ovary and testis at this stage

(Tomaselli et al., 2011).

In humans, contrary to other vertebrate species, no FOXL2

mutations are linked to 46, XX (ovo)testicular DSD.

Heterozygous mutations of FOXL2 are associated with the

autosomal dominant Blepharophimosis Ptosis Epicanthus

Inversus syndrome (BPES), which causes early premature

ovarian insufficiency in BPES type I (Crisponi et al., 2001).

This raises the question whether FOXL2 still acts in early

granulosa cell differentiation/ovarian determination in

humans, or if its role is limited to later granulosa cell function

in folliculogenesis.

NR5A1, encoding for Steroidogenic Factor 1 (SF-1), is

probably one of the most complex genes studied in DSDs,

associated with a wide spectrum of DSD cases ranging from

XY gonadal dysgenesis to male infertility, as well as primary

ovarian insufficiency in women (Domenice et al., 2016). Multiple

cases of 46, XX (ovo)testicular DSD were linked to a

heterozygous missense mutation p.R92W in the DNA binding

domain of NR5A1 (Bashamboo et al., 2016; Baetens et al., 2017).

Remarkably, some XX carriers were asymptomatic and fertile,

whereas in one family, this same mutation also led to XY DSD in

a sibling. It remains unclear how the phenotype of this point

mutation is so variable. Generation of a mouse model carrying

this mutation caused XY dysgenesis, but not XX sex-reversal,

suggesting some differences in p.R92W mutated NR5A1 activity

between human and mouse (Miyado et al., 2016). This capacity

to cause both XX and XY DSD is likely due to NR5A1

involvement in early gonadogenesis and establishment of

bipotential supporting cells (Hanley et al., 1999). Like NR5A1,

the gene WT1 is involved in bipotential gonad formation and

mutations were previously only associated with XY DSD.

However, several pathogenic variants of WT1 have been

associated with testis differentiation in XX individuals (Gomes

et al., 2019; Eozenou et al., 2020; Sirokha et al., 2021; Ferrari et al.,

2022). For both NR5A1 and WT1 mutations, it is suspected that

these pathogenic variants impair or modify the capacity of

NR5A1 or WT1 to physically interact with β-catenin,
therefore compromising ovarian differentiation (Bashamboo

et al., 2016; Eozenou et al., 2020).
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Heterozygous mutation or genomic deletion of NR2F2 (or

COUP-TFII) cause testis development in XX individuals

(Bashamboo et al., 2018; Carvalheira et al., 2019). These

genetic defects were also associated with BPES, a syndrome

usually associated with FOXL2 mutations. NR2F2 protein is

detected exclusively in interstitial cells of the human ovary at

9 wpc and not in FOXL2+ granulosa cells. It is unclear how

NR2F2 impacts granulosa cell differentiation and how its loss of

function results in testis tissue development. NR2F2 may act

indirectly from the stroma compartment. Another possibility is

that NR2F2 is expressed early on in supporting cell precursors

before becoming exclusively expressed in the interstitial cells, and

its loss impacts supporting cell capacity to differentiate into

granulosa cells. Again, the DSD cases of NR2F2 mutations

highlight the differences in early gonad differentiation

between the mouse and human, as loss of Nr2f2 in the mouse

ovary is not associated with ovary-to-testis sex reversal (Zhao

et al., 2017).

Many cases of SRY-negative XX ovotesticular DSD remain

unsolved. Mutations may be located in non-coding genomic

regions that control the expression of known pro-ovarian

genes. For instance, rare single nucleotide variations in

putative enhancers for WNT4 and RSPO1 were found in some

patients with impaired ovarian development (Nakagawa et al.,

2022). The functional significance of these putative enhancers

and their mutations require additional experiments for

confirmation.

Transcriptomic analyses of human fetal ovaries by

microarray (Mamsen et al., 2017) and bulk RNA-seq (Lecluze

et al., 2020) provided new insights into the dynamics of

expression of the genes identified as involved in XX DSD.

Some notable differences with the mouse model were

identified: for instance, expression of NR5A1 is maintained

longer in the human fetal ovary during early sex-

differentiation (Mamsen et al., 2017; Lecluze et al., 2020)

whereas it is quickly decreased in the mouse fetal ovary at the

onset of sex determination (Ikeda et al., 1994). This difference in

NR5A1 expression dynamics may explain the difference in

phenotype with the NR5A1 p.R92W missense mutation that

results in XX testicular DSD in humans but not in the mouse

(Miyado et al., 2016). Another discrepancy between mouse and

human implicates WNT4: while Wnt4 expression is sexually

dimorphic during sex determination in the mouse, human

WNT4 expression is not significantly different between sexes,

despite its involvement in 46, XX testicular DSD (Mamsen et al.,

2017). On the other hand, RSPO1 and AMHR2, LGR5, and

RUNX1 are among the earliest pro-ovarian genes expressed in

human fetal ovaries with strong sexual dimorphism around

6 wpc/early 7 wpc (Lecluze et al., 2020). Meanwhile, FOXL2

becomes enriched in the human fetal ovary after 7 wpc, a bit later

than these genes (Lecluze et al., 2020). This may explain why

mutations in FOXL2 gene does not lead to ovary masculinization

in humans but instead to a folliculogenesis phenotype.

Evolutionary perspectives

Altogether, although some factors like the RSPO1/WNT/β-
Catenin pathway and FOXL2 have a broadly conserved role in

ovarian differentiation, some divergence led to clade-specific, and

even species-specific sub-functionalization. Among the

conserved pathways, the RSPO1/WNT/β-catenin signaling is a

strong driver of ovarian differentiation from fish to human. In

mammals, this pathway seems to have taken the front seat, as the

strongest ovary-to-testis sex-reversal phenotype from a single

gene deletion is caused by interrupting this pathway in mice.

Similarly in humans, rare cases of XY DSD caused by a genomic

duplication involve the locus encompassing RSPO1 and WNT4.

While FOXL2 expression in the ovary is highly conserved

throughout vertebrate species, its functions in either primary

sex determination, ovarian maintenance or folliculogenesis has

evolved within vertebrate clades, and even within species from

the same clade. This phenomenonmay be related to the evolution

of DMRT1 functions in testis determination and maintenance, as

FOXL2/DMRT1 directly antagonize each other. Another

possibility is that FOXL2 functions evolved with the role of

estrogens in ovarian differentiation through FOXL2’s capacity

to directly control CYP19A1 expression and cooperate with

estrogen receptors. Indeed, FOXL2 seems to play a more

prominent role in ovarian differentiation of species that rely

on estrogen signaling. Tilapia is a good example as foxl2 and

cyp19a1a KO both lead to identical phenotypes. In most species,

FOXL2 and CYP19A1 are expressed in the same cell populations,

whether it is granulosa cells, or steroidogenic cells in fish ovaries,

supporting the hypothesis that FOXL2 directly controls

CYP19A1 expression. An exception to the rule is the rabbit, as

CYP19A1 and FOXL2 are expressed in the cortex and medulla,

respectively, in the fetal ovary. This suggests that FOXL2

functions are decoupled from CYP19A1 activation in the

rabbit fetal ovary and raises the question of what molecular

pathways control CYP19A1 expression in the rabbit ovarian

cortex. Therefore, it is still unclear how the mode of action of

FOXL2 has evolved depending on the species.

Similar to FOXL2, the role of other genes in ovarian

differentiation has evolved within the same clades. For

instance, comparison of some human DSD with mouse

models for an identical mutation led to surprisingly different

phenotypes. These differences may be caused by difference in

timing of morphogenesis between the species, changing the

influence some genes like NR5A1 or NR2F2 can have on

ovarian differentiation.

Finally, one clear evolutionary difference in vertebrate

ovarian differentiation is the impact germ cells have on

ovarian identity. While germ cell numbers influence the

fate of gonadal somatic cells and the maintenance of

granulosa cell identity in fish, it is not the case in mice

(Maatouk et al., 2012). In fish, ovarian germ cells can also

autonomously control their own fate through foxl2l, a gene
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closely related to FOXL2. During evolution, this gene was lost

in terrestrial vertebrates, and germ cell fate became exclusively

dependent on supporting cell fate. It is unclear whether the

presence of this foxl2l gene also influences the impact of germ

cells on supporting cell identity. While germ cells do not

influence granulosa cell determination in mice, differentiation

of Lgr5+ pre-granulosa cells into Foxl2+ granulosa cells is

delayed in mutant ovaries lacking germ cell-specific genes

Nanos3 or Figla (Fukuda et al., 2021). Therefore, the key role

of supporting/germ cell communication in ovarian

determination has been lost during vertebrate evolution,

but it remains critical for proper cortical granulosa cell

differentiation in mice.

Conclusion and perspectives

From fish species with an incredible range of sex determination

systems and gonadal plasticity, to chicken with left-right

asymmetrical ovarian development, to placental mammals whose

gonad differentiation occurs in the environment of the womb and

maternal hormones, evolution of ovarian differentiation reveals both

relatively conserved and unique features within vertebrate clades and

species. This demonstrates that evolution of ovarian differentiation is

non-linear, and some unique evolutionary events occurred

independently among species. Of course, this review on vertebrate

ovarian differentiation does not intend to cover all vertebrate species,

and other vertebrates such as amphibians, lizards or turtles have their

own story to tell.

Intriguing new potential players in ovarian differentiation

require further study in different vertebrate clades. For instance,

while RUNX1 plays complementary roles with FOXL2 in

maintaining fetal granulosa cell identity in mice, its ovarian

function in other vertebrate species remains to be determined.

The potential roles of OSR1, a gene enriched in avian pre-

granulosa cells, and NR2F2, a gene linked to ovary-to-testis

sex reversal in humans, need to be examined in other species.

Beyond granulosa cells, the functions of other ovarian cell

populations such as NR2F2+ interstitium or germ cells cannot

be ignored. For instance, Lhx2 gene in germ cells is involved in

repression of endothelial cell migration in the mouse developing

ovary (Singh et al., 2022).

The emerging single-cell sequencing technologies are becoming a

game changer in the study of developmental processes, providing

single-cell resolution of tissue composition and cell lineage

differentiation trajectories. Single-cell RNA-seq methods have

already been used to study gonad differentiation in various species

(Estermann and Smith, 2020) and more studies come out regularly.

In addition, the use of related techniques such as spatial

transcriptomics and single-cell ATAC-seq will allow the building

of a comprehensive developmental cell atlas of gonad differentiation

and further improve the comparative analyses of granulosa cell

origins and differentiation kinetics within vertebrate clades. For

instance, the Human Gonad Development Atlas, a part of the

Human Developmental Cell Atlas (HDCA), is aimed to create a

comprehensive map of cells during human fetal development using

2D/3D imaging as well as single cell multiomics (Haniffa et al., 2021;

Garcia-Alonso et al., 2022). Beyond gene expression, identifying non-

coding regulatory elements, enhancers with potential granulosa cell

signatures and cell-specific chromatin dynamics associated with

different stages of ovarian differentiation will further improve our

knowledge of ovarian differentiation and maintenance of its identity.
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Glossary

ADAMTS9 A disintegrin and metalloproteinase with

thrombospondin motifs 9

AMH Anti-Mullerian hormone

BMP15 Bone morphogenetic protein 15

BMPR2A/B Bone Morphogenetic Protein Receptor Type 2 a/b

BPES Blepharophimosis–ptosis–epicanthus inversus syndrome

COUPTFII Chicken Ovalbumin Upstream Promoter

Transcription Factor 2

CTNNB1 Catenin Beta 1

CYP17A1 Cytochrome P450 Family 17 Subfamily A Member 1

CYP19A1 Cytochrome P450, family 19, subfamily A,

polypeptide 1, also called aromatase

CYP26B1 Cytochrome P450 Family 26 Subfamily B Member 1

DAX1 Dosage-sensitive sex reversal (DSS), Adrenal hypoplasia

congenital critical region on the X chromosome, gene 1

DDX5 DEAD-Box Helicase 5

DKK1 Dickkopf WNT signaling pathway inhibitor 1

DMRT1 Doublesex and mab-3 related, transcription factor 1

Dmy DM-domain gene on the Y chromosome

dpc Days post coitum

dph Day post hatching

DSD Differences or disorders of sex development

E Embryonic day

E2 Estradiol-17b

EMT Epithelial–Mesenchymal Transition

EMX2 Empty Spiracles Homeobox 2

ERα/β Estrogen receptor alpha/beta

ESR1/2 Estrogen receptor 1 / 2

FOXL2 Forkhead box L2

FST Follistatin

GDF9 Growth differentiation factor 9

GSDF Gonadal soma derived growth factor

IGF3 Insulin-like growth factor-3

JCM Juxtacortical medulla

KO Knockout

LGR4 Leucine-rich repeat-containing G-protein coupled

receptor 4

LGR5 Leucine-rich repeat-containing G-protein coupled

receptor 5

LHX9 LIM Homeobox 9

NOBOX NOBOX oogenesis homeobox

NR2F2 Nuclear Receptor Subfamily 2 Group F Member 2

(COUP-TFII)

NR5A1 Nuclear receptor subfamily 5 Group A Member 1 (SF-1)

NR5A2 Nuclear receptor subfamily 5 Group A Member 2

(LRH-1)

NR0B1 Nuclear Receptor Subfamily 0 Group B Member 1

(DAX1)

OSR1 Odd-Skipped Related Transcription Factor 1

PAX2 Paired box gene 2

PGCs Primordial Germ Cells

PIS Polled Intersex Syndrome

PITX2 Paired Like Homeodomain 2

PRMT5 Protein arginine methyltransferase 5

RALDH2 retinaldehyde dehydrogenase 2 (ALDH1A2)

RBPMS2 RNA-binding protein of multiple splice forms 2

RSPO1 R-spondin 1

RUNX1 Runt-related transcription factor 1

scRNA-seq single-cell RNA sequencing

SERKAL Sex reversal with dysgenesis of kidneys, adrenals, and

lungs

SF-1 Steroidogenic factor-1

SOX9 SRY-related HMG box 9

SRY Sex-determining region on the Y chromosome

TALEN Transcription activator-like effector nuclease

TGF β Transforming growth factor beta

TGIF1 TGFB Induced Factor Homeobox 1

WNT4Wingless-type MMTV integration site family, member 4

wpc Weeks post coitum/conception

WT1 Wilms’ tumor suppressor 1

Frontiers in Cell and Developmental Biology frontiersin.org26

Nicol et al. 10.3389/fcell.2022.944776

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.944776

	Becoming female: Ovarian differentiation from an evolutionary perspective
	Introduction
	Ovary morphogenesis and origins of granulosa cells
	Fish
	Avians
	Mammals
	Mouse
	Rabbit
	Ruminants
	Human

	Evolutionary perspectives

	Role of estrogens in ovarian differentiation
	Fish
	Avians
	Mammals
	Marsupials
	Mouse
	Rabbit
	Human

	Evolutionary perspectives

	Genes and pathways controlling granulosa cell differentiation and ovarian identity
	Fish
	Avians
	Mammals
	Mouse
	Rabbit
	Goat
	Human

	Evolutionary perspectives

	Conclusion and perspectives
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References
	Glossary


