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Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in

the regulation of multiple processes in cells. It is a major mitochondrial NAD+-

dependent deacetylase with a broad range of functions, such as regulation of

oxidative stress, reprogramming of tumor cell energy pathways, and metabolic

homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of

mitochondrial outer membrane permeabilization, a key step in apoptosis

initiation/progression. Moreover, sirtuin 3 is involved in the execution of

various cell death modalities, which makes sirtuin 3 a possible regulator of

crosstalk between them. This review is focused on the role of sirtuin 3 as a target

for tumor cell elimination and how mitochondria and reactive oxygen species

(ROS) are implicated in this process.
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Introduction

Understanding the mechanisms of cell death is just as important as understanding

those of cell division and differentiation because, together, these processes regulate cell

homeostasis and tissue renewal in the body. Violations of this balance can cause any

number of abnormalities. Thus, an increased level of cell death might be the cause of

several autoimmune and neurodegenerative diseases, while the suppression of cell death

can stimulate tumor formation. By contrast, stimulation of programmed cell death (PCD)

is an effective mechanism of tumor cell elimination. This is one reason why the study of

the cell death machinery is one of the most actively developing areas of biomedical

research. According to the modern classification, there are more than a dozen types of cell

death. Indeed, the phenomenon of PCD, based on the existence of genes encoding

proteins implemented the death program, is beyond a doubt.

In the search for targets that regulate the balance between proliferation and cell death,

investigators were attracted to sirtuin 3 (Sirt3), a member of the mammalian sirtuin family

of proteins (Kincaid and Bossy-Wetzel, 2013). Sirt3 is a major mitochondrial NAD+-

dependent deacetylase with a broad range of functions. Sirt3 is expressed as a full-length

44 kDa protein, transported to mitochondria, and cleaved within it by matrix

metalloprotease to a 28 kDa short form. It is considered that only processed form has

deacetylase activity, and it is found only in mitochondria. Although some amount of full-
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length Sirt3 could exist in the nucleus and cytoplasm, active

Sirt3 is localized only inside mitochondria and acts through

deacetylation of the mitochondrial proteins (Iwahara et al.,

2012). One of these functions, which might be important for

both proliferation and cell death, is the regulation of oxidative

stress. Reactive oxygen species (ROS), generated largely in

mitochondria, at physiological levels, are an important

regulator of cellular metabolism. In particular, they facilitate

tumor cell proliferation and migration (Kumari et al., 2018), as

well as differentiation (Tsatmali et al., 2006), and contribute

significantly to the immune response (Yang et al., 2013). It is

known that excessive ROS production can lead to cell death

either by apoptosis or by necrosis, depending on the severity of

oxidative stress. In addition to these well-described cell death

modalities, several observations point to the involvement of ROS

in other forms of PCD and accompanying processes. ROS has

been shown to trigger Parkin/PINK1 pathway-dependent

mitophagy, an important mitochondrial quality control

mechanism in the cell (Xiao et al., 2017); necroptosis or

regulated necrosis (Zhang et al., 2017b); and ferroptosis, a

regulated form of cell death driven by the accumulation of

lipid peroxidation products (Yang and Stockwell, 2016).

Sirtuin 3 and reactive oxygen species

Among the targets of Sirt3 is the transcription factor Forkhead

box O3 (FOXO3a), one of the key regulators of cancer cell

homeostasis. In metabolically stressed cells, FOXO3A can be

recruited to the mitochondria through the activation of MEK/

ERK and AMP-activated protein kinase (AMPK) where it

stimulates the expression of genes involved in the regulation of

mitochondrial metabolism (Celestini et al., 2018). Besides, several

observations demonstrate that deacetylated FOXO3a controls the

FIGURE 1
Sirtuin 3 and ROS. (A); Sirt3 stimulates the expression of key antioxidant enzymes MnSOD2 and catalase via deacetylation of FOXO3a.
Deacetylation occurs either in themitochondria with subsequent translocation of FOXO3a into the nucleus or bymeans of nuclear fraction of Sirt3 in
the nucleus. (B); Sirt3 directly deacetylates and activates mitochondrial enzymes implicated in ROS quenching (IDH2 and SOD2). (C); Sirt3 decreases
electron leakage from mitochondrial electron transport chain by deacetylation of its complexes. (D); The antioxidant activity of Sirt3 leads to
HIF1 destabilization and Ras-signaling suppression. GPX—glutathione peroxidase, GR—glutathione reductase, GSSG—oxidized glutathione,
GSH—reduced glutathione.
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expression of nuclear antioxidant-encoding genes, including

manganese superoxide dismutase (MnSOD) and catalase

(Sundaresan et al., 2009; Tseng et al., 2013). FOXO3a

deacetylation can promote its nuclear localization (Wang et al.,

2017), however the mechanism of its release from the mitochondria

remains obscure. On the other hand, FOXO3a can be deacetylated

by a small fraction of nuclear Sirt3 (Scher et al., 2007; Iwahara et al.,

2012). Sirt3 can also directly deacetylate several specific lysine

residues and thus directly activate MnSOD (Tao et al., 2014)

and isocitrate dehydrogenase 2 (IDH2) (Yu et al., 2012). IDH2,

a key generator of NADPH in mitochondria, is critical for the

maintenance of mitochondrial redox balance (Reitman and Yan,

2010) and is involved in glutathione reduction. Sirt3 can also

directly deacetylate mitochondrial electron-transport chain

complexes, decreasing electron leakage and ROS production

(Rahman et al., 2014). Increased Sirt3 expression attenuates ROS

accumulation in the cell (Figure 1).

The antioxidant activity of Sirt3 modulates different signaling

pathways involved in cell death and survival. Thus, a Sirt3-driven

decrease in ROS levels suppressed Ras activation and downstream

signaling through the MAPK/ERK and PI3K/Akt pathways, which

activate cell survival and proliferation (Sundaresan et al., 2009).

Another significant consequence of Sirt3-mediated inhibition of

ROS production is the downregulation of hypoxia inducible factor

1 (HIF1), which plays a key role in the regulation of tumor cell

metabolism (Bell et al., 2011; Finley et al., 2011; Geoghegan et al.,

2017). This factor can be stabilized under hypoxia, as well as by

some mitochondrial substrates (succinate and fumarate, a

phenomenon known as pseudohypoxia), or by ROS (Chandel

et al., 2000).

Pro- and antitumor effects of sirtuin 3

Sirt3 can function as an oncogene and support cancer cell

proliferation. Some recent studies show that Sirt3 can deacetylate

the tumor suppressor transcription factor p53, which in turn

regulates dozens of target genes with diverse biological functions.

This deacetylation was shown to lead to p53 degradation, which

facilitated tumor cell proliferation (Xiong et al., 2018). The

authors did not explain the mechanism of deacetylation of

p53 by mitochondrially located Sirt3. Their conclusion was

based on the data showing that acetylation of p53 decreased

upon overexpression of Sirt3. According to another point of view,

there was no evidence showing that Sirt3 can deacetylate p53. In

hepatocellular carcinoma cells, Sirt3 overexpression upregulated

p53 protein level without altering p53 mRNA, suggesting that

Sirt3 may modulate p53 via post-transcriptional regulation

(Zhang and Zhou, 2012). The authors proposed that the

Sirt3 overexpression induced downregulation of Mdm2, which

targets p53 for proteasomal degradation, thereby increasing

p53 protein level. On the other hand, deacetylation of p53 by

Sirt3, which stimulated cell proliferation and prevented p53-

mediated growth arrest, was documented in bladder cancer.

However, it has been stated that deacetylation by Sirt3 was

restricted only to mitochondrial p53 (Li et al., 2010). Sirt3 can

promote tumorigenesis through its antioxidant activity. Thus, the

Sirt3/FOXO3a/SOD2 axis of the mitochondrial unfolded protein

response (UPRmt) was activated in cancer cells in response to

oxidative proteotoxic stress in mitochondria, increasing

mitochondrial fitness and supporting metastasis (Kenny et al.,

2017). The ability of Sirt3 to maintain ROS production at the

appropriate levels prevents apoptosis stimulation and facilitates

cell proliferation (Kim et al., 2011). Suppression of

Sirt3 expression in breast cancer cells, and the subsequently

elevated ROS production, makes these cells more susceptible

to anticancer drugs (Torrens-Mas et al., 2017).

On the other hand, a number of observations indicate that

Sirt3 has antitumor effects (Zeng et al., 2017). Thus, Sirt3 knockout

mice may spontaneously develop breast tumors (Kim et al., 2010).

Murine models that lack Sirt3 are characterized by increased

malignancies that resemble human luminal B breast cancer.

Furthermore, these tumors exhibit aberrant acetylation of

MnSOD at lysine 68 and lysine 122 and have abnormally high

ROS levels (Zou et al., 2016). Stimulation of Sirt3 expression in

these cells normalizes the level of oxygen radicals. As mentioned

above, one of the pathways by which Sirt3 controls tumor growth is

destabilization of HIF1. Sirt3 modulates HIF1 level through ROS-

mediated alteration of proline hydroxylation enzyme function,

thereby altering hydroxylation and subsequent proteasomal

degradation of HIF1α. As it has been shown, cancer cells rely

on glycolysis even in the presence of oxygen, a phenomenon known

as the Warburg effect (Warburg and Dickens, 1930). Such a

glycolytic shift provides rapidly proliferating tumor cells with

the substrates necessary for biomass generation. The main

regulatory factor in this process is HIF1 (Semenza, 2012). This

protein stimulates the expression of a myriad of target genes

involved in glycolysis regulation and angiogenesis. Reduction of

Sirt3 expression occurs in human breast tumors, and its loss

correlates with the activation of HIF1 target genes (Finley et al.,

2011). Sirt3 suppression in primary mouse embryo fibroblasts

(MEFs) or tumor cell lines stimulates cell proliferation and

augments HIF1α protein stabilization and its transcriptional

activity under hypoxic conditions. Conversely,

Sirt3 overexpression prevents HIF1α stabilization and attenuates

the elevation of HIF1α transcriptional activity. Sirt3 knockdown

also increases tumorigenesis in xenograft models, while its

overexpression decreases tumor formation (Bell et al., 2011).

Sirt3 can deacetylate and thus stimulate mitochondrial pyruvate

dehydrogenase. This intensifies mitochondrial activity, and

reverses the glycolytic shift in tumor cells (Fan et al., 2014).

Thus, increased Sirt3 expression attenuates glycolysis and cancer

cell proliferation, both of which represent a metabolic mechanism

for tumor suppression. Apparently, the consequences of this

Sirt3 targeting are dependent on the specific cell’s reliance on

glycolysis. It can be assumed that this Sirt3 property will be
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FIGURE 2
(A) Sirtuin 3 and apoptosis. Sirt3 suppresses excessive production of ROS, which can stimulate OMM permeabilization through oxidation of
thiols in ANT or Bax. In addition, Sirt3 deacetylates CypD, preventing pore opening, and modulates OMM permeabilization mediated by Bcl-2 family
proteins, although the mechanisms of these processes are still poorly understood. Red arrows denote pro-apoptotic effects and green arrows
denote anti-apoptotic effects. (B) Sirtuin 3 and necroptosis. Sirt3 inhibits mitochondrial ROS production and prevents MPT pore opening which
can be involved in necroptosis. Sirt3 also deacetylates p53 which promotes necroptosis in mitochondria-independent way. LncRNAs—long non-
coding RNAs. Red arrows denote pro-necroptotic effects and green arrows denote anti-necroptotic effects. (C) Sirtuin 3 and autophagy.
Sirt3 promotes autophagy via AMPK and FOXO1 activation. It also stimulates expression of autophagy-related genes via FOXO3a deacetylation.
Sirt3 can inhibit autophagy via suppression of ROS-dependent AMPK-pathway stimulation and via acetyl-CoA pools maintaining. Green arrows
denote pro-autophagic effects and red arrows denote anti-autophagic effects. (D) Sirtuin 3 andmitophagy. Sirt3 stimulates PINK1/Parkin-dependent
as well as receptor-mediated mitophagy. Sirt3 also promotes mitochondrial fission which is a prerequisite of mitophagy. Green arrows denote pro-
mitophagic effects.
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particularly important in the treatment of tumors with the most

pronounced glycolytic shift.

Sirtuin 3 and various cell death
modalities

Sirtuin 3 and apoptosis

Mitochondria play a decisive role in apoptosis induction/

progression. Outer mitochondrial membrane (OMM)

permeabilization, and the subsequent release of pro-apoptotic

factors such as cytochrome c and apoptosis inducing factor (AIF),

activates a cascade of reactions that execute apoptotic cell death.

Thus, apoptosis can be regulated at the level of the mitochondria,

by modulation of the processes that precede permeabilization,

and by downstream processes. Accordingly, the resistance of cells

to chemotherapy may be due to disturbances that occur at these

levels. Understanding the mechanism of apoptosis resistance

helps to identify ways to modulate emerging disorders and

eliminate them. Additionally, the use of substances that act on

the mechanism(s) responsible for resistance to apoptosis, in

combination with the recommended chemotherapy, should

increase the effectiveness of treatment and, preferably, reduce

the dose of chemotherapeutic agents to reduce side effects.

There are two main OMM permeabilization pathways. One is

regulated by the balance between pro- and anti-apoptotic Bcl-2

family proteins. Oligomerization of pro-apoptotic proteins (Bax,

Bak) and their subsequent incorporation into OMM forms a pore

through which proapoptotic factors can be released into the

cytosol. Anti-apoptotic members of the Bcl-2 family prevent

pore formation through binding to pro-apoptotic proteins. The

expression of several proapoptotic Bcl-2 family proteins, including

Bax, Puma, Bid, and Noxa, is regulated by p53 (Figure 2A).

Data on the relationship between Sirt3 and proteins of the

Bcl-2 family are to some extent controversial. Sirt 3 was shown to

activate p53 and induce apoptosis in hepatocellular carcinoma

(Zhang and Zhou, 2012). In lung adenocarcinoma cells,

Sirt3 overexpression augmented the Bax/Bcl-2 and Bad/Bcl-XL

ratios and promoted AIF translocation to the nucleus while the

level of p53 was increased. The mechanisms that underlie these

changes can involve transcriptional activation of Bax by p53;

however, for now they remain unclear (Xiao et al., 2013). In many

cancers, p53 is mutated. Mutant p53 acts in the opposite way to

normal p53, inhibiting its apoptotic functions. In small-cell lung

cancer cells, Sirt3 was shown to promote mutant

p53 deacetylation and its proteasomal degradation.

Sirt3 overexpression also increased the Bax/Bcl-2 ratio and

induced apoptosis (Tang et al., 2019; Guo et al., 2020). Other

Bcl-2 proteins are also regulated by Sirt3; thus, in NCI-H446

human small-cell lung cancer cells, the proapoptotic Bid level was

elevated and the antiapoptotic Mcl-1 level decreased (Tang et al.,

2019). Sirt3 can also directly deacetylate antiapoptotic Mcl-1,

inhibiting its interaction with ubiquitin-specific peptidase

9 X-linked (USP9X), resulting in Mcl-1 phosphorylation,

ubiquitination, and destabilization. Sirt3 depletion leads to cell

death resistance (Shimizu et al., 2021). In HCT116 cells, Sirt3 also

revealed pro-apoptotic properties that were linked to Bcl-2/

p53 regulation of apoptosis, as Sirt3 silencing prevented

apoptosis induced by loss of Bcl-2 (Allison and Milner, 2007).

It was also shown that Sirt3 deacetylated and activated glycogen

synthase kinase-3β (GSK-3β), which subsequently induced

expression and mitochondrial translocation of Bax, inducing

apoptosis (Song et al., 2016).

On the other hand, Sirt3 downregulation in esophageal

squamous cell carcinoma EC9706 cells increased the

expression of p21 and Bax proteins but reduced Bcl-2 protein

expression, significantly inhibited cell proliferation, and induced

apoptosis (Yang et al., 2014). Sirt3-mediated deacetylation of

Ku70 in human glioma cells stabilized the Ku70/Bax interaction

and made cells more resistant to Bax-mediated apoptosis (Luo

et al., 2018). Sirt3 overexpression inMDA-MB-231 human breast

carcinoma cells prevented Bax accumulation induced by

staurosporine (Pellegrini et al., 2012). Cardiomyocytes

subjected to ischemia-reperfusion after curcumin treatment

demonstrated activation of Sirt3, Bcl-2 upregulation, and Bax

downregulation, which decreased apoptosis. Sirt3 inhibition

reversed its protective effect (Wang et al., 2018b).

Additionally, OMM permeabilization may result from

mitochondrial swelling, which causes ruptures in the OMM and

subsequent release of proapoptotic factors from the intermembrane

space. This release is due to the opening of a non-specific pore, the

mitochondrial permeability transition (MPT) pore, which occurs in

the inner membrane in response to stressful effects. Pore opening

leads to the entry of water and solutes in the mitochondrial matrix

causing mitochondrial swelling, the rupture of OMM and the

release of proteins from intermembrane space. Stimulation of

the opening of a nonspecific pore underlies various pathologies,

in particular, ischemic disease, while the increased resistance of the

mitochondrial membrane to permeabilization, which suppresses

apoptosis, can stimulate uncontrolled tumor cell growth. The key

structural components of the pore, according to the classical

scheme, are the adenine nucleotide translocase (ANT) in the

inner mitochondrial membrane (IMM) and the voltage-

dependent anion channel (VDAC) in the OMM. The main

critical regulator of pore opening is cyclophilin D (CypD), a

mitochondrial matrix peptidyl-prolyl cis-trans isomerase

(Javadov and Kuznetsov, 2013). These proteins catalyze the cis-

trans isomerization of peptidyl-prolyl bonds and have chaperone

activity to regulate protein folding. Pore opening is attributed to

direct binding of CypD to ANT.

Sirt3 can modulate OMM permeabilization via

deacetylation of proteins that regulate pore formation. One

of the Sirt3 targets is CypD, the deacetylation of which

diminishes its peptidyl-prolyl cis-trans isomerase activity

and causes its dissociation from ANT, contributing to an
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increase in the MPT pore-opening threshold and preventing

its opening (Teodoro et al., 2018). Consistently, cardiac

myocytes from mice that lack Sirt3 demonstrated age-

dependent mitochondrial swelling due to an increased

probability of MPT pore opening (Hafner et al., 2010).

Sirt3 activation caused CypD deacetylation and a decrease

in the activity attenuating neuron apoptosis in mice with

sepsis-associated encephalopathy (Sun et al., 2017). Sirt3-

mediated protection against hypoxia or staurosporine can

be explained by inhibition of MPT via prevention of

hexokinase (HKII) binding to the mitochondria (Pellegrini

et al., 2012). Sirt3-induced CypD inactivation resulted in the

detachment of mitochondrial HKII and inhibition of

glycolysis (Wei et al., 2013). Apparently, the protective

effect of Sirt3 will be most pronounced in cells in which

OMM permeabilization occurs through the opening of non-

specific MPT pores.

ROS modulates both types of OMM permeabilization.

ROS modifies two thiol groups on ANT, and this

modification facilitates pore opening (Halestrap et al.,

1997). Furthermore, ROS can mediate the formation of

disulfide bridges between cytosolic Bax monomers to

promote the formation of pores in the OMM (Neuzil et al.,

2006). Depending on the concentration, the same therapeutic

compound can stimulate distinct modes of OMM

permeabilization, either mediated by pro-apoptotic proteins

of the Bcl-2 family or due to the induction of MPT, at least in a

certain subpopulation of mitochondria (Robertson et al.,

2000). Thus, by controlling ROS levels, Sirt3 can protect

cells from stressful effects that result in OMM

permeabilization. Sirt3 was shown to have antiapoptotic

properties in cardiomyocytes via IDH2 deacetylation and

ROS quenching (Ma et al., 2021). Sirt3 knockdown

sensitized colon cancer cells to anticancer agents by

suppressing SOD2 and increasing mitochondrially

produced ROS (Paku et al., 2021). Stimulation of

Sirt3 expression prevents mitochondrial dysfunction and

neurological damage after traumatic brain injury (Wang

et al., 2016) and reduces smooth muscle cells apoptosis

(Qiu et al., 2021). Interestingly, Sirt3 can regulate

mitochondrial function by deacetylating key Krebs cycle

enzymes, in particular, succinate dehydrogenase, a subunit

of the respiratory chain complex, and thereby stabilize

mitochondrial function (Ahn et al., 2008; Finley et al.,

2011). Thus, the involvement of Sirt3 in apoptotic cell

death execution depends on multiple factors, which can

either stimulate or diminish apoptosis upon targeting Sirt3.

Sirtuin 3 and necroptosis

Necroptosis is a form of regulated cell death that is

morphologically similar to necrosis and depends on receptor

interacting protein 3 (RIP3) and subsequent mixed lineage kinase

domain-like pseudokinase (MLKL) activation. RIP3 is activated

by RIP1 when caspase-8 is inactivated (Galluzzi et al., 2018).

Presumably, mitochondria play a pivotal role in necroptosis

signaling via two major pathways. First, mitochondrial ROS was

shown to be critical for necroptosis execution. Sirt3, as an

important mitochondrial antioxidant regulator, can control

necroptosis (Figure 2B). Consistent with these considerations,

in a mouse model of diabetic skin wound healing, Sirt3 deficiency

was shown to increase the expression of RIP3K, RIP1, and

caspase-3 via superoxide production, which results in delayed

wound healing, a decreased blood supply, and exacerbated

ultrastructural skin disorders. It could be caused by

mitochondrial function impairment, oxidative stress, and

necroptosis (Du et al., 2017). Sirt3 knockdown promoted

oxidative stress and necroptosis in cardiac fibroblasts in

hypoxia (Yang et al., 2020). ROS accumulation and

necroptosis are correlated with the immune response and

have proinflammatory functions. Thus, in prostate cancer,

Sirt3 inhibits RIPK3-mediated necroptosis and the innate

immune response, promoting tumor progression (Fu et al.,

2020).

The other means of mitochondrial involvement in

necroptosis is MPT pore induction involving its key regulator,

CypD. As was mentioned above, Sirt3 was shown to decrease

CypD-mediated MPT pore opening, preventing necroptosis (Sun

et al., 2017).

However, it should be mentioned that accumulated data do

not confirm the crucial role of mitochondria in necroptosis.

Thus, cells depleted of mitochondria through forced mitophagy

can undergo necroptosis anyway (Tait et al., 2013). At least,

mitochondria are not essential for necroptotic cell death in many

types of cells, and their involvement could be context-specific

(Marshall and Baines, 2014). Apparently, Sirt3 in necroptosis

could be rather dispensable.

Another regulator of necroptotic cell death is p53. It can

modulate necroptosis via the mitochondrial pathway by binding

to CypD. As well, p53 can act independently of mitochondria,

transcriptionally upregulating a long-noncoding RNA, which

elevates RIP1 and RIP3 expression (Ranjan and Iwakuma,

2016). Sirt3-mediated modulation of p53 may fulfill an

interplay between apoptosis and necroptosis. Thus, Sirt3 can

directly deacetylate p53, causing its proteasomal degradation and

leading to both apoptosis and necroptosis induction in small-cell

lung cancer (Tang et al., 2019).

Another cell death type that depends on RIP is anoikis, which

is initiated by the loss of extracellular matrix contacts, preventing

anchorage-independent proliferation and attachment to an

improper matrix. Accordingly, tumor cells need to evade

anoikis for metastasis. Sirt3 and RIP regulate overcoming of

anoikis in opposite ways. Thus, in oral squamous cell carcinoma,

Sirt3 promotes anoikis resistance, whereas RIP inhibits it. It was

speculated that the mechanism by which Sirt3 and RIP have
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opposite functions in anoikis could be mediated by different

impacts on CypD and mitochondrial nonspecific pore opening

(Kamarajan et al., 2012). Consistently with these data, Sirt3 and

SOD2 activity were required for anoikis resistance and

anchorage-independent survival and metastasis of ovarian

cancer cells (Kim et al., 2020).

Sirtuin 3 and autophagy

Autophagy is a process in which defective or unnecessary

cellular organelles and proteins are delivered to autophagosomes

and degraded upon autophagosome fusion with lysosomes.

Extensive autophagy may lead to autophagic cell death;

however, it usually serves as a cytoprotective process by

maintaining cellular homeostasis and recycling cytoplasmic

contents (Jung et al., 2020). Autophagy is implicated in

crosstalk with other cell death modalities.

The influence of Sirt3 on autophagy is mediated by the

energy sensor AMPK, which inhibits the key autophagy

suppressor the mammalian target of rapamycin also referred

to the mechanistic target of rapamycin (mTOR) andmediates the

switch between autophagy and apoptosis (Liang et al., 2007)

(Figure 2C). There are data that Sirt3 activates AMPK via

LKB1 deacetylation (Pillai et al., 2010) and thus promotes

autophagy in hepatocytes (Zhang et al., 2020b; Liu et al.,

2021a), adipocytes (Zhang et al., 2020a), neurons (Dai et al.,

2017), and renal epithelial cells (Tan et al., 2021). Interestingly,

Sirt3 also can negatively regulate autophagy in the liver through

ROS-mediated AMPK-mTORC1-autophagy pathway

suppression and downregulation of MAP1LC3 expression (Li

et al., 2017). However, novel data demonstrate that AMPK can

act as an upstream Sirt3 regulator (Hu andMa, 2021; Wang et al.,

2021; Li et al., 2022). Additionally, Sirt3 can influence mTOR via

the PI3K/Akt pathway. Via its inhibition, Sirt3 acts as an

autophagy promotor (Xu et al., 2021). For this reason,

Sirt3 can produce opposing effects on autophagy in liver

pathologies, as shown in different studies, and resolution of

the mechanism will require further study (Cho et al., 2017).

Sirt3 can deacetylate FOXO1 and then facilitate downstream

E3 ubiquitin ligase induction of autophagosome formation (Li

et al., 2016). Another Sirt3 target is FOXO3a, which can regulate

the expression of autophagy cargo receptor p62. The Sirt3/

FOXO3a pathway was reported to promote autophagy in

liraglutide-treated mice with non-alcoholic fatty liver disease

(Tong et al., 2016) and in a rat model of exsanguinating

cardiac arrest treated by emergency preservation and

resuscitation (Ma et al., 2019). Autophagy upregulation,

elevated MAP1LC3-II and lowered p62/SQSTM1 expression

were also associated with Sirt3 signaling in diabetic mice with

cardiomyopathy (Zhang et al., 2017a). It seems that involvement

of Sirt3 in autophagy is important for the development of various

metabolic disorders.

Autophagy plays a key role in the control of cellular redox

balance and can be stimulated in response to ROS by the

PI3K–Akt and AMPK pathways acting directly on

components of the autophagic machinery, such as Atg4 and

Beclin-1 (Li et al., 2011). As Sirt3 is one of the main regulators of

mitochondrial ROS, it can also control autophagy. It has been

demonstrated using a model of cadmium (Cd)-induced

autophagic cell death (Pi et al., 2015). Thus, in hepatocytes,

Cd decreased the Sirt3 level and suppressed SOD2 deacetylation,

and hence its activity, leading to increased ROS production and

autophagic cell death. Intriguingly, melatonin suppressed Cd-

induced cell death by promoting Sirt3 activity without altering its

expression. Similar results were obtained in the A549 cell line,

where Cd elevated the ROS level and subsequently promoted

MAP1LC3-II, Beclin-1, and Atg4 expression and autophagosome

formation (Lv et al., 2018). Another piece of evidence of Sirt3/

mtROS-dependent autophagy was presented in human cervical

cancer cells treated with metformin in combination with

nelfinavir (Xia et al., 2019).

Highly intriguing results about the interplay between

Sirt3 function and autophagy in B cell lymphomagenesis were

published by Ari Melnick’s group (Li et al., 2019). According to

this paper, Sirt3 depletion was followed by the acetylation of

glutamine dehydrogenase (GDH) and ensuing suppression of its

activity as well as a significant reduction in acetyl-CoA pools with

simultaneous induction of autophagic death of tumor cells. This

points to Sirt3 as a possible target for the treatment of lymphoma.

Moreover, the authors introduced a new mitochondria-targeted

class I sirtuin inhibitor, YC8-02, a small-molecule sirtuin

inhibitor JH-T4 conjugated with a lipophilic cation

triphenylphosphonium, which increases its target specificity

for mitochondrial Sirt3.

Besides the role of Sirt3 in carcinogenesis, its essential

function in macroautophagy/autophagy regulation in the

context of innate immune defense has been established.

Sirt3−/− mice were characterized by aberrant mitochondria

in tuberculosis-infected cells and macrophages, a massive lung

inflammatory response, and increased susceptibility of mice to

Mycobacterium tuberculosis. It was shown that the peroxisome

proliferator activated receptor alpha (PPARA)-transcription

factor EB (TFEB) axis acts downstream of Sirt3 signaling and

is pivotal in promoting antibacterial autophagy and normal

mitochondrial functioning (Li et al., 2019).

Sirtuin 3 and mitophagy

Mitophagy, the specific autophagic elimination of damaged

mitochondria, represents mitochondrial quality control in cells.

In particular, removal of mitochondria with permeabilized OMM

(proapoptotic mitochondria) can suppress apoptosis (Denisenko

et al., 2021). The major mitophagy pathway is initiated by a

decrease in mitochondria membrane potential, accumulation of
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PINK1 on the OMM, and Parkin phosphorylation.

Phosphorylated Parkin induces ubiquitination of various

OMM proteins and recruitment of mitochondria to

autophagosomes. Sirt3 can stimulate mitophagy via direct

deacetylation of PINK1 and Parkin (Wei et al., 2017)

(Figure 2D). It can also increase Parkin expression and

activate mitophagy via FOXO3 deacetylation (Das et al., 2014;

Yu et al., 2017; Hu et al., 2019). Sirt3 may also stimulate Parkin-

dependent mitophagy through AMPK activation (Huang et al.,

2019). In Sirt3 knockout mice, Sirt3 deficiency impairs Parkin-

mediated mitophagy by increasing p53-Parkin binding and

blocking the mitochondrial translocation of Parkin in

cardiomyocytes (Li et al., 2018b).

In human glioma cells, Sirt3 activated hypoxia-induced

mitophagy by increasing the interaction of VDAC1 with

Parkin. It prevented proteasomal degradation of the anti-

apoptotic proteins Mcl-1 and survivin, thus inhibiting

apoptosis and increasing the resistance of tumor cells to

hypoxia (Qiao et al., 2016). Sirt3 was shown to prevent a

decrease in mitochondrial membrane potential in Cr(VI)-

transformed human bronchial epithelial cells and to elevate

the expression of PINK1 and Parkin, while Parkin remained

in the cytoplasm. This suppressed mitophagy, promoting

malignant cell proliferation and tumorigenesis (Clementino

et al., 2019). Sirt3 activation by the small-molecule compound

33c (ADTL-SA1215) induced mitophagy and inhibited

proliferation and migration in human breast carcinoma cells

(Zhang et al., 2021a). The Nrf2/Sirt3 pathway promoted

mitophagy, preventing nucleus pulpous apoptosis during

intervertebral disc degeneration (Hu et al., 2021). These

studies show that Sirt3-mediated mitophagy is involved in

apoptosis suppression and regulates cell survival and death.

Another process closely related to mitochondrial quality

control is mitochondrial dynamics. Thus, mitochondrial

fission is a prerequisite of mitophagy, separating damaged

mitochondria from the healthy mitochondrial network (Ikeda

et al., 2015). Sirt3 was shown to promote mitochondrial fission

via the Akt/PTEN pathway, supporting the growth and survival

of colorectal cancer cells (Wang et al., 2018c). Modulation of the

mitochondrial fission protein Drp1 by Sirt3 could induce

mitophagy, protecting cells during ischemia-reperfusion injury

(Bai et al., 2021; Zhao et al., 2021).

Besides PINK1/Parkin-dependent mitophagy, receptor-

mediated mitophagy plays an important role in mitochondrial

quality control.Mitophagy receptors (BNIP3, BNIP3L, also known

as NIX, FUNDC1, FKBP8, and Bcl2-L-13) can interact directly

withmammalian ATG8 family proteins, targetingmitochondria to

autophagosomes. Deacetylation of mitochondrial proteins by

Sirt3 initiated mitochondrial autophagy in a Parkin-

independent pathway (Webster et al., 2013). Thus, mitophagy

receptors can be implicated in this process.

There are a few examples devoted to the interplay between

Sirt3 and the major mitophagy receptors BNIP3 and its

homologue BNIP3L. Sirt3 was shown to positively regulate

BNIP3 and BNIP3L via FOXO3 deacetylation, inducing

mitophagy in response to oxidative stress to improve

mitochondrial quantity and quality (Tseng et al., 2013; Wu

et al., 2020). Sirt3 activation by honokiol increases both

BNIP3 and BNIP3L levels in rat nucleus pulposus cells in the

pathogenesis of an intervertebral disc degeneration model (Wang

et al., 2018b). Sirt3 can activate BNIP3-dependent mitophagy via

the ERK-CREB signaling pathway, protecting hepatocytes in

non-alcoholic fatty liver disease (Li et al., 2018a). Sirt3 was

shown to induce mitophagy during the unfolded protein

response. It proceeded in a Parkin-independent manner, while

the BNIP3L level was elevated. These data indicate that

Sirt3 might stimulate receptor-mediated mitophagy to

maintain mitochondrial integrity (Papa and Germain, 2014).

The opposite effects were shown in diabetic kidney disease,

where stanniocalcin-1 activated the AMPK-Sirt3 pathway, thus

decreasing ROS production and inhibiting BNIP3 expression.

Stanniocalcin-1 and its downstream effects protected kidney

cells from apoptosis (Liu et al., 2019). Sirt3 also prevented an

increase in the BNIP3 level after doxorubicin treatment,

ameliorating mitochondrial dysfunction and protecting

cardiomyocytes (Du et al., 2017). Besides functioning as a

mitophagy receptor, BNIP3 also has a BH3 domain and can

display a weak pro-apoptotic function. Neither of these works

touched on mitophagy regulation, investigating only apoptotic

functions of BNIP3.

After Cd intoxication in hepatocytes, mRNA levels of Sirt3 and

BNIP3 changed in the reciprocal directions. It was speculated that

Cd caused mitochondrial disfunction, decreased Sirt3, and

increased oxidative stress, which led to activation of BNIP3-

dependent mitophagy as well as PINK1/Parkin-dependent

mitophagy (Zhang et al., 2021b). It was observed that the level

of another mitophagy receptor—FundC1—could also be elevated,

together with a decrease in the Sirt3 mRNA level after Cd and Mo

intoxication (Wu et al., 2022). However, a decline in Sirt3 could

only be a consequence of the accumulation of damaged

mitochondria and not cause mitophagy on its own. Neither of

these articles reveal the functional link between Sirt3 and

mitophagy. Describing the influence of Sirt3 on FundC1, it is

worth mentioning that Sirt3 was shown to interact with and

deacetylate PGAM5, which phosphorylates FUNDC1 at serine

13 (Ser13). This introduces the Sirt3/PGAM5/FundC1 axis of

mitophagy activation (Ma et al., 2017). Apparently,

Sirt3 stimulates PINK1/Parkin-dependent mitophagy, as well as

receptor-mediated mitophagy, preventing apoptosis.

Sirtuin 3 and ferroptosis

Ferroptosis is an iron accumulation-mediated

nonapoptotic cell death, and its main features are

increased cellular ROS production and the accumulation
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of lipid peroxide caused by iron. Sirt3 is involved in the

regulation of iron transport and metabolism (Tinkov et al.,

2021). Sirt3 was shown to modulate iron regulatory protein

1 (IRP1) activity, resulting in downregulation of transferrin

receptor 1 (TfR1) expression. Sirt3-knockout cells have

aberrant iron metabolism, which provides a higher

growth rate (Jeong et al., 2015) (Figure 3A). On the other

hand, iron overload can inhibit Sirt3 activity, leading to

mitochondrial ROS accumulation and autophagy, which

causes bone marrow damage (Zhou et al., 2021).

Sirt3 activation plays a protective role in iron-overloaded

liver cells via the Wnt/β-catenin pathway (Mandala et al.,

2021). These findings shows that Sirt3 can control cell death

mediated by iron overload.

An important factor that regulates iron homeostasis and

oxidative stress is the transcriptional factor Nrf2. It can act as

an upstream regulator of Sirt3 in neuronal cells (Gao et al.,

2018). On the other hand, Sirt3 can activate Nrf2 itself and

inhibit ferroptosis (Wang et al., 2022). Consistently with

these data, Sirt3 was shown to decrease ROS levels and

suppress glutamate-induced ferroptosis in oligodendrocytes

(Novgorodov et al., 2018). Ferroptosis can be mediated by

p53, which connects this cell death type to apoptosis and

necroptosis (Yamada and Yoshida, 2019). Sirt3 can inhibit

FIGURE 3
(A) Sirtuin 3 and ferroptosis. Sirt3 regulates iron cell metabolism by inhibiting TFR1-mediated iron uptake. Sirt3 activates NRF2 and decreases
ROS production. NRF2 can act as an upstream regulator of Sirt3. Sirt3 can exhibit a pro-ferroptotic effect via ferritinophagy stimulation. Red arrows
denote pro-ferroptotic effects and green arrows denote anti-ferroptotic effects. (B) Sirtuin 3 and pyroptosis. Sirt3 inhibits NLRP3 inflammasome
activation and pyroptosis via autophagy and mitophagy stimulation. Sirt3 can promote pyroptosis via direct deacetylation of NLRC4 and
activation of NLRC4 inflammasome. Red arrows denote pro-pyroptotic effects and green arrows denote anti-pyroptotic effects.
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p53-mediated ferroptosis, protecting human cancer cells

from the stress caused by ROS accumulation (Jin et al., 2021).

However, in gallbladder cancer cell lines, Sirt3 showed a

pro-ferroptotic effect. It inhibited AKT-dependent

mitochondrial metabolism and the epithelial-mesenchymal

transition, leading to ferroptosis and tumor suppression

(Liu et al., 2021b). Ferroptosis can be promoted by

autophagy via ferritin removal (Hou et al., 2016). Increased

Sirt3 expression contributed to classical ferroptotic events and

autophagy activation, whereas Sirt3 silencing led to resistance

to both ferroptosis and autophagy. In addition, autophagy

inhibition impaired Sirt3-enhanced ferroptosis. By contrast,

autophagy induction acted synergistically with Sirt3. Based on

mechanistic investigations, Sirt3 depletion inhibited

activation of the AMPK-mTOR pathway and enhanced the

glutathione peroxidase 4 (GPX4) level, thereby suppressing

autophagy and ferroptosis (Han et al., 2020). This finding

reveals the involvement of Sirt3 in crosstalk between

autophagy and ferroptosis.

Sirtuin 3 and pyroptosis

Pyroptosis is an innate immunity-related type of PCD. It

includes a specific type of chromatin condensation, formation

of pores on the plasma membrane by gasdermin protein family

members, and cell swelling (Galluzzi et al., 2018). Often, it is

triggered by nucleotide-binding oligomerization domain-like

receptor (NLR)-mediated inflammasome formation and

inflammatory caspase activation, mainly of caspase 1. The

most important NLR family member implicated in

pyroptosis is NLR family pyrin domain-containing protein 3

(NLRP3).

Autophagy acts as a negative modulator of pyroptosis by

eliminating essential components of this process, including

NLRP3 (Guo et al., 2021). Sirt3, as an autophagy regulator,

plays an important role in pyroptosis inhibition (Figure 3B).

Thus, Sirt3 loss in macrophages compromised autophagy, and

was followed by NLRP3 inflammasome activation and vascular

metabolic inflammation (Liu et al., 2018). Similarly, in THP-1

macrophages, pyroptosis inhibition via electrical stimulation was

accompanied by Sirt3 upregulation, autophagy activation, and

attenuation of the ROS content (Cong et al., 2020). Interestingly,

in these experiments, direct deacetylation of ATG5 by Sirt3 was

observed.

Mitophagy also usually inhibits pyroptosis (Li et al., 2021).

Sirt3-mediated mitophagy was shown to attenuate NLRP3-

inflammasome activation in the hippocampus (Yu et al.,

2020). Increased Sirt3 activity induced by melatonin

promoted mitophagy via the FOXO3a/Parkin pathway and

had no effect on protein expression. This led to ROS

scavenging and NLRP3 inflammasome inhibition (Ma et al.,

2018).

Similarly, Sirt3 regulation of necroptosis was shown to interact

with pyroptosis. Thus, necroptosis induced by Sirt3 deficiency was

accompanied by NLRP3-mediated inflammation, ROS

production, and cardiomyocyte death in diabetic mice, which

suggested a possible switch to pyroptosis (Song et al., 2021).

Taken together, these data indicate that Sirt3 is a negative

regulator of NLRP3 pyroptosis. On the other hand, in primary

peritoneal macrophages, Sirt3 deficiency had no significant effect

on NLRP3 inflammasome activation. Interestingly, in this study,

Sirt3 was shown to directly deacetylate another inflammasome

component, NLR domain-containing protein 4 (NLRC4), to

promote pyroptosis (Guan et al., 2021).

Concluding remarks

In conclusion, the available data show that Sirt3 plays a dual

role in carcinogenesis. It can act as a tumor suppressor or

promoter, depending on the cell and tumor type, cellular

homeostasis, and sensitivity to cell death stimuli. Cancer

cells are characterized by higher ROS levels than normal

cells, and this factor confers advantages in terms of tumor

promotion and progression. However, the effects of some

anticancer drugs are based on their ability to stimulate ROS

production, particularly upon targeting of mitochondrial

respiratory complexes, to reach toxic levels, causing cell

death and thus overcoming treatment resistance. Silencing

Sirt3 under these circumstances provides an additional

advantage in terms of cell death stimulation. Targeting

Sirt3 can evoke distinct consequences depending on the

combination of multiple parameters, including the

significance of ROS for proliferation or cell death induction,

the role of HIF1 in tumorigenesis, the expression level of pro-

and antiapoptotic proteins, the predominant mode of OMM

permeabilization, et cetera. Thus, Sirt3 silencing seems to be

beneficial in oral and esophageal carcinomas, where it protects

cells from death, while in lung, colon, breast carcinomas the role

of Sirt3 is not clear, and its suppression could have protumor

effect. The role of each parameter and their interaction in

specific cases are still to find out.

These changes should be considered when searching for

antitumor strategies based on Sirt3 targeting. Sirt3 also

facilitates autophagy and mitophagy, processes that may

both suppress tumor development and protect tumor cells

from death, thus supporting tumor growth. Besides apoptosis

and autophagy, Sirt3 modulates other cell death types such

pyroptosis, necroptosis, anoikis, and ferroptosis. Its

implication in these processes is rather complicated.

Sirt3 usually acts as a negative regulator of necroptosis,
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RIP-dependent anoikis, ferroptosis, and pyroptosis, mainly

through its antioxidant activity. Nevertheless, Sirt3-mediated

deacetylation of specific proteins, such as p53 in necroptosis

or NLRC4 in pyroptosis, makes it responsible for pro-death

effects. Sirt3-mediated autophagy plays a dual role in cell

death regulation. It was shown to eliminate important

components of the cell death pathways, promoting

(ferroptosis) or inhibiting them (pyroptosis). Therefore,

investigating possible mechanisms of the activation of the

Sirt3 tumor suppressor function is an important task in

medical oncology.
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