
Exosomal circular RNAs:
Biogenesis, effect, and
application in cardiovascular
diseases

Xiaoyi Hu1†, Hongran Qin2†, Yi Yan3†, Wenhui Wu1,
Sugang Gong1, Lan Wang1, Rong Jiang1, Qinhua Zhao1,
Yuanyuan Sun1, Qian Wang1,4, Shang Wang1, Hui Zhao1,4,
Jinming Liu1* and Ping Yuan1*
1Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine,
Tongji University, Shanghai, China, 2Department of Nuclear Radiation, Shanghai Pulmonary Hospital,
School of Medicine, Tongji University, Shanghai, China, 3Heart Center and Shanghai Institute of
Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical
Center, Shanghai Jiaotong University School of Medicine, Shanghai, China, 4Institute of Bismuth
Science, University of Shanghai for Science and Technology, Shanghai, China

As natural nanoparticles, exosomes regulate a wide range of biological

processes via modulation of its components, including circular RNAs

(circRNAs). CircRNAs are a novel class of closed-loop single-stranded RNAs

with a wide distribution, and play diverse biological roles. Due to its stability in

exosomes, exosomal circRNAs serve as biomarkers, pathogenic regulators and

exert therapeutic potentials in some cardiovascular diseases, including

atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, heart

failure, and peripheral artery disease. In this review, we detailed the current

knowledge on the biogenesis and functions of exosomes, circRNAs, and

exosomal circRNAs, as well as their involvement in these cardiovascular

diseases, providing novel insights into the diagnosis and treatment of these

diseases.
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Introduction

Cardiovascular diseases (CVDs) are a group of heart and blood vessel diseases that are

highly frequent among older adults, resulting in high mortality worldwide (GBD

2013 Mortality and Causes of Death Collaborators, 2015; Ma et al., 2020; Visseren

et al., 2021). In recent years, the incidence of CVDs has shown a younger trend

(Andersson and Vasan, 2018). However, the mechanisms behind CVDs pathogenesis

remain largely unclear, making it difficult to improve the diagnostic and treatment

strategies of these diseases (Li et al., 2018). Notably, exosomes have been studied

extensively in the diagnosis, development, and treatment of CVDs (Ibrahim and
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Marban, 2016; Sahoo et al., 2021; Cui et al., 2022), including atrial

fibrillation (AF), atherosclerosis (AS), diabetic cardiomyopathy,

dilated cardiomyopathy, hypertension, heart failure (HF),

ischemia/reperfusion (I/R) injury, myocardial infarction (MI),

pulmonary hypertension (PH), and viral myocarditis. An

elaborate review of exosomes might provide a novel insight

into the diagnosis and treatment of these diseases.

Exosomes, 40–160 nm in diameter, are membrane-limited

structures secreted by almost all living cells in both normal and

pathological conditions (Kalluri and LeBleu, 2020). As crucial

intercellular communication mediators, exosomes participate in

the regulation of blood pressure, angiogenesis, cardiomyocyte

hypertrophy, cardiac fibrosis, and apoptosis/survival (de Abreu

et al., 2020). They are also potential biomarkers of CVDs due to

their widespread prevalence in body fluids (Jansen et al., 2017).

Furthermore, exosomes are expected to be a monotherapy in

CVDs, considering that they are an essential component of the

paracrine action of stem cell-based therapies (Lai et al., 2010).

Exosomes contain various components, including lipid

(Flaherty et al., 2019), proteins (Ageta et al., 2018), DNA

(Torralba et al., 2018), microRNA (miRNA), circular RNA

(circRNA), and long noncoding RNA (lncRNA) (van Niel

et al., 2018; Chen et al., 2019). In particular, circRNAs are

nonlinear single-stranded RNAs (Memczak et al., 2013). The

expression of circRNAs differs between healthy and pathological

cardiovascular tissues, indicating that circRNAs are involved in

the development of CVDs (Aufiero et al., 2019). Lines of evidence

show that circRNAs participate in the pathogenesis of CVDs by

binding miRNAs or RNA-binding proteins (RBPs), translating

into proteins, and regulating transcription (Fan et al., 2017;

Kishore et al., 2020; Rai et al., 2021). However, reviews of

exosomal circRNAs and CVDs are currently quite limited.

In this review, we briefly summarized the current knowledge

on the discovery history, biogenesis, and functions of exosomes

and circRNA, as well as their participation in the pathogenesis of

CVDs. Particularly, we detailed the significance and role of

exosomal circRNAs in some CVDs, including AS,

acute coronary syndrome (ACS), I/R injury, HF, and

peripheral artery disease (PAD), emphasizing on their

potential as promising diagnostic molecular markers and

therapeutic targets.

Overview of exosomes in CVDs

Discovery and research history of
exosomes

Exosomes were first discovered in sheep reticulocytes in

1983. The transferrin receptor in sheep reticulocytes were

tracked during maturation in vitro with FITC- and 125I-

labeled anti-transferrin-receptor antibodies; subsequently,

the membrane protein transferrin receptor combined with

vesicles, were later secreted into culture medium (Pan and

Johnstone, 1983). In 1987, Johnstone et al. named those

vesicles as exosomes. These vesicles contained various

components, such as acetylcholinesterase, which was

declined in sheep reticulocyte during maturation.

Meanwhile, these vesicles exhibited characteristics of sheep

red blood cells instead of white blood cells or platelets

(Johnstone et al., 1987). However, exosomes were poorly

explored during the next decade until 1996, when

Raposo et al. discovered that exosomes produced from B

lymphocytes participated in antigen presentation in vivo

(Raposo et al., 1996). Since then, exosomes have received

extensive attention.

In 2007, Valadi et al. suggested that both mRNAs and

miRNAs were transferred between cells through exosomes and

exerted functions in the recipient cells (Valadi et al., 2007). In

2010, exosomes were first studied as a potential agent for CVDs

therapeutic intervention. Mesenchymal stem cell mediated its

cardioprotective paracrine effect by secreting exosomes,

subsequently reducing myocardial I/R injury (Lai et al., 2010).

Afterwards, more and more researchers started to explore the

relationship between exosomes and CVDs and a series of

advances have been made in the research of exosomes in

diagnosis, development, and treatment of CVDs (Ibrahim and

Marban, 2016; Sahoo et al., 2021; Cui et al., 2022).

Biogenesis of exosomes

Exosomes are derived from endosomal system (Figure 1).

Plasma membrane invagination results in the formation of early

endosomes, whose membranes are then invaginated and

sprouted to form intraluminal vesicles. At the same time, the

early endosomes mature into multivesicular bodies (MVBs),

which contain numerous intraluminal vesicles in its internal

cavity (Raposo and Stoorvogel, 2013; van Niel et al., 2018).

Essentially, these intraluminal vesicles eventually become

exosomes. MVBs fuse with cell membrane, and exosomes are

subsequently released to extracellular surroundings. Exosome

formation is controlled by two main mechanisms.

On one hand, the endosomal sorting complex required for

transport (ESCRT) plays an essential role in exosome biogenesis.

ESCRT contains five protein complexes: ESCRT-0, ESCRT-1,

ESCRT-2, ESCRT3, and vacuolar protein sorting-associated

protein 4. ESCRT-0, comprising hepatocyte growth factor-

regulated tyrosine kinase substrate and signal transducing

adaptor molecule, participates in the clustering of

ubiquitinated cargoes. ESCRT-1 and ESCRT-2 lead to bud

formation, ESCRT-3 drives vesicle scission, and vacuolar

protein sorting-associated protein 4 is responsible for

dissociation and recycling of the ESCRT machinery (Hurley

and Hanson, 2010; Henne et al., 2013; Kowal et al., 2014). On

the other hand, exosomes are formed in an ESCRT-independent
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manner. After depletion of key subunits of the four ESCRTs inHEp-

2 cells, both early endosomes and MVBs remain differentiated,

although the morphology of the endocytic pathway components

may vary dramatically (Stuffers et al., 2009). CD63 (van Niel et al.,

2011), CD81 (Perez-Hernandez et al., 2013), CD9 (Chairoungdua

et al., 2010; Villarroya-Beltri et al., 2014), CD82 (Chairoungdua et al.,

2010), and RAB31 (Wei et al., 2021) might be involved in ESCRT-

independent endosomal sorting as well.

Secretion of exosomes

The MVEs in cells have two different outcomes: MVBs could

fuse with the lysosome to degrade their contents, or they could

fuse with the plasma membrane and secrete exosomes into

extracellular space (Kowal et al., 2014; van Niel et al., 2018).

Some Rab GTPases are reported to regulate exosome secretion

(Stenmark, 2009). For example, Rab27a, Rab27b, and

Rab35 participate in the docking of MVEs at the plasma

membrane (Ostrowski et al., 2010; Yang et al., 2019).

Silencing of Rab27a or Rab27b could reduce exosome release

without modifying the protein content or morphology of these

exosomes. Slp4 and Slac2b are two effectors of Rab27, and

silencing these effectors consequently reduces exosome

secretion and phenocopies silencing of Rab27a and Rab27b

(Ostrowski et al., 2010). Importantly, KIBRA is the upstream

platform for exosome regulator, which controls exosome

secretion by inhibiting the proteasomal degradation of Rab27a

(Song et al., 2019). In addition, vesicle-membrane SNAREs

(v-SNAREs) combined to target-membrane SNAREs

(t-SNAREs), thereby regulating the fusion of MVEs to plasma

membrane (Jahn and Scheller, 2006).

Functions of exosomes

Exosome functions are mainly focused on three aspects. First,

exosomes can transfer its contents, such as nucleic acids and proteins,

FIGURE 1
Biogenesis of exosomal circRNAs and its function in recipient cells. Exosomes are derived from endosomal system. Plasma membrane
invagination results in the formation of early endosomes, whose membranes are then invaginated and sprouted to form intraluminal vesicles. At the
same time, the early endosomes mature into multivesicular bodies. These intraluminal vesicles are essentially exosomes. Multivesicular bodies fuse
with cell membrane, and exosomes are subsequently released to extracellular surroundings. CircRNAs are derived from pre-mRNA, which
covalently connects both ends of a single RNA molecule during backsplicing to form a closed loop. CircRNAs have four main types, namely, intron-
derived circRNAs, exonic circRNAs, exon-intron circRNAs, and intergenic circRNAs. MiRNAs and RBPs may regulate the sorting of circRNAs into
exosomes. Exosomal circRNAs play important roles in recipient cells through sponging miRNAs or RBPs, encoding proteins, or regulating
transcription. Pol II, RNA polymerase II; U1 snRNP, U1 small nuclear ribonucleoprotein.
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to recipient cells to affect its function. Contents released from

exosomes to biological fluids may also act as diagnostic

biomarkers or predictors of disease progression and prognosis

(Kalluri and LeBleu, 2020). Second, exosomes play significant roles

in cell communications (Coumans et al., 2017). Finally, exosomes are

an essential component of the paracrine action of stem cell–based

therapies (Lai et al., 2010). Clinically, exosomes themselves or as

vehicles for drug payload delivery are being actively explored as

therapeutic agents (Andaloussi et al., 2013; de Abreu et al., 2020).

Exosomes in CVDs

The roles of exosomes in the diagnosis, development, and

treatment of CVDs have already been studied extensively

(Figure 2) (Ibrahim and Marban, 2016; Sahoo et al., 2021; Cui

et al., 2022). Exosomes in different body fluids, such as serum and

urine, may function as biomarkers to reflect the progression of

many diseases, such as AF, dilated cardiomyopathy, and

hypertension. As crucial intercellular communication

mediators, exosomes could also promote apoptosis, migration,

inflammation, and cardiac fibrosis in diabetic cardiomyopathy,

AS, and hypertension. Notably, exosomes derived from adipose-

derived stem cells, mesenchymal stem cells, or bone marrow-

derived macrophages exert therapeutic effects in viral

myocarditis, MI, AF, I/R injury, HF, diabetic cardiomyopathy,

PH, and AS.

Overview of circRNAs in CVDs

Discovery and research history of
circRNAs

Our previous review summarizes the discovery and research

history of circRNAs (Wang et al., 2022). Briefly, these single-

stranded closed RNAs were first identified in the genome of

potato spindle in 1971 (Diener, 1971). In 2010, researchers

discovered an extremely low expression of a circular isoform

of the noncoding RNA ANRIL, which was associated with INK4/

ARF expression and AS risk (Burd et al., 2010). With the

advancement of RNA sequencing technology, circRNAs were

finally detected in humans in 2012 (Salzman et al., 2012) and

have been widely investigated since then.

FIGURE 2
Functions of exosomes in CVDs. Exosomes in different body fluids, such as serum and urine, function as biomarkers to reflect the progression of
many diseases, such as AF, dilated cardiomyopathy (DCM+), and hypertension (HTN). Exosomes can promote apoptosis, migration, inflammation,
and cardiac fibrosis in diabetic cardiomyopathy (DCM), AS, and HTN. Exosomes derived from adipose-derived stem cells (ADSCs), mesenchymal
stem cells (MSCs), or bone marrow–derived macrophages (BMDMs) exert therapeutic effects in viral myocarditis (VM), MI, AF, I/R injury, HF,
DCM, PH, and AS. AHF, acute heart failure; CMVECs, cardiac microvascular endothelial cells; ECs, endothelial cells; PAECs, pulmonary arterial
endothelial cells; PASMCs, pulmonary arterial smooth muscle cells; VSMCs, vascular smooth muscle cells.
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Biogenesis of circRNAs

As previously described (Wang et al., 2022), circRNAs are

derived from pre-mRNA (Figure 1), which covalently connects

both ends of a single RNA molecule during backsplicing to form

a closed loop (Memczak et al., 2013). Owing to their unique loop

structure, circRNAs are stable and resistant to RNase R (Jeck and

Sharpless, 2014). CircRNAs are also endogenous, abundant, and

conservative, with expression patterns specific to tissues, cell

types, and developmental stages (Memczak et al., 2013; Geng

et al., 2018; Kristensen et al., 2019).

CircRNAs have four main types, namely, intron-derived

circRNAs, exonic circRNAs, exon-intron circRNAs, and intergenic

circRNAs. In particular, intron-derived circRNAs contain circular

intronic RNAs, excised group I introns, excised group II introns,

excised tRNA introns, and intron lariats (Wang et al., 2016).

Additionally, exonic circRNAs, which are produced primarily

through an intron-pairing-driven circularization pattern, account for

almost 80% of all circRNAs. Other circRNAbiogenesismodels include

the exon-skipping model, RBP-dependent cyclization model, ciRNA

formation model, and variable cyclization model (Li B. et al., 2021).

Functions of circRNAs

CircRNAs participate in physiological processes via different

molecular pathways (Figure 1). First, circRNAs may function as a

sponge for miRNAs or competitive endogenous RNAs, thereby

inhibiting miRNA expression and thus enhancing miRNA-

targeted mRNAs (Hansen et al., 2013). Second, circRNAs may

interact with RBPs and regulate mRNA expression by altering the

splicing patterns or mRNA stability (Abdelmohsen et al., 2017;

Du et al., 2017; Yang et al., 2017). Third, circRNAs may influence

transcription by interacting with the RNA polymerase II

machinery and U1 small nuclear ribonucleoprotein in the

nucleus (Li Y. et al., 2015; Ng et al., 2016). In addition,

circRNAs may regulate the transcription of their parent genes

by competing with linear mRNA splicing (Li Z. et al., 2015; Xu

et al., 2020). Finally, circRNAs could be translated into proteins

with ribosomes (Legnini et al., 2017; Pamudurti et al., 2017;

Begum et al., 2018; Yang et al., 2018).

CircRNAs in CVDs

Generally, circRNAs exert functions in CVDs (Figure 3) by

sponging miRNAs and RBPs, encoding proteins, and regulating

transcription (Fan et al., 2017; Kishore et al., 2020; Rai et al.,

2021). In the cardiovascular system, circRNAs are associated

with cardiac fibroblasts (CFs), cardiomyocytes (CMs),

pulmonary arterial smooth muscle cells, pulmonary arterial

endothelial cells, and vascular smooth muscle cells (VSMCs),

playing important roles in the pathogenesis of cardiomyopathy,

MI, PH, and AS (Kishore et al., 2020). Furthermore, circRNAs

can serve as potential diagnostic and prognostic biomarkers for

CVDs (Li B. et al., 2020; Yuan et al., 2021).

Overview of exosomal circular RNAs
in CVDs

Selection mechanism of circRNAs into
exosomes

Two pathways may influence the selection of circRNAs into

exosomes. First, miRNAs might be responsible for the process. It was

demonstrated that miR-7 mimics treatment for the cells led to a

significant reduction of its competitive endogenous sponge

circCDR1as in exosomes (Hansen et al., 2013; Li Y. et al., 2015),

suggesting that sorting of circRNAs to exosomes was regulated, at

least in part, by changes of associated miRNA levels in producer cells.

In addition, miRNAs could mediate the intracellular degradation of

circRNAs, thus causing the decrease of the expression of circRNAs in

exosomes. For example, miR-671-AGO2 was reported to mediate the

degradation of circCDR1as (Hansen et al., 2011) in source cells, which

might be responsible for the reduction of circCDR1as in exosomes.

Second, RBPs may also regulate the selection of circRNAs into

FIGURE 3
Functions of circRNAs in CVDs. CircRNAs exert functions in
CVDs by sponging miRNAs and RBPs, encoding proteins, and
regulating transcription. In the cardiovascular system, circRNAs
are involved with cardiac fibroblasts (CFs), cardiomyocytes
(CMs), pulmonary arterial smooth muscle cells (PASMCs),
pulmonary arterial endothelial cells (PAECs), and vascular smooth
muscle cells (VSMCs), playing important roles in the pathogenesis
of cardiomyopathy, myocardial infarction, pulmonary
hypertension, and atherosclerosis.
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exosomes by binding to specific sequences (Schickel et al., 2008;

Frank et al., 2010). According to the study of Villarroya-Beltri et al.,

RBP hnRNPA2B1 binds exosomal miRNAs through the

recognition of specific sequence motifs and controls their

loading into exosomes (Villarroya-Beltri et al., 2013). There

might be similar mechanisms modulating the selection of

circRNA into exosomes as that of miRNAs. Existing evidence

indicated that RBPs were abundant in exosomes from DKs-8 cell

and could bind circFAT1 for its loading into exosomes (Dou et al.,

2016). However, the specific selection mechanism of circRNAs

into exosomes remains unclear and warrants further investigation.

Exosomal circRNAs in CVDs

Exosomal circRNAs were first studied in CVDs in 2019 (Ge

et al., 2019). Ge et al. discovered alterations of circRNA

expression in mouse cardiac exosomes after I/R injury and

identified some potential targets and pathways involved in I/R

injury (Ge et al., 2019). Since then, the crucial roles of exosomal

circRNAs in CVDs have been widely explored. In this section, the

roles of exosomal circRNAs as biomarkers, pathogenetic

mediators and therapeutic potentials based on current

knowledge will be revealed in the context of CVDs (Figure 4;

Tables 1, 2).

Exosomal circRNAs in AS
AS is a chronic inflammatory disease of the arterial wall,

characterized by the formation of plaques containing lipid,

connective tissue, and immune cells in the intima of large and

medium arteries (Engelen et al., 2022). AS is also the common

cause of MI and stroke. Endothelial cell (EC) and VSMC

dysfunction and inflammatory cell infiltration are all major

contributors in AS development (Falk, 2006).

FIGURE 4
Mechanism of exosomal circRNAs in CVDs. (A) Summary of studies of exosomal circRNAs in human CVDs. (B) Summary of studies of exosomal
circRNAs in mouse CVDs. (C) Summary of studies of exosomal circRNAs in rat CVDs. ADSCs, adipose-derived stem cells; CAD, coronary artery
disease; CMVECs, cardiac microvascular endothelial cells; ECs, endothelial cells; HCAECs, human coronary artery endothelial cells; HG,
hyperglycemia; HUVECs, human umbilical vein endothelial cells; MSCs, mesenchymal stem cells; UA, unstable/vulnerable plaque
atherosclerosis; VSMCs, vascular smooth muscle cells.
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(1) Exosomal circRNAs serve as biomarkers of AS (Vilades et al.,

2020; Wen et al., 2021). Serum exosomes from patients with

unstable/vulnerable atherosclerotic plaque showed a

markedly upregulated expression of

circ_0006896 compared with those from patients with

stable atherosclerotic plaque. The serum exosomal

circ_006896 level was also positively related to the levels

of triglyceride, low-density lipoprotein cholesterol, and

C-reactive protein but negatively associated with albumin

level, indicative of an association between circ_0006896 with

plaque instability (Wen et al., 2021).

(2) Exosomal circRNAs are involved in AS pathogenesis.

Compared with the serum levels of circ_0006896 in the

exosomes from patients with stable plaque, the higher

expression in patients with vulnerable plaque could

increase DNMT1 expression in human umbilical vein

endothelial cells by directly binding to miR-1264 (Wen

et al., 2021). DNMT1 was reported to regulate DNA

methylation and could methylate the promoter region of

SOCS3 and repress its gene expression (Boosani et al., 2015).

The reduced expression of SOCS3 then led to the increase of

STAT3 phosphorylation, and activated JNK/

STAT3 pathway. Therefore, circ_0006896 facilitated the

proliferation and migration of human umbilical vein

endothelial cells via the miR-1264/DNMT1/

SOCS3 pathway in JNK/STAT3-dependent manner (Wen

et al., 2021). Wang et al. found that the expression of

circ_0077930 from hyperglycemia-induced human

umbilical vein endothelial cells was upregulated in

exosomes, which was abolished by

circ_0077930 knockdown. Treating VSMCs with

circ_0077930-depleted exosomes could increase the

expression of miR-622 and reduce the expression of Kras,

as well as aging-related proteins p21, p53, and p16.

Meanwhile, the lactate dehydrogenase activity decreased,

but the superoxide dismutase activity and anti-oxidative

stress marker increased. Therefore, circ_0077930-depleted

exosomes fail to induce VSMC senescence (Wang Y. et al.,

2020).

Exosomal circRNAs in ACS
ACS is a group of clinical syndromes including ST segment

elevation MI, acute non-ST segment elevation MI, and unstable

angina pectoris. The pathophysiological underpinning of ACS is

the rupture or invasion of coronary atherosclerotic plaques,

followed by complete or incomplete occlusive thrombosis.

Prompt and appropriate treatment for ACS patients is crucial

to reduce mortality and improve prognosis (Libby, 2013).

(1) Exosomal circRNAs serve as biomarkers in ACS. Wu et al.

screened differentially expressed exosomal circRNAs in the

plasma of patients with coronary artery disease (CAD) and

found 164 upregulated and 191 downregulated circRNAs.

Moreover, exosomal circ_0005540 was increased in patients

with CAD (105 patients with CAD vs 86 non-CAD controls).

However, further studies are still needed to confirm whether

plasma-derived exosomal circ_0005540 could be used as a

diagnostic biomarker for CAD (Wu et al., 2020). In another

study, circNPHP4 expression was considerably evaluated in

exosomes isolated from the monocytes of patients with CAD;

results suggested that serum circNPHP4 upregulation

predicted aggressive clinicopathological characteristics in

patients with CAD (Xiong et al., 2021).

(2) Exosomal circRNAs participate in ACS pathogenesis. In

particular, circNPHP4 expression positively correlated

with the expression of its parent gene NPHP4 in

monocytes from both patients with CAD and control

subjects. Functional assays indicated that exosomal

circNPHP4 knockdown inhibited heterogeneous adhesion

between monocytes and human coronary artery endothelial

cells, alongside with the reduction of adhesive molecules

TABLE 1 The biomarkers of serum/plasma exosomal circRNAs in
cardiovascular diseases.

CircRNA Expression Disease Function References

circ_0006896 ↑ AS Diagnostic Wen et al. (2021)

circ_0005540 ↑ CAD Diagnostic Wu et al. (2020)

circNPHP4 ↑ CAD Diagnostic Xiong et al. (2021)

AS, atherosclerosis; CAD, coronary artery disease; CircRNA, circular RNA.

TABLE 2 The therapeutic role of stem cell-derived exosomal circRNAs in cardiovascular diseases.

CircRNA Stem cells Recipient cells Disease Function References

circ_0001273 UMSCs CMs MI Inhibit apoptosis Li B. et al. (2020)

circ_0002113 MSCs H9C2 cells I/R injury Inhibit apoptosis Tian et al. (2021)

circ_0001747 ADSCs HL-1 cells I/R injury Promote viability and proliferation; inhibit inflammation and apoptosis Zhou et al. (2022)

cPWWP2A UMSCs C2C12 cells PAD Inhibit NLRP3 inflammasome pathway Wang et al. (2021a)

circHIPK3 UMSCs C2C12 cells PAD Inhibit pyroptosis Yan et al. (2020)

ADSCs, adipose-derived stem cells; CircRNA, circular RNA; I/R, ischemia/reperfusion; MI, myocardial infarction; MSCs, mesenchymal stem cells; PAD, peripheral artery disease; UMSCs,

umbilical cord mesenchymal stem cells.
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(ICAM-1 and VCAM-1). Mechanically, exosomal

circNPHP4 may promote the EGFR/PI3K/AKT pathway

by inhibiting miR-1231 in human coronary artery

endothelial cells to affect its recruitment of monocytes in

patients with CAD (Xiong et al., 2021). Wang et al. found

that circHIPK3 was upregulated in exosomes derived from

CMs under hypoxic conditions (Wang et al., 2019a; Wang S.

et al., 2020). CircHIPK3 could be internalized by cardiac

microvascular endothelial cells via exosomes. Exosomal

circHIPK3 from hypoxic CMs could increase IGF-1

expression by sponging miR-29a, thereby ameliorating

oxidative stress-induced cardiac microvascular endothelial

cell dysfunction (Wang et al., 2019a). In cardiac ECs treated

with exosomes from hypoxia induced CMs, the level of

circHIPK3 increased. Furthermore, CMs-derived

exosomes under hypoxic conditions promoted cardiac EC

proliferation, migration, and tube formation via the

circHIPK3/miR-29a/VEGFA axis; they also promoted

neovascularization after MI and ameliorated myocardial

fibrosis in vivo (Wang Y. et al., 2020). Moreover,

M2 macrophage-derived exosomes transferred circUbe3a

to CFs to sponge miR-138-5p and inhibit its expression,

and then increase RhoC expression, thereby promoting cell

proliferation, migration, and myofibroblastic

transformation. Therefore, exosomal circUbe3a derived

from M2 macrophages might exacerbate myocardial

fibrosis after acute MI (Wang et al., 2021a).

(3) Exosomal circRNAs have therapeutic potentials in ACS.

Circ_0001273 in exosomes was higher than that in its

parent cells, that is, umbilical cord mesenchymal stem cell

(UMSCs), at each time point. It was reported that cardiac

circ_0001273 was downregulated in MI rat model. UMSC-

derived exosomes promoted MI repair by transmitting

circ_0001273, as evidenced by the abrogation of the

beneficial effect after si-circ-0001273 UMSC-derived

exosome treatment. In addition, circ_0001273 from

UMSC-derived exosomes repressed CM apoptosis, thereby

promoting MI repair (Li C. X. et al., 2020).

Exosomal circRNAs in I/R injury
Myocardial I/R injury refers to the injury of myocardial

tissues after partial or complete acute occlusion of the

coronary artery (Kalogeris et al., 2016). Myocardial I/R injury

occurs frequently after thrombolysis or percutaneous coronary

intervention in clinical practice, probably resulting from an

oxygen-derived free-radical burst, quick physiological

pH recovery, insulin resistance, intracellular calcium overload,

mitochondrial damage, or inflammatory insults (Wu et al., 2018;

Soares et al., 2019).

(1) Although there are no studies on the role of exosomal

circRNAs as biomarkers in I/R injury, Ge et al. discovered

185 differentially expressed exosomal circRNAs, with

66 upregulated and 119 downregulated, in exosomes

derived from a murine heart after I/R injury. Gene

ontology and pathway analyses indicated that upregulated

circRNAs were possibly related to inflammatory regulation

after cardiac I/R injury, whereas downregulated circRNAs

might participate in regulating fibrotic response and cardiac

dysfunction (Ge et al., 2019).

(2) Exosomal circRNAs have therapeutic potentials in I/R

injury. Exosomes derived from circ_0002113 lacking

mesenchymal stem cells reduced myocardial injury by

sponging miR-188-3p to regulate RUNX1 nuclear

translocation. The circ_0002113/miR-188-3p/RUNX1 axis

regulated H/R-induced H9C2 cell apoptosis in a USP7/

p53 dependent manner, serving as a novel strategy for

myocardial I/R injury treatment (Tian et al., 2021). In

another study, circ_0001747 was downregulated in murine

H/R injury myocardial cells (HL-1 cells). H/R exposure

restrained cell viability and proliferation, and induced cell

inflammation and apoptosis. However, exosomes with have

high amounts of circ_0001747 from adipose-derived stem

cells largely attenuate H/R-induced dysfunction in HL-1 cells

by targeting the miR-199b-3p/MCL1 axis (Zhou et al., 2022).

Exosomal circRNAs in HF
HF is a dyscirculatory syndrome caused by cardiac systolic

and/or diastolic dysfunction, resulting in insufficient perfusion of

venous blood pool and arterial blood. This disorder manifests as

pulmonary congestion and vena cava thrombosis. HF is not an

independent disease but a terminal stage in CVD development.

Most cases of HF begin with the left side, which first presents as

congestion of the pulmonary circulation (Tamargo and Lopez-

sendon, 2011).

(1) So far, there have been no studies on the role of exosomal

circRNAs as biomarkers in HF. However, Han et al. screened

differentially expressed circRNAs in peripheral blood

samples from five patients with HF and found

56 differentially expressed circRNAs, of which 29 were

upregulated and 27 were downregulated relative to that of

control subjects. They further examined

circ_0097435 expression in the plasma exosomes of

15 patients with HF and 15 healthy volunteers. It turned

out that circ_0097435 levels were markedly higher in

exosomes from patients with HF (Han et al., 2020).

However, the potential of circ_0097435 as a biomarker in

HF remains unconfirmed.

(2) Exosomal circRNAs are involved in HF pathogenesis. The

overexpression of circ_0097435 promoted apoptosis in CMs,

which was abrogated by circ_0097435 knockdown (Han

et al., 2020). Further RNA-pulldown and AGO2-

immunoprecipitation experiments demonstrated that

circ_0097435 might serve as a sponge for multiple

miRNAs, such as miR-6799-5p, miR-5000-5p, miR-609,
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and miR-1294. Doxorubicin (DOX) is a widely used

anticancer drug. It was shown that circSKA3 was

overexpressed in exosomes from DOX-mediated

AC16 cells, which could be further internalized by

surrounding untreated AC16 cells, contributing to DOX-

induced cardiotoxicity through the miR-1303/TLR4 axis.

The knockdown of circSKA3 could partially reverses the

increase of cell apoptosis and decrease of cell viability in

AC16 cells in response to DOX administration (Li L. et al.,

2021). In another study, circ_0036176 was upregulated in the

myocardium of patients with HF, and it was abundant in

exosomes derived from human AC16 cardiomyocytes with

overexpression of circ_0036176 (OE-circ_0036176-exo).

OE-circ_0036176-exo could inhibit the proliferation by

translating Myo9a-208 protein to suppress the expression

of CCND1, CCNE1, CDK9, and p-RB1 in CFs. While miR-

218-5p could bind to circ_0036176 to suppress Myo9a-208

expression at the transcriptional level, thereby attenuating

the inhibitory effect of circ_0036176 on mouse CF

proliferation (Guo et al., 2022).

Exosomal circRNAs in PAD
PAD is a syndrome of peripheral circulatory dysfunction

characterized by the narrowing, occlusion, or tumor-like dilation

of main arteries and their branch vessels other than the cardiac

and cerebral arteries. One of the leading causes of PAD is AS,

which may lead to acute lower-limb ischemia (Morley et al.,

2018). The disease has an insidious beginning and could be

asymptomatic in the early stages. Furthermore, PAD can possibly

result in intermittent claudication, ischemic rest discomfort,

ulcers, and prolonged treatment, and gangrene or even

amputation in extreme circumstances with an unfavorable

prognosis (Aboyans et al., 2018).

(1) Exosomal circRNAs act as mediators in PAD pathogenesis.

Dou et al. revealed that cZFP609 was highly expressed in

human silent information regulator 1 (SIRT1)-

overexpressing VSMCs, as well as in its exosome under

hypoxic conditions (Dou et al., 2020). SIRT1 is a NAD+-

dependent histone deacetylase that could mediate

endothelial angiogenic functions during vascular growth

(Potente et al., 2007). It was demonstrated that exosomes

from SIRT1-overexpressing VSMCs could transfer

cZFP609 to ECs. The cZFP609 detained the HIF1α in the

cytoplasm via its interaction with HIF1α, thereby inhibiting
VEGFA expression and suppressing endothelial

angiogenesis under hypoxic conditions.

(2) Exosomal circRNAs have therapeutic potentials in PAD. By

transferring cPWWP2A, UMSC-Exos could increase the

blood flow of ischemic hindlimb and promote skeletal

muscle repair after injury. In addition, cPWWP2A

inhibited the tumor suppressor Rb1-mediated

NLRP3 inflammasome pathway through the miR-29b/

CDK6 axis in C2C12 cells (Wang et al., 2021b). In

another research, UMSC-Exos could promote ischemic

hindlimb repair and prevent skeletal muscle pyroptosis by

delivering circHIPK3 in vivo. UMSC-Exos also prevented

lipopolysaccharide-induced C2C12 cells from pyroptosis via

the circHIPK3/miR-421/FOXO3a axis (Yan et al., 2020).

Exosomal circRNAs in other CVDs
Exosomal circRNAs might also be involved in other types of

CVDs (eg. hypertension, PH and AF) based on the evidences on

the investigation of exosomes and circRNAs in the disease

settings, despite the lack of researches on the direct role of

exosomal circRNAs in these diseases (Ibrahim and Marban,

2016; Fan et al., 2017; Kishore et al., 2020; Rai et al., 2021;

Sahoo et al., 2021; Cui et al., 2022). For example, the therapeutic

effects of exosomes in PH have been extensively studied (Willis

et al., 2018; Oh et al., 2022). Furthermore, Xiang et al. have

reported the potential of exosomes as therapeutic target and

clinical biomarker in AF (Xiang et al., 2022). Several researchers

also reviewed the roles of exosomes in hypertension (Arishe et al.,

2021), as well as the roles of circRNAs in hypertension and PH

(Sekar, 2019; Zaiou, 2019; Ali et al., 2022; Wang et al., 2022).

Moreover, the expression profiles of circRNAs in AF patients

have been identified (Zhu et al., 2020). Therefore, the specific

roles of exosomal circRNAs warrant further investigation in

hypertension, PH and AF as well.

Conclusion

Due to their unique features and high specificity, exosomal

circRNAs are stable, and present in diverse extracellular fluids,

such as blood and urine, making it an ideal diagnostic biomarker

and therapeutic targets in diseases (Guo et al., 2021). However,

the studies of circRNAs in exosomes are still incomplete

compared to other non-coding RNAs, such as miRNAs and

lncRNAs. Furthermore, many challenges and difficulties exist in

the clinical applications of exosomal circRNAs. First, it is difficult

to detect circRNAs in exosomes with accurate methods due to

their low abundance in some cases (Boriachek et al., 2018).

Second, since circRNAs and their liner mRNA have some

overlapped sequences, the expression and function of

circRNAs cannot be precisely evaluated. Third, there is no

standardized method for isolating and processing exosomes

(Wang et al., 2019b). Therefore, advanced technologies and

methods are needed to elucidate the molecular mechanism of

exosomal circRNAs.

Exosomal circRNAs are emerging as a new area of research in

CVDs. Exosomal circRNAs exert multiple functions related to

cell viability, proliferation, apoptosis, migration, invasion, tube

formation, inflammation, and adhesion. They also serve as

biomarkers for the diagnosis and progression of CVDs. In

addition, some exosomal circRNAs from stem cells have
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therapeutic potentials in CVDs. Future studies can focus on the

following directions: 1) to explore the roles of exosomal

circRNAs in other types of CVDs, such as hypertension, PH,

and AF; 2) to reveal the specific mechanism of exosomal

circRNAs in the pathogenesis of CVDs; 3) to evaluate the

efficacy of different exosomal circRNAs derived from various

stem cells in CVDs. A full understanding of the relationship

between exosomal circRNAs and CVDs is important to generate

novel ideas for the diagnosis and treatment of CVDs.
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