
Disruption of the VAPB-PTPIP51
ER-mitochondria tethering
proteins in post-mortem human
amyotrophic lateral sclerosis

Naomi Hartopp, Dawn H W. Lau, Sandra M. Martin-Guerrero,
Andrea Markovinovic, Gábor M. Mórotz, Jenny Greig,
Elizabeth B. Glennon, Claire Troakes, Patricia Gomez-Suaga*,
Wendy Noble* and Christopher C.J. Miller*

Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience,
King’s College London, London, United Kingdom

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates

many neuronal functions that are perturbed in amyotrophic lateral sclerosis (ALS)

and perturbation to ER-mitochondria signaling is seen in cell and transgenic

models of ALS. However, there is currently little evidence that ER-mitochondria

signaling is altered in human ALS. ER-mitochondria signaling is mediated by

interactions between the integral ER protein VAPB and the outer mitochondrial

membrane protein PTPIP51 which act to recruit and “tether” regions of ER to the

mitochondrial surface. The VAPB-PTPI51 tethers are now known to regulate a

number of ER-mitochondria signaling functions. These include delivery of Ca2+

from ER stores to mitochondria, mitochondrial ATP production, autophagy and

synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem

control and ALS spinal cords. We show that VAPB protein levels are reduced in ALS.

Proximity ligation assays were then used to quantify the VAPB-PTPIP51 interaction

in spinal cord motor neurons in control and ALS cases. These studies revealed that

the VAPB-PTPIP51 tethers are disrupted in ALS. Thus, we identify a new pathogenic

event in post-mortem ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron

disease and involves progressive loss of motor neurons resulting in muscle wasting and

ultimately paralysis. ALS is now known to be clinically, pathologically and genetically

linked to frontotemporal dementia (FTD). FTD is the second most common cause of

presenile dementia after Alzheimer’s disease (Ling et al., 2013; Robberecht and Philips,

2013). Thus, many FTD patients display clinical ALS features and likewise many ALS

patients develop clinical symptoms of FTD (Ringholz et al., 2005; Wheaton et al., 2007).

Both diseases can display similar pathological phenotypes and notably, the accumulation
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of abnormal aggregates of TAR DNA-binding protein 43

(TDP43) in affected neurons (Arai et al., 2006; Neumann

et al., 2006). Finally, both diseases have strong genetic

components and mutations in the same genes can cause

dominant familial inherited forms of ALS and FTD. Mutant

genes causing both ALS and FTD include TARDBP encoding

TDP43, FUS encoding fused in sarcoma and C9orf72; the disease

causing mutations in C9orf72 involve expansion of an intronic

hexanucleotide repeat which is translated into neurotoxic

dipeptide repeat proteins (DPRs) (Ling et al., 2013;

Robberecht and Philips, 2013; Abramzon et al., 2020).

There are no cures or effective disease modifying treatments

for ALS. Developing new therapies can include correcting

damaged molecular, cellular and physiological processes but

this is complicated as a large number of changes are seen in

ALS. Thus, damage to mitochondria, the endoplasmic reticulum

(ER), Ca2+ signaling, lipid metabolism, axonal transport,

autophagy and inflammatory responses are all features of ALS

(Paillusson et al., 2016; Lau et al., 2018; Dafinca et al., 2021;

Markovinovic et al., 2022). The biological conundrum is how so

many apparently disparate physiological processes are perturbed

collectively. The therapeutic challenge is selecting which of these

different perturbed processes to prioritize for drug discovery.

Recently, attention has focussed on signaling between the ER

and mitochondria and this is because ER-mitochondria signaling

regulatesmany of the functions that are damaged in ALS (Paillusson

et al., 2016; Csordas et al., 2018; Lau et al., 2018; Dafinca et al., 2021;

Markovinovic et al., 2022). ER-mitochondria signaling involves

close contacts between the two organelles (up to approximately

30 nm distances) and the regions of ER in contact with

mitochondria are termed mitochondria associated ER

membranes (MAM) (Paillusson et al., 2016; Csordas et al., 2018;

Lau et al., 2018; Dafinca et al., 2021; Markovinovic et al., 2022). The

mechanisms by which ER membranes are recruited to the

mitochondrial surface are not fully understood but it is widely

accepted that the process involves “tethering proteins” which act to

scaffold the two organelles in close proximity. One well

characterised tether involves an interaction between the integral

ER protein, vesicle-associated membrane protein-associated protein

B (VAPB) and the outer mitochondrial membrane protein, protein

tyrosine phosphatase interacting protein-51 (PTPIP51) (also known

as regulator of microtubule dynamics-3 and family with sequence

similarity 82 member A2) (De Vos et al., 2012; Stoica et al., 2014).

The VAPB-PTPIP51 tethers are known to control a number of ER-

mitochondria regulated functions including inositol 1,4,5-

trisphosphate (IP3) receptor delivery of Ca2+ from ER stores to

mitochondria, mitochondrial ATP production, autophagy,

phospholipid synthesis and synaptic activity (De Vos et al., 2012;

Stoica et al., 2014; Galmes et al., 2016; Stoica et al., 2016; Gomez-

Suaga et al., 2017; Paillusson et al., 2017; Gomez-Suaga et al., 2019;

Puri et al., 2019; Yeo et al., 2021; Gomez-Suaga et al., 2022). Loss of

synaptic activity is a key feature of ALS and other neurodegenerative

diseases (Herms and Dorostkar, 2016; Spires-Jones et al., 2017).

Such findings have prompted investigations into the VAPB-

PTPIP51 tethers in ALS and this has revealed them to be disrupted

in cell and transgenic mousemodels involvingmutant TDP43, FUS,

and C9orf72 (Stoica et al., 2014; Stoica et al., 2016; Gomez-Suaga

et al., 2022). However, as yet there is no evidence that the VAPB-

PTPIP51 interaction is altered in human ALS patients. This is an

important omission. Firstly, because transgenic mouse and cell

models of ALS do not always fully recapitulate human disease;

for example some C9orf72 transgenic mouse models display

hippocampal rather than motor neuron loss (Jiang et al., 2016).

More importantly, if correcting disrupted ER-mitochondria

signaling and VAPB-PTPIP51 tethering is to be a valid drug

target for ALS, it is essential we know whether these features are

actually damaged in human disease. Here we address this issue by

examining the ER-mitochondria tethering proteins VAPB and

PTPIP51 in post-mortem ALS and control tissues.

Materials and methods

Antibodies

The following primary antibodies were used in this study:

Rabbit and rat antibodies to VAPB and PTPIP51 were as

described (De Vos et al., 2012). Rabbit anti-PTPIP51 antibody

(Anti-RMDN3, HPA009975) and rabbit anti-IP3 receptor type-3

(HPA003915) were from Atlas Antibodies. Rabbit anti-voltage-

dependent anion channel-1 (VDAC1) (ab14734) was from

Abcam. Mouse anti-neuron specific enolase (NSE) (BBS/NC/

VI-H14 -M0873) was from Dako.

Human tissues

Post-mortem human spinal cord samples from control and

clinically and pathologically confirmed cases of ALS were

obtained from the London Neurodegenerative Diseases Brain

Bank, King’s College London. All tissue collection and processing

were carried out under the regulations and licensing of the

Human Tissue Authority, and in accordance with the Human

Tissue Act, 2004. The ALS cases analysed all contained

TDP43 positive inclusions.

SDS-PAGE and immunoblotting

Frozen human lumbar spinal cord tissues were prepared for

SDS-PAGE as described previously (Lau et al., 2020). Protein

concentrations were determined using a bicinchoninic acid

protein concentration assay kit (Pierce) according to the

manufacturer’s instructions and samples stored at −80°C until

required. Samples were separated by SDS-PAGE using Novex

4–12% Tris-glycine gels (Invitrogen) and transferred to Protran
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nitrocellulose membranes (0.45 μm pore; G.E. Healthcare) using an

Invitrogen X-Cell blot II transfer system. After transfer, membranes

were blocked in Tris–HCl-buffered saline (TBS, pH 7.3), 0.1% (v/v)

Tween-20 containing either 5% (w/v) BSA (for probing for and

IP3 receptor type-3) or 5% (w/v) non-fat dried milk powder (for

probing all other proteins). Membranes were incubated with

primary antibodies in blocking buffer overnight at 4°C, washed

and incubated with secondary antibodies and then processed for

chemiluminescent detection using a 1:1 dilution of ECL blotting

reagents 1 and 2 (GE Healthcare). Chemiluminescent signals were

detected with a Bio-Rad ChemiDoc imaging system and analysed

using ImageJ; protein signals were normalised to NSE signals from

the same sample. Atlas PTPIP51 antibody was used for

immunoblots. All primary antibodies were used at 1:2000 apart

from anti-NSE which was used at 1:10000 concentration.

Proximity ligations assays (PLAs) and
microscopy

VAPB-PTPIP51 PLAs were performed on 7 μm sections of

paraffin wax embedded formalin fixed post-mortem human lumbar

spinal cord tissues using rabbit VAPB and rat PTPIP51 antibodies

essentially as described previously for studies of post-mortem

Alzheimer’s disease tissues, and using Duolink In Situ Detection

Brightfield kits (Sigma) (Lau et al., 2020). Donkey anti-rabbit in situ

PLA probes were purchased directly; donkey anti-rat PLA probes

were prepared using Duolink In Situ Probemaker kits (Sigma).

Primary antibodies were used at 1:200 concentration. Following

PLAs, sections were counterstained with haematoxylin, dehydrated

in graded alcohols and xylene, and mounted using DPX mounting

reagent. Experimental controls to demonstrate specificity of the

PLAs involved omission of VAPB, PTPIP51 or both VAPB and

PTPIP51 antibodies.

Sectionswere imagedusing anOlympusVS.120 slide scanner using

an Olympus 40x UPlanSApo NA 0.95 lens and driven by Olympus

L100 VS-ASW software. Motor neurons were identified by

morphology. They are located in the anterior horn of the lumbar

spinal cord and are the largest cells in the spinal cord so are easily

identified. Images were analysed as previously described using

Visiopharm 2018.4 Image Analyses software with an analyse

package protocol created with Author Module (Lau et al., 2020).

Briefly, the perimeter of each motor neuron was marked which

enabled the relative area and the number of PLA dots within each

cell to be calculated by the software.

Statistical analyses

Statistical analysis was performed using Excel (Microsoft

Corporation) and Prism software (version 9; GraphPad Software

Inc.). Statistical significance was determined as described in the

figure legends. Correlation analyses were performed as previously

described (Lau et al., 2020). Briefly, VAPB-PTPIP51 PLA dot

numbers per case were correlated with age and post-mortem

delay by generating correlation coefficients and significance was

established using parametric, two-tailed Pearson tests.

Results

VAPB levels are reduced in post-mortem
ALS spinal cord

Firstly, we investigated the levels of key ER-mitochondria

signaling proteins in post-mortem control and ALS spinal cord

tissues. We studied VAPB and PTPIP51 since they function to

tether ER domains with mitochondria so as to permit signaling, and

IP3 receptor and VDAC1 since they represent themajor channel for

TABLE 1 Data for human post-mortem samples.

Group Sex Age Post-mortem delay (hrs)

Control M 105 25

Control F 73 27

Control F 77 21

Control M 84 53

Control F 92 22.5

Control M 85 55

Control M 63 23

Control F 99 32

Control M 78 24

Control M 82 24

Control F 92 9.0

Control M 97 44

Control F 84 34

Control F 89 41

Control M 81 18

Control M 79 47

ALS M 68 78

ALS M 57 94

ALS M 69 52.5

ALS M 68 73

ALS F 73 70

ALS F 90 34

ALS F 59 74

ALS F 72 53

ALS M 54 69

ALS M 77 66

ALS M 76 51

ALS F 80 36.5

ALS F 69 64

ALS M 73 41.5

ALS M 71 58
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delivery of Ca2+ from ER stores to mitochondria; ER-mitochondria

Ca2+ exchange controls several functions perturbed in ALS such as

mitochondrial ATP production, autophagy and synaptic activity

(De Vos et al., 2012; Stoica et al., 2014; Stoica et al., 2016; Gomez-

Suaga et al., 2017; Paillusson et al., 2017; Csordas et al., 2018;

Gomez-Suaga et al., 2019; Puri et al., 2019; Gomez-Suaga et al., 2022;

Markovinovic et al., 2022). There are 3 isoforms of IP3 receptor

(type−1, −2 and −3) which all function to transport Ca2+ to

mitochondria (Bartok et al., 2019). These isoforms show different

expression patterns in the nervous system. IP3 receptor type-1 is

highly expressed in neurons in the cortex, hippocampus and

cerebellum, IP3 receptor type-2 is primarily expressed in glia,

and IP3 receptor type-3 is the major isoform in brain stem and

spinal cord, including motor neurons, but is largely absent in cortex

and hippocampus (De Smedt et al., 1994; Sharp et al., 1999;

Watanabe et al., 2016). We therefore studied IP3 receptor type-3

levels.

To quantify the levels of these proteins, we performed

immunoblots of post-mortem control and ALS spinal cord tissues.

Details of these human cases are shown in Table 1 and involve tissues

from 16 control and 15 ALS patients. The levels of each protein were

normalised to the levels of NSE as described by others in similar

studies of human post-mortem neurodegenerative disease tissues

(Tiwari et al., 2015; Kurbatskaya et al., 2016; Lau et al., 2016;

Tiwari et al., 2016; Morotz et al., 2019a; Morotz et al., 2019b; Lau

et al., 2020). Compared to controls, VAPB levels were significantly

reduced in the ALS tissues but there were no changes in the levels of

PTPIP51, IP3 receptor type-3 or VDAC1 (Figure 1).

The VAPB-PTPIP51 interaction is disrupted
in spinal cord motor neurons in post-
mortem ALS

To determine whether the VAPB-PTPIP51 interaction is

disrupted in human ALS, we used in situ PLAs to quantify

their binding in spinal cord motor neurons in the control and

ALS tissues. The distances detected by PLAs are up to about

30 nm which makes these assays suitable for quantifying ER-

mitochondria contacts (Soderberg et al., 2006; Paillusson et al.,

2016). PLAs including ones for VAPB and PTPIP51 have already

been used to quantify ER-mitochondria contacts and signaling in

models of ALS, Parkinson’s disease and Alzheimer’s disease (De

Vos et al., 2012; Hedskog et al., 2013; Bernard-Marissal et al.,

2015; Stoica et al., 2016; Paillusson et al., 2017; Gomez-Suaga

et al., 2019; Gomez-Suaga et al., 2022). Most recently, such

studies have been extended to analyses of the VAPB-PTPIP51

interaction in human post-mortem Alzheimer’s disease brains

(Lau et al., 2020).

Firstly, we demonstrated the specificity of the PLAs in control

experiments where primary VAPB and/or PTPIP51 antibodies

were omitted. Such omission produced none or only very few

FIGURE 1
Expression of VAPB, PTPIP51, IP3 receptor type-3 and VDAC1 proteins in post-mortem control and ALS spinal cords. Representative
immunoblots are shown. Graphs show quantification of protein levels in the different samples following normalisation to NSE levels in the same
sample. N = 16 control and 15 ALS cases. Data were analysed by unpaired t-test. Error bars are standard error of means (s.e.m.); *p < 0.05.
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signals whereas inclusion of both antibodies generated significant

positivity (Figure 2). These findings are in agreement with several

previous studies including studies of human post-mortem

Alzheimer’s disease brains (De Vos et al., 2012; Stoica et al.,

2016; Lau et al., 2020).

We then quantified the VAPB-PTPIP51 PLA dots in the

motor neurons of the 16 control and 15 ALS spinal cords. The

number of PLA positive dots per cell were normalised to the area

of each cell so as to correct for any changes in neuron size in the

ALS cases. Thus, any difference in PLA signal detected in the ALS

FIGURE 2
Control experiments demonstrating the specificity of VAPB-PTPIP51 PLAs on human post-mortem spinal cord tissues. Controls involved
omission of VAPB, PTPIP51, or both VAPB and PTPIP51 primary antibodies (no primary Ab). The graph shows the number of PLA dots per spinal cord
motor neuron in the different experiments. Data were analysed by ANOVA and Tukey post hoc test. N = 20–106 per condition, error bars are s. e.m.;
****p < 0.0001. Scale bars: 1,000 μm (Low magnification), 100 μm (Zoom 1) and 10 μm (Zoom 2).
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motor neurons cannot be the consequence of changes in cell size.

These studies revealed that compared to controls, VAPB-

PTPIP51 PLA signal numbers/cell were significantly reduced

in ALS motor neurons (Figure 3A). We also performed

correlation analyses to determine whether the number of PLA

dots correlated with post-mortem delay or age in the cases

studied. These analyses revealed that there were no significant

correlations between the number of PLA dots and either of these

parameters (post-mortem delay, r = −0.102, p = 0.58; age

r = −0.112, p = 0.55).

Finally, since we detected a significant reduction in VAPB

protein levels in the ALS cases, we analysed the impact of this

reduction on the VAPB-PTPIP51 interaction by normalising the

VAPB-PTPIP51 PLA dot numbers to VAPB protein levels. The

significant reduction in VAPB-PTPIP51 PLA dots in the ALS

cases was lost following this normalisation (Figure 3B). This

suggest that loss of VAPB may contribute to the reduced VAPB-

PTPIP51 interaction in ALS.

Discussion

A number of studies have now shown that ER-mitochondria

signaling is perturbed in ALS (Lautenschlager et al., 2013; Stoica

et al., 2014; Bernard-Marissal et al., 2015; Dafinca et al., 2016;

Gregianin et al., 2016; Stoica et al., 2016; Watanabe et al., 2016;

FIGURE 3
The VAPB-PTPIP51 interaction is reduced in ALS spinal cord motor neurons. (A) Representative images of VAPB-PTPIP51 PLAs in control and
ALS tissues. Lowmagnification and two zoom images are shown for each sample; motor neurons are outlined in the highest zoom images. The graph
shows the mean number of VAPB-PTPIP51 PLA dots per motor neuron for each case. VAPB-PTPIP51 PLA numbers were normalised to the area of
each cell so as to correct for any changes in neuron size in the ALS cases as described in Materials and Methods. (B) Graph showing mean
numbers of VAPB-PTPIP51 PLA dots following normalisation to VAPB protein levels. N = 16 control and 15 ALS cases. Data were analysed by unpaired
t-test; Error bars are s. e.m., *p < 0.05, ns not significant. Scale bars; 1,000 μm (Low magnification), 100 μm (Zoom 1) and 10 μm (Zoom 2).
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Tadic et al., 2017; Dafinca et al., 2020; Dafinca et al., 2021;

Gomez-Suaga et al., 2022). However, these studies largely focused

on experimental models and to date, there is little evidence that

ER-mitochondria contacts and signaling are altered in human

ALS patient tissues. Here, we utilised PLA technology to study

the VAPB-PTPIP51 interaction in post-mortem ALS spinal cord

motor neurons.

Our analysis involved 16 control and 15 ALS cases and so

represents a highly powered study. Compared to controls, we

detected a significant decrease in VAPB-PTPIP51 PLA signals in

the ALS motor neurons. Studies of induced pluripotent stem cell

neurons derived from patients carrying pathogenic TDP43 and

C9orf72 mutations also support a role for perturbation to ER-

mitochondria signaling in ALS and this includes disruption to

the VAPB-PTPIP51 interaction (Dafinca et al., 2016; Dafinca

et al., 2020; Dafinca et al., 2021; Gomez-Suaga et al., 2022). Our

findings thus complement and extend these prior studies.

The mechanisms that underlie the disruption to the VAPB-

PTPIP51 tethers in ALS are not clear. Clearly the expression

levels of VAPB and PTPIP51 affect their interaction and this in

turn has been shown to influence ER-mitochondria contacts and

linked functions. Thus, siRNA loss of VAPB and/or

PTPIP51 reduce ER-mitochondria contacts, IP3 receptor

mediated delivery of Ca2+ to mitochondria, and downstream

functions of this Ca2+ delivery (De Vos et al., 2012; Stoica et al.,

2014; Gomez-Suaga et al., 2017; Gomez-Suaga et al., 2019). Our

finding that VAPB levels are reduced in ALS spinal cord suggests

that this loss may contribute to the decrease in the VAPB-

PTPIP51 interaction we detect in ALS. Interestingly, others

have also reported decreased levels of VAPB in ALS post-

mortem tissues (Anagnostou et al., 2010). Indeed, we found

that following normalisation of VAPB-PTPIP51 PLA dot

numbers to VAPB protein levels, the reduction in the VAPB-

PTPIP51 interaction we detected in the ALS cases was lost. This

supports the notion that loss of VAPB contributes to the reduced

VAPB-PTPIP51 interaction in ALS. Interestingly, there is

evidence that VAPB may have other functions aside from ER-

mitochondria tethering and that it may act to tether regions of ER

with other organelles (Kors et al., 2022). Loss of VAPB may

contribute to ALS via mechanisms other than ER-mitochondria

tethering.

An alternative possibility is that the ALS linked perturbation

of the VAPB-PTPIP51 tethers is linked to activation of glycogen

synthase kinase-3β (GSK3β). GSK3β is a negative regulator of the
VAPB-PTPIP51 interaction and its activation has been linked to

disruption of ER-mitochondria tethering and signaling by ALS

mutant TDP43, FUS, and C9orf72 in experimental models

(Stoica et al., 2014; Stoica et al., 2016; Gomez-Suaga et al.,

2022). However, studying GSK3β activity in post-mortem

human tissues is difficult and similar analyses of GSK3β in

post-mortem Alzheimer’s disease brains have generated highly

conflicting data with some reporting increased and some

decreased activity in Alzheimer’s disease (Ferrer et al., 2002;

Swatton et al., 2004; Leroy et al., 2007). Such studies have led to

the conclusion that it is technically difficult, if not impossible, to

measure GSK3β enzymatic activity in post-mortem

neurodegenerative disease tissues (Hooper et al., 2008).

Analyses of ALS tissues with very short post-mortem times

may assist such analyses in future studies.

Whatever the precise mechanisms, our findings demonstrate,

for the first time, that the VAPB-PTPIP51 ER-mitochondria

tethers are perturbed in human ALS post-mortem motor

neurons. As such, they provide clinical support for prior

experimental studies which highlighted the role of damaged

ER-mitochondria signaling in ALS.
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